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Abstract

Background: As part of its broad and ambitious mission, the MicroArray Quality Control
(MAQC) project reported the results of experiments using External RNA Controls (ERCs) on five
microarray platforms. For most platforms, several different methods of data processing were
considered. However, there was no similar consideration of different methods for processing the
data from the Agilent two-color platform. While this omission is understandable given the scale of
the project, it can create the false impression that there is consensus about the best way to process
Agilent two-color data. It is also important to consider whether ERCs are representative of all the
probes on a microarray.

Results: A comparison of different methods of processing Agilent two-color data shows
substantial differences among methods for low-intensity genes. The sensitivity and specificity for
detecting differentially expressed genes varies substantially for different methods. Analysis also
reveals that the ERCs in the MAQC data only span the upper half of the intensity range, and
therefore cannot be representative of all genes on the microarray.

Conclusion: Although ERCs demonstrate good agreement between observed and expected log-
ratios on the Agilent two-color platform, such an analysis is incomplete. Simple loess normalization
outperformed data processing with Agilent's Feature Extraction software for accurate
identification of differentially expressed genes. Results from studies using ERCs should not be over-
generalized when ERCs are not representative of all probes on a microarray.

Background

Recently, the MicroArray Quality Control (MAQC) Con-
sortium published a series of papers on an important
effort to address ongoing issues concerning the reliability
of microarray data [1-6]. Some specific goals of the MAQC
project include generating reference datasets using multi-
ple microarray platforms produced across multiple labo-
ratories; establishing reference RNA samples for the
scientific community; measuring the reproducibility of
microarray data; and evaluating the advantages and disad-
vantages of various data analysis methods. For the com-

plete list of MAQC project goals see [4]. The article by
Tong et al [6] addressed the goal of evaluating data analy-
sis methods for microarrays. This particular study exam-
ined datasets from hybridizations that contained External
RNA Controls (ERCs), elsewhere referred to as "spikes" or
"spike-ins." Tong et al [6] reported results for five different
microarray platforms.

ERCs are extremely valuable for quality control because
their true concentrations are known by design. Since one
knows what the microarray measurement should be, one
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can examine how well the microarray gives the right
answer. One aspect of the study reported by Tong et al [6]
was to leverage ERCs to compare the performance of dif-
ferent methods of processing array data. For example, for
the Affymetrix platform, Tong et al [6] process the data
with five different methodologies for Affymetrix data:
PLIER [7], MAS5 [8], dChip [9], gcRMA [10], and RMA
[11]. Tong et al evaluated characteristics of the concentra-
tion-response curves corresponding to each of these meth-
ods.

Unfortunately, no similar evaluation of data processing
methods was presented for the Agilent two-color data in
[6]. While this is understandable given the broad and
ambitious scope of the project, it can create the false
impression that the community of researchers using this
platform has reached consensus about the best way to
process Agilent two-color data. Experimentalists using this
platform need to be aware of the various data processing
choices available. Indeed, further analysis of the MAQC
Agilent two-color data reveals important differences
among common choices for data processing. Additional
analysis also reveals some important caveats to the inter-
pretation of the results for these ERC datasets. These addi-
tional analyses of the MAQC Agilent data extend the good
work in the previous report [6].

This paper examines six Agilent two-color MACQ datasets.
Datasets were produced by three sites (1, 2, and 3) with
two different RNAs (A and B).

Results

Comments on concentration-response curves

ERCs in the MAQC datasets have true log-ratio equal to +
log,(10) = + 3.32; + log,(3) = + 1.59; or log,(1) = 0. Tong
et al present a figure (Figure 4 of reference [6]) that shows
the relationship between the observed log-ratios of the
ERCs compared to the expected (true) log-ratios for the
Agilent two-color arrays. Other than four arrays that
clearly failed, the relationship is near identity. This tempts
one to conclude that the data processing was completely
successful. However, further analysis of the data reveals
that the behavior of ERCs may not be representative of
other spots on the array because the ERCs do not span the
range of intensities

Figure 1 shows ratio-intensity plots (RI plots; also known
as MA plots) of the data from one array in the MAQC
study. The colored points represent the ERCs and the
black points represent other genes on the arrays. The hor-
izontal axes represent spot intensity. Note that the ERCs
span only the middle to high end of the intensity range on
the log scale. (The ERC represented by the yellow points
in Figure 1 was apparently not used in Figure 4 of [6].) The
nice behavior of the ERCs at medium and high intensities
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Figure |

Ratio-intensity plots for three methods of data
processing. Horizontal axes represent the average log,(red)
and log,(green) signal as a measure of spot intensity. The ver-
tical axes represent the log-ratio of red and green signal.
These ratio-intensity plots are for replicate | from Site |,
RNA A (AGL_I_AI in the nomenclature of [6]). Blue points
are ERCs with true log-ratio = * log,(10) = * 3.32; green
points are ERCs with true log-ratio = * log,(3) = + 1.59; red
and yellow points are ERCs with true log-ratio = log,(l) = 0;
black points are non-ERCs and have true log-ratio = 0. Top
panel: noBA data (loess normalization, no background adjust-
ment). Middle panel: BA data (loess normalization, with back-
ground adjustment). Bottom panel: FE data (data processing
by Feature Extraction).

should not be expected to represent the behavior of genes
in the lower half of the intensity range. See Additional file
1 for ratio-intensity plots of all arrays.

Variability of non-ERC probes varies substantially with
data processing method

The datasets considered here have the same RNA in the
red and green channels. That is, other than ERCs, all spots
have true log-ratio = 0. The true log-ratio is therefore
known for every probe on the array, so these arrays are
informative about the effectiveness of data processing
methods. The bottom panel of Figure 1 represents the data
as produced by the built-in normalization from the Fea-
ture Extraction software. This report will refer to this ver-
sion of the data as the "FE-data." The top two panels of
Figure 1 are two alternative versions of the data. In both
cases, intensity-dependent normalization of log-ratios
was carried out with a loess smooth [12] on the ratio-
intensity plot. The top panel shows the data without any
background adjustment ("noBA data") and the middle
panel shows the data with local background subtraction
("BA data"). The variability of observed log-ratios is
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clearly larger for the FE version of the data than the BA or
noBA versions, especially at lower intensities.

Data processing and detection of differentially expressed
genes

One of the most common uses for microarray data is to
detect differentially expressed genes. In the MAQC data-
sets, one hopes that the ERCs with true log-ratio 10, 3, 1/
3, or 1/10 can be detected among the remaining genes
with true-log-ratio 0. When detection is the scientific goal
of a study, the most appropriate way to judge accuracy is
with the sensitivity and specificity of detection. Similar to
[13] and [14], three different metrics, or "ranking statis-
tics," for gauging the evidence for differential expression
were applied: the mean, the t-statistic, and the modified t-
statistic used in the popular SAM software [15]. For the
noBA, BA, and FE versions of the data and for each rank-
ing statistic, ROC curves describe the sensitivity and spe-
cificity of detection [see Additional file 2]. Table 1
summarizes the ROC curves with the AUC measure (a per-
fect AUC is 1.0). Recall that there are six different datasets
because 3 sites produced data using two different RNAs.
Each dataset has 4 or 5 replicate arrays (the failed assays
identified by Tong et al [6] were removed).

Detection was superior using the mean or the SAM-statis-
tic compared to the t-statistic, corroborating the finding of
[13] for another two-color platform. For the SAM-statistic
and especially for the mean, detection was superior for the
noBA and BA versions of the data compared to the FE
data.

Figure 2 is similar to a ratio-intensity plot but summarizes
the data from all five arrays in one dataset (Site 1, RNA A).
Figure 3 is similar to Figure 2 but the vertical axis repre-
sents the SAM-statistic instead of the mean log-ratio. An
effective ranking statistic will separate, vertically, the green
points, representing the ERCs with non-zero log-ratio,
from the black points, representing other genes or ERCs
with 0 log-ratio. When the mean is used as the ranking sta-
tistic (Figure 2), many low-intensity genes exhibit a large

Table I: AUC values for ROC curves
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Figure 2

Average log-ratios calculated from five replicate
arrays. The average log-ratio is plotted against the average
spot intensity for the three versions of the data from Site |
and RNA A (five arrays). Green points are the ERCs with
non-zero true log-ratio.

average log-ratio in the FE version of the data. This is the
case even though the average is over five replicates. The
issue with the FE data is similar with the SAM statistic,
although less pronounced in Figure 3 than with the other
five datasets. [See Additional file 3 for the corresponding
figures for all datasets.|

Discussion

The analysis methods and findings here are very similar to
the study by Zahurak et al [14]. The contribution of this
article is to point out the omission in [6] with respect to
the analysis of Agilent data, provide a more comprehen-
sive analysis of those data, and to confirm that the find-
ings on the MAQC data largely corroborate the findings in
[14].

No BA
Sitet RNA  mean  t-statistic SAM-statistic
Agilent Dataset | A 0.998 0.995 0.998
| B 0.998 0.994 0.998
2 A 0.993 0.974 0.992
2 B 0.995 0.993 0.996
3 A 0.999 0.976 0.995
3 B 0.997 0.991 0.997

BA FE
mean  t-statistic SAM-statistic mean t-statistic = SAM-statistic
0.998 0.995 0.998 0.971 0.992 0.996
0.998 0.994 0.998 0.901 0.995 0.998
0.990 0.975 0.990 0.907 0.984 0.970
0.992 0.994 0.996 0.810 0.996 0.995
0.997 0.976 0.995 0816 0.976 0.991
0.997 0.992 0.997 0.760 0.983 0.840

AUC values for ROC curves summarizing the sensitivity and specificity of detection for the six datasets from sites 1,2,3 and RNAs A and B. A

perfect AUC is 1.0. AUC over 0.99 bold; AUC under 0.95 underlined.

Page 3 of 6

(page number not for citation purposes)



BMC Bioinformatics 2007, 8:371

noBA BA

40 4@
2 20 g
@ + 4 2 A
Do il o -<iilinahy
= =
g 3

-40 40

5 10 15 5 10 15
average spot intensity average spot intensity
FE

40
2 20,
] + . ..
50
3 Y
& -2orp

-40

5 10 15
average spot intensity
Figure 3

SAM statistics calculated from five replicate arrays.
The SAM statistic is plotted against the average spot intensity
for the three versions of the data from Site | and RNA A
(five arrays). Green points are the ERCs with non-zero true
log-ratio.

The three different ways of processing two-color data that
were considered here (noBA, BA, and FE) produce nearly
identical curves for the observed log ratios plotted against
expected log ratios [see Figure 4 from [6] and Additional
file 4]. That is, the behavior of these high intensity probes
is nearly the same for the noBA, BA, or FE versions of the
data. On the other hand, ratio-intensity plots and the
ROC curves demonstrate that these data processing meth-
ods produce markedly different results for low-intensity
genes. This is not news to those familiar with microarray
data. However, it is not apparent in [6] that the ERCs only
represent higher-intensity genes.

Tong et al [6] are careful to point out that the design of
their ERC experiments was not ideal and make some rec-
ommendations for the use of ERCs in future studies. There
is a current effort by the External RNA Control Consor-
tium to develop a set of ERCs for the scientific community
[16,17]. Given the importance of signal intensity for the
behaviour of measurement, it seems crucial that an effec-
tive set of ERCs span the entire intensity range.

Microarray data with ERCs are extremely valuable for
understanding the behaviour of the microarray signal and
the operating characteristics of data processing methodol-
ogies. However, ERC probes may not be representative of
all probes on a microarray, as seen here. Moreover, a sin-
gle ERC experiment cannot be representative of all real
microarray experiments, since different experiments will
exhibit different patterns of differential expression. As a
specific but important example, datasets in which only a
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handful of genes, the ERCs, are differentially expressed are
extremely well-suited to the assumptions of loess normal-
ization. Therefore, such datasets cannot be used to evalu-
ate the effectiveness of loess normalization for data with
lots of differential expression.

Clearly, the major difference among processing methods
is the behavior of low intensity genes. One method for
handling highly-variable low intensity genes is to simply
discard them. However, Kerr et al [18] showed that micro-
array measurements on low-intensity genes are less relia-
ble, but they are not unreliable. In [18], some
measurements on low-intensity genes suggested genes
that were differentially expressed between two RNAs, and
these measurement were reproduced on "indirect" com-
parisons of the RNAs via reference RNAs. Therefore, the
expedient option of simply discarding data on low-inten-
sity genes can discard potentially valuable information on
differentially expressed genes. It is desirable to identify
methods of data analysis that are effective for low inten-
sity genes rather than simply discarding these data. At a
minimum, it should be acknowledged clearly when meth-
ods have been validated only for high intensity genes.

The results here show an advantage for alternative
processing of the data over processing by the Feature
Extraction software. Clearly, the FE data have greater vari-
ability at low intensities. This leads to worsened specificity
of detection because some low-intensity genes with true
log-ratio equal to zero exhibit large log-ratios. Zahurak et
al [14] offer some ideas about the aspects of Feature
Extraction that might cause exaggerated low-intensity var-
iability.

In the alternative methods of data processing, which out-
performed FE, there was no compelling evidence to favor
or disfavor background adjustment (BA). However,
Zahurak et al [14] identified a modest detrimental effect
of background adjustment in processing Agilent data. Qin
et al [13] found a dramatic detrimental effect of back-
ground adjustment on another two-color platform. For
studies to identify differentially expressed genes, forego-
ing background subtraction seems the best course of
action based on the limited current evidence.

Conclusion

Choosing a data processing method is an important step
in the analysis of microarray data. The MAQC datasets
considered together with previous spike-in datasets [14]
disfavour the Feature Extraction method for processing
Agilent two-color array data. Ideally, future studies will
use positive controls that span the intensity range of the
data.
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Methods

There were six datasets from Sites 1, 2, 3 and RNAs A and
B. All datasets had 5 replicates except (Site 1, RNA B) and
(Site 2, RNA A) had 4 replicates due to failed assays. For
each dataset, spots with any measurement in any replicate
that were flagged as saturated were removed from further
analysis. The median pixel intensity was used as the spot
signal. For the BA data, the median background intensity
was used as the local measurement of background and
subtracted from spot signal. For loess normalization, the
span was 4000 datapoints, or about 10% of the data. Note
that each ERC was represented by 30 spots on the arrays
and these were treated as separate "genes" in ROC analy-
sis. The SAM-statistic is the classical t-statistic with a con-
stant 8 added to the denominator. In this analysis § was
set equal to the 90t percentile of t-statistic denominators.
Scripts for ROC curves and AUC calculation were down-
loaded from [19].

Competing interests
The author(s) declares that there are no competing inter-
ests.

Authors' contributions
KFK analyzed the data and wrote this report. The author

read and approved the final manuscript.

Additional material

Additional file 1

Ratio-intensity plots for all arrays. The plots show log-ratios compared to
signal intensity for three versions of the data.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-8-371-S1.doc]

Additional file 2

ROC curves for the mean, t-statistic, and SAM statistic. The plots summa-
rize the sensitivity and specificity for detecting differentially expressed
genes using three different test statistics applied to three versions of the
data.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-8-371-S2.doc]

Additional file 3

Test statistic values plotted against average spot intensity. The plots show
the behavior of test statistics as a function of signal intensity for three ver-
sions of the data.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-8-371-S3.doc]
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Additional file 4

Observed log-ratios compared to expected log-ratios. The plots show
observed log-ratios compared to expected log-ratios for three versions of
every array.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-8-371-S4.doc]
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