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Abstract

Background: The simulation of metabolic networks in quantitative systems biology requires the
assignment of enzymatic kinetic parameters. Experimentally determined values are often not
available and therefore computational methods to estimate these parameters are needed. It is
possible to use the three-dimensional structure of an enzyme to perform simulations of a reaction
and derive kinetic parameters. However, this is computationally demanding and requires detailed
knowledge of the enzyme mechanism. We have therefore sought to develop a general, simple and
computationally efficient procedure to relate protein structural information to enzymatic kinetic
parameters that allows consistency between the kinetic and structural information to be checked
and estimation of kinetic constants for structurally and mechanistically similar enzymes.

Results: We describe qPIPSA: quantitative Protein Interaction Property Similarity Analysis. In this
analysis, molecular interaction fields, for example, electrostatic potentials, are computed from the
enzyme structures. Differences in molecular interaction fields between enzymes are then related
to the ratios of their kinetic parameters. This procedure can be used to estimate unknown kinetic
parameters when enzyme structural information is available and kinetic parameters have been
measured for related enzymes or were obtained under different conditions. The detailed
interaction of the enzyme with substrate or cofactors is not modeled and is assumed to be similar
for all the proteins compared. The protein structure modeling protocol employed ensures that
differences between models reflect genuine differences between the protein sequences, rather
than random fluctuations in protein structure.

Conclusion: Provided that the experimental conditions and the protein structural models refer
to the same protein state or conformation, correlations between interaction fields and kinetic
parameters can be established for sets of related enzymes. Outliers may arise due to variation in
the importance of different contributions to the kinetic parameters, such as protein stability and
conformational changes. The qPIPSA approach can assist in the validation as well as estimation of
kinetic parameters, and provide insights into enzyme mechanism.
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Background

The ability to estimate enzymatic kinetic parameters is
very important for metabolic simulations [1-3]. This is
because experimental values of the kinetic parameters
measured under exactly the conditions of the model for
exactly the proteins in the model are usually missing.
Often kinetic parameters have been measured only for a
related enzyme or for the correct enzyme but under differ-
ent conditions, e.g. different temperature, pH or ionic
strength. Therefore we developed a method that relates
variations in kinetic parameters to differences in protein
structures. This method can be used to check the consist-
ency of kinetic measurements described in the literature
with available protein structural data as well as to make
estimates of kinetic parameters based on enzyme struc-
tures and kinetic parameters for related enzymes.

Protein structural information provides a basis for predict-
ing and rationalizing protein function. Given a protein
structure, molecular simulations can be performed and
these can be used to compute kinetic parameters [4]. For
example, Brownian dynamics simulations can be used to
simulate substrate-enzyme diffusional association and
compute bimolecular association rate constants [5,6]. We
previously demonstrated how rate constants computed by
Brownian dynamics simulation of the diffusional associa-
tion of superoxide and myeloperoxidase could be used in
the mathematical modeling and simulation of the oscilla-
tory behaviour of metabolite levels in activated white
blood cells [2]. The type of molecular simulation to use
must be chosen according to the mechanism determining
the kinetic parameter. Whereas Brownian dynamics is
appropriate for diffusional processes, molecular dynamics
techniques may be required to simulate conformational
changes and quantum mechanics for chemical reaction
steps. These simulations can be computationally demand-
ing and the accurate computation of kinetic parameters by
simulations is a challenging and on-going research topic
[4]. Therefore, a simpler, less computationally demanding
and more robust approach to exploit protein structural
information is required in the context of biochemical net-
work simulation. qPIPSA is designed to fulfill this require-
ment.

In qPIPSA, molecular descriptors are related to kinetic
parameters. The molecular descriptors are the molecular
interaction fields (MIFs) of the proteins. Molecular inter-
action fields map the interaction energy between a chem-
ical probe and the target protein as the chemical probe is
moved over a grid of points [7]. Diverse chemical probes
may be used, e.g. a water molecule, carbonyl oxygen or
hydroxyl group. When the probe is a point charge, the
molecular interaction field corresponds to the molecular
electrostatic potential. Intermolecular interactions are
fundamental to enzymatic reactions and are dependent

http://www.biomedcentral.com/1471-2105/8/373

on the enzyme MIFs. MIFs are often used in 3D-QSAR
studies to derive quantitative structure-activity relation-
ships (QSARs) [7]. This approach may be taken for pro-
teins [8] as well as for small molecules [9,10]. The QSARs
are generally derived by partial least squares (PLS) chem-
ometric procedures for a training set with experimentally
determined parameters. While such training procedures
can be applied to predict enzyme parameters [11], typi-
cally, insufficient experimental data on kinetic parameters
are available for training by PLS. In qPIPSA, we therefore
employ a simpler linear regression procedure for which
only two experimental measurements of a kinetic param-
eter for enzymes and at least one known three-dimen-
sional structure are required. Further experimental
measurements can be used and will help to improve the
accuracy of predictions and assess the confidence of the
parameter estimates. qPIPSA is based on the PIPSA
method [12] which has been used to classify the interac-
tion properties of protein families using MIFs [13,14].

In this paper, we will focus on the use of molecular elec-
trostatic potential as the descriptor MIF in qPIPSA. The
molecular electrostatic potential is usually the most
informative MIF for this purpose. The long-range nature
of electrostatic interactions means that similarities or dif-
ferences in electrostatic potentials are often not detected
in a sequence analysis. Even proteins with low sequence
similarity can have rather similar electrostatic potentials
[12,15]. For estimating enzyme kinetic parameters, the
molecular electrostatic potential is appropriate because
electrostatics are considered to be the most important
contributor to enzymes' catalytic abilities [16], e.g. to sta-
bilization of the transition state. Electrostatic steering has
also been shown to enhance the association rates in fast,
diffusion-influenced enzymes, such as superoxide dis-
mutase [17].

In qPIPSA, the MIFs of different proteins and/or the same
protein under different conditions, e.g. in a different titra-
tion state at a different pH, are compared. The enzyme
kinetic parameters k_,, and K are associated with specific
substrate-enzyme interactions. For the binding process
relevant to the kinetic parameter, only one binding part-
ner (here the enzyme) is modeled. The ligand is thus
assumed to be the same or similar for all the protein struc-
tures compared. The differences in kinetic parameters are
assumed to be determined by differences in the protein
MIFs, and these differences are calculated in a region
around the active site of the enzyme. Thus, qPIPSA
requires no prior knowledge of the reaction mechanism.
However, information about the location of the active site
or substrate or ligand binding residues is used to define
the region over which to compare MIFs. qPIPSA can be
used to estimate missing kinetic parameters, to check the
consistency of different measurements, and to investigate
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the mechanistic determinants of kinetic parameters. As
such, it is a useful tool for biochemistry studies in general
and for biochemical network simulation and comparative
systems biology in particular.

In this paper, we first outline the qPIPSA approach.
Details are given in the Methods section. Results are
described for four illustrative and experimentally well-
characterized enzymes. The criteria for choosing these
enzymes were the availability of enough experimental
kinetic and structural data for validation of the methodol-
ogy, and a reasonable diversity in enzyme type. First, we
present an analysis of acetylcholinesterase (AChE)
mutants. This shows that not only inhibitor association
rates but also substrate K, and k_,/K, parameters corre-
late remarkably well with the electrostatic potential differ-
ences near the active site of the enzyme. We then analyze
superoxide dismutase (SOD) and show that the ionic
strength and pH dependence of the rate constants for
superoxide can be explained by the changes in the electro-
static potential. Next, we examine triose phosphate iso-
merase (TPI) enzymes from 12 different species. For TPIs,
the electrostatic potential differences are found to be good
descriptors for the cross-species variation in kinetic
parameters k_, /K, and K. In the fourth case, for 10 class
I fructose-1,6-bisphosphate aldolases (FBA) the correla-
tions are less obvious, but detectable. It appears that the
conformation of the C-terminal region of FBA is critical
for a description of the kinetics of this enzyme. Finally, we
examine different protein structural modeling procedures
and how to choose the comparison region for interaction
fields, showing that this relates to enzyme mechanism.

Theory
We postulate that the ratio of the kinetic parameters k, and
k, of a pair of enzymes, a and b, correlates with the average
differences in their molecular interaction fields (MIFs), @,
and @y

In(ly /ly) ~ 0 D (@~ @p)/ D1
R R

where R is the region selected for comparison and consid-
ered important for the kinetic parameter k. The differences
in MIF, @, are summed over the grid points in the "skins"
(see Methods section for a definition) around the proteins
within a distance R from a specified point, defining the
region R and divided by the number of points in the over-
lapping skins to obtain a size-independent measure.

When applied to a set of proteins, the correlation (1) is
required for all pairs with known kinetic parameters, and
the correlation factor « is derived by minimizing the func-
tion
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> {In(k, [ky)—a Y (@, — D)/ D1
ab R R

The relative percentage correlation error is defined using
the RMSD of the left-hand side of (1) from the right-hand
side and it is given by formula (3), with ¢ minimizing (2):

100%: | {In(k, /ly) -0t 3 (@, —®y)/ D13 /Y (In(k, [ Ry))
ab R R ab

The absolute error may be defined as:

> {in(k, [ky) a3 (@, - Dp) /D1 /D1
ab R R ab

It gives an average deviation of the fit in In units, but is less
useful than expression (3) when comparing different
cases with different degrees of kinetic parameter devia-
tion. It is, for example, small in the absence of correlation
when kinetic constants differ insignificantly in a set of
proteins compared. We also used the Pearson correlation
coefficient (R-coefficient) to estimate the degree of overall
correlation between two sets of parameters x and y:

= (= (o= {2 o=

with <> being an average over all possible values of x ory.

Predictions of kinetic parameters are carried out by first
deriving the parameter « for all pairs with known kinetic
parameters and then averaging predictions for any
unknown case from pairwise comparisons to all proteins
with known kinetic parameters. The minimum required
number of known parameters equals two in this
approach.

When © is the molecular electrostatic potential, a physi-
cally meaningful estimate for the parameter « is @ is -g/
kT, where q is the net charge of the substrate, kj is the
Boltzmann constant and T is the temperature. This corre-
sponds to the kinetic parameter being determined by the
interaction energy of the substrate charge g with the elec-
trostatic potential @ of the enzyme: k ~ exp(-q - ®/kgT).

We also tested other possibilities for defining correlations,
including

In(ky /ky) ~ o In(Y &P / 3 )
R R

For a single point in the region R, formulas (1) and (6)
give the same results. When there are many points in the
comparison region R, formula (6) will enhance the contri-
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butions from large and positive (+ sign) or large and neg-
ative (- sign) potentials. In some cases, formula (6) gives
a better description of interaction field - kinetic parameter
correlations.

Similarity indices, e.g. the Hodgkin index [18]

Sl = 2'Zd)a(bb /(Z(DLZI +2<D§), may also be used to
R R R

compare electrostatic potentials [13]. Similarity indices
can assist in assigning a kinetic parameter to a protein
when experimental values are available for several related
proteins by enabling the most similar protein to be found
and hence the kinetic parameter to be estimated [19]. For
a more quantitative analysis, a pairwise distance matrix
with /1-SI,, as a distance measure can be constructed.
We have previously shown how such a distance matrix can
be used to compute relative electron transfer rates
between plastocyanin and cytochrome f for a set of plas-
tocyanin mutants based on the known electron transfer
rate for wild-type plastocyanin [20]. The formulations
based on similarity indices however suffer from loss of the
sign information present in equation (1) and therefore do
not allow a correlation to be made in a fully automated
fashion. Equation (1) provides the most direct model in
terms of the physical determinants of the quantities com-
puted and has therefore been used in this manuscript. The
correlations obtained with equation (1) are mostly of sim-
ilar or better quality than those using similarity indices or
distance matrices based on similarity indices.

The average Boltzmann factor of the ligand-protein inter-
action energy when the ligand is near or in the active site

Table I: Kinetic data for mouse acetylcholinesterase (AChE) [22]
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[21] is another possible descriptor of kinetic parameters.
However, as the average Boltzmann factor is calculated
from the interaction energy rather than the interaction
field, it requires knowledge of the position and charge dis-
tribution of the ligand interacting with the enzyme. The
use of MIFs alone in qPIPSA is less demanding in terms of
modeling but can nevertheless be applied to comparing
different enzymes.

Results and discussions

Molecular electrostatic potentials correlate with inhibitor
association rate constants and substrate K and k_,/K,,
rate constants for a set of acetylcholinesterase (AChE)
mutants

We considered the wild-type mouse AChE and 11 mutants
with large changes in kinetic parameters, see Table 1. The
experimental kinetic data were taken from reference [22].
The electrostatic potential was computed for the 12 pro-
teins and the average difference in electrostatic potential
in the AChE active site gorge was then computed for all
pairs of proteins. (See Methods section for a description of
the exact region for MIF comparison). A remarkable corre-
lation holds between the difference in In(k,,) (logarithm
of association rate constant) of the inhibitor, m-trimethyl-
ammonio-trifluoro-aceto-phenone (TFK+) with AChE,
and the difference in the electrostatic potentials in the
AChE active site gorge, see Fig. 1a. This correlation is con-
sistent with the observations that on-rate constants corre-
late with the diffusional association rates calculated by
Brownian dynamics simulations with electrostatic forces
[23], and that diffusional association rates correlate with
the average Boltzmann factor of the inhibitor-protein
electrostatic interaction energy for positions of the inhib-
itor around the AChE active site [24]. Previously it was
also shown that electrostatic potential values in different
parts of the active site correlate with inhibitor k,, [25].

No  Mutation

ko, TFK+ (1011 M-'min-1)

keu/ K,y ATCh (108 M-Imin-) K,, ATCh (uM)

00 WT 9.8+ 0.6
or* D74N 0.39 + 0.0l
02*  E450Q 1.2+0.1
03*  E202Q 79+04
04*  D74N/E202Q/E450Q -

05 D280V 82+20
06 D280V/D283N 7.6 0.3
07 E84Q/E91Q/D280V/D283N/D372N 23+0.1
08 E84Q/E91Q/D280V/D283N/E292Q/D372N 1.8+0.1
09 E84Q/E91Q/D280V/D283N 43+08
10¥  D74N/E202Q 0.14 + 0.0l
I1*  D74N/D280V/D283N 031 +£0.02#

30 46 +3

0.65 1300 + 140
0.24 140 £ 10
4.3 200 + 40
0.0022 18000 + 2500
16 73+4

23 60 £ 9

5.1 162 + 6

2.3 230 + 32
4.6 240 £ 52
0.34 700 £ 29
0.23 1600 + 320

The data are for wild-type and | | mutant AChEs interacting with the inhibitor TFK+ and the substrate ATCh. Active site mutants are marked by an
asterisk; mutant no. | | has a combination of active site and surface residue mutations.
#The value published in reference [22] for this parameter is 10 times larger due to a typographical error [Z. Radic, personal communication].
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(a) Correlation between the differences in experi-
mental inhibitor In(k,,) and differences in electro-
static potentials of AchE and (b). leave-two-out
cross-validation for prediction of k_, values for the
inhibitor TFK+ and AChE. Each point in part (a) repre-
sents a pair of AChE variants for which the natural log (In) of
the difference in association rate constant, k,,, for the inhibi-
tor TFK+ is plotted on the x-axis and the average electro-
static potential difference in the comparison region is plotted
on the y-axis. The straight line corresponds to the best linear
fit and is given by y = -1.39*x. The data are for wild-type
AChE and 10 mutants (see Table I, no k,,value for TFK+ is
available for mutant 04). For leave-two-out cross-validation
predictions presented in (b), 2 cases were omitted when
deriving the correlation factor ¢ in formula (1) and these 2
cases were predicted using formula (1) with the derived fac-
tor . Predictions are shown as vertical lines connecting min-
imum and maximum values from all (55) different
predictions.

As seen in Fig. 1a, a decrease in the average electrostatic
potential by 1.39 kcal/mol/e results in an increase of k_,
for TFK+ by 1 natural log (In) unit (equivalent to a factor
of 2.72). This relation is in agreement with the expecta-
tion that In(k,,) is is a linear function of -®/k;T, where ®
is an average electrostatic potential in the comparison
region. Standard LTO (leave-two-out) cross-validation to
assess the predictive ability shows that accurate predic-
tions of k., values can be obtained on the basis of this cor-
relation, see Fig. 1b. Thus an excellent linear correlation
between calculated differences in electrostatic potentials
and measured In(k,,) values for TFK+ could be achieved
and this can be used to predict In(k,,) values for AChE
mutants.

A similar correlation was obtained for the difference in
electrostatic potentials and the k_, /K, values of acetylthi-
ocholine (ATCh), a substrate of AChE [22] (see Fig. 2a).
Here, a decrease of the average electrostatic potential by
1.06 kcal/mol/e results in an increase of k./K, for
acetylthiocholine by 1 In unit. The overall correlation
seems to be composed of different correlations. For sur-
face residues (filled circles), changes in potential in the
region of comparison result in larger changes in k_/K_,

Figure 2

Correlation between (a) experimental In(k_,, /K, and
(b) experimental In(K,,, for the substrate ATCh and
electrostatic potential differences for different AChE
mutants. Each point corresponds to the differences for one
protein variant pair. The straight line corresponds to the best
linear fit and is given by y = -1.06*x (a) and y = 1.68%x (b). In
the panel (a) data for protein pairs that do not have active
site residue mutations are shown by filled circles.

than for mutations of active site residues (open circles).
This can be expected, because the surface residues influ-
ence k.,/K,, not only via the potential in the active site
comparison region but also because of the influence of
the electrostatic potential of surface residues on the sub-
strate as it approaches the active site.

The K, values for ATCh are also correlated with the AChE
electrostatic potentials as shown in Fig. 2b. A decrease of
the electrostatic potential by 1.68 kcal/mol/e results in a
decrease of K, for ATCh by 1 In unit.

Correlations for k4 for TFK+ and kg, for ATCh (not
shown) are significantly weaker. In(k,) is the sum of
In(k./K,) and In(K,). Both of these quantities correlate
with the electrostatic potential differences, but with oppo-
site signs. Therefore, their sum appears to have a weak cor-
relation with electrostatic potential differences.

An important finding here is that not only the inhibitor
association rate constant but also the intrinsic enzyme
kinetic parameters for a substrate can be correlated with
the electrostatic potentials near the active site. The results
are, however, sensitive to the modeling accuracy. We
treated E202 and H447 as singly and doubly protonated,
respectively (see Methods section). The importance of cor-
rect charge assignments for these residues was discussed
previously [23] when performing Brownian dynamics
simulations for this system. Assigning standard protona-
tion states at pH 7 to these residues would weaken the cor-
relation between electrostatic potential differences and
inhibitor association rate constants and thus the predic-
tive ability. For example, predictions made for 9 AChE
mutants using known k_ values for the wild-type and the
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Importance of correct modeling of the protonation
states of titratable residues for predicting of k,, val-
ues for TFK+ and AChE . Predictions were made for 9
AChE mutants using known k_,, values for the wild-type and
D74N/D280V/D283N mutant of AChE at pH 7. For the pre-
dictions on the left-hand side (a), residues E202 and H447
were modeled as singly and doubly protonated, respectively,
while for the predictions on the right-hand side (b), E202 and
H447 were modeled as unprotonated and singly protonated
(at Ng), respectively.

D74N/D280V/D283N mutant of AChE and standard pro-
tonation states for E202 and H447 would result in a factor
of 20 under-prediction of the inhibitor association rates
for the mutants involving E202 (see Fig. 3b). The impor-
tance of charge assignments for these residues was dis-
cussed previously for Brownian dynamics simulations of
this system. Only when the non-standard protonation
states of these residues was assigned, was a good correla-
tion between measured and calculated k., obtained (see
Fig. 3a).

The ionic strength and pH dependence of kinetic constants
of Cu, Zn- superoxide dismutase (SOD) are reflected in
molecular electrostatic potential

Kinetic constants measured under different environmen-
tal conditions can be correlated with MIFs computed for
the respective conditions. Here, we demonstrate this for
the rate constant for the first step of the SOD reaction
which is limited by superoxide association to SOD.
Bovine SOD was chosen because its reaction mechanism
has been thoroughly studied [26] and the consistency of
kinetic constants measured under different conditions has
been analyzed [27]. The association rate of superoxide to
SOD shows a pronounced pH- and ionic strength depend-
ence. The pH was varied between 7.7 and 11.0 (at a con-
stant ionic strength of 20 mM) and the ionic strength was
varied between 20 and 250 mM at a constant pH of 7.7.

For both types of variation of environmental conditions,
bovine SOD exhibits a distinct correlation between elec-
trostatic potential differences and differences in the exper-
imental kinetic constant. A 1 ln unit change in kinetic
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constant corresponds to 0.45 kcal/mol/e change of aver-
age electrostatic potential in the region within 10 A of the
catalytic copper ion, see Fig. 4a. This ratio also applies
when comparing bovine and human SOD at pH 7 and an
ionic strength of 20 mM.

For the bovine SOD above pH 11 and for the Photobacte-
rium leiognathi SOD, larger electrostatic potential differ-
ences correspond to a 1 In unit change in kinetic constant.
This deviation in pH dependence can be attributed to the
difficulty in calculating the pK s of amino acid residues of
SOD. The pH-dependence of the rate constants of bovine
SOD is shown in Fig. 4b. For example, assigning a low die-
lectric constant (& = 4) to the protein interior resulted in
lower pK, values of Lys and Arg residues and a too steep
drop in the rate constant around pH 9, see Fig. 4b. Signif-
icant pH-dependent changes in k/K,, are observed
experimentally to occur at pH 11. This behavior can be
reproduced when electrostatic potentials are calculated

14 - (a) 35 - - b)
pH=123 -, s

12

0.8 25
08 £

o

s

04 Human ~ 2

1=250 mM <

o 3

%o X
o

e,

pH=7.7, 1=20mM, Bovine

02

04 |

x Photobacterium
06 0 . .

-1 05 o 0.5 1 1.5 2 25 3 8.0 9.0 10.0 11.0 12.0
Difference in In(keq/K,) pH

Difference in electrostatic potentials (kcal/mole/e)

Figure 4

(a) Correlation between experimental In(k_,./K,,) for
superoxide and electrostatic potential differences for
SOD from different organisms or under different
conditions, and (b) experimental and calculated pH
dependence of the rate constant for association of
superoxide with bovine SOD. (a) The reference point
(0,0) marked by a cross is for bovine SOD at pH 7.7 and 20
mM ionic strength with corresponding experimental rate
constant of 3.8 10°M-Is-! [26]. The other 2 crosses are for
human and Photobacterium leiognathi SODs with experimental
rate constants of 2.5 and 8.5 10°M-!s!, respectively, at pH7
and 20 mM ionic strength [55]. Open circles : bovine SOD at
pH 7.7 under ionic strength values of 20, 40, 90, 160 and 250
mM [26]. Connected filled circles: bovine SOD at 20 mM
ionic strength and pH values ranging from 7.7 to 12.3 [26].
All points can be approximated by a linear relation y = 0.45%x
(R-coefficient 0.97). The ionic strength dependence alone can
be fit with y = 0.3*x (R-coefficient 0.99). On panel (b), exper-
imental rates [26] are shown as filled circles. The pH depend-
ence of the rates is calculated by assigning 2 different values
of the dielectric constant of the protein interior (€), 4 and 78,
when computing residue pK, values (see Methods section).
The value of 78 was used for pK, calculations for all titratable
residues and was expected to give better agreement with
experiment [28].

Page 6 of 16

(page number not for citation purposes)



BMC Bioinformatics 2007, 8:373

using the charges, assigned from pK, calculations with a
protein dielectric constant of 78. Use of this high value of
the protein dielectric in computations of the pK, values of
these residues is expected to give the most accurate pK,
values according to the methodology applied [28].

Molecular electrostatic potential differences correlate
with substrate K, and k_. /K, rate constants for a set of
triose phosphate isomerases (TPI) from different
organisms

The reaction mechanism of TPI has been studied exten-
sively [29] and the consistency of measured kinetic con-
stants has been analyzed [30]. Here, we selected TPIs from
12 different organisms that have K, and k_,, values in the
BRENDA database [31]. In the database, some of the
kinetic parameters are duplicated and some are inconsist-
ent with each other. Therefore, before applying qPIPSA,
the kinetic parameters were analyzed by referring to the
original papers, rejecting values measured under very dif-
ferent conditions and favoring cases in which both k_,
and K, originated from the same authors (see Table 2).
The results given here are for TPI protein structure models
built using SwissModel and Modeller [32] with the
"Turbo" modeling protocol (see Methods section). For the
k../K, values of TPIs, the comparison region is centered
on the oxygen atom of residue 1230 in the active site of
TPI. A systematic scanning of different regions (consider-
ing each accessible atom as a comparison region center)
showed that the differences in electrostatic potential in
this region most accurately described changes in the
kinetic parameter k_, /K., (see below).

For the k,/K, parameter, we find that an increase of k_,,/
K., of 1 In unit is related to a ca. 1.59 kcal/mol/e increase
of average electrostatic potential, see Fig. 5a,b. The oppo-
site dependence compared to AChE reflects the fact that
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for TPI the substrate has a negative -2e charge, whereas for
AChE, TFK+ and ATCh have a +1e charge.

This correlation can be used to predict enzyme kinetic
parameters of triose phosphate isomerases. The kinetic
parameters from species with the highest and lowest k_,,/
K., values were used to calculate and predict parameters
for the remaining 10 species, see Fig. 5cand 5d. In general,
a satisfying agreement between calculated and experimen-
tal values was obtained. The relative ordering of all species
could be reproduced. Computation of the k_,/K, param-
eters for the remaining 10 TPIs shows that the TPIs (from
rabbit and Giardia lamblia) appear to be outliers, see Fig.
5c and 5d. The predicted k_, /K, values for enzymes from
these organisms were significantly larger than those meas-
ured experimentally. The correlations were better for the
SwissModel models (Fig. 5b and 5d) than for the Model-
ler "Turbo" models (Fig. 5a and 5c¢).

In a similar manner, enzymatic K, values can be predicted
from a correlation between electrostatic potential differ-
ences and experimental K, values. In this case, the region
around residue W168 was chosen to calculate potential
differences as changes in the potential were found to
describe changes in the K, value most accurately in this
region (see below). A 0.85 kcal/mol/e increase in electro-
static potential results in a 1 In unit decrease in K, value.
(In the region around L2300, a 0.94 kcal/mol/e increase
in potential results in a 1 In unit decrease in K, value).
Based on the two extrema, the K, values of the remaining
species can be computed (Fig. 6). The relative ordering of
K., values of all species could be reproduced.

In TPIs, the substrate has a net charge of opposite sign and
twice the magnitude of the substrate of AchE. Therefore
the correlation coefficient should be expected to have

Table 2: Kinetic constants for triose phosphate isomerases (TPI) from 12 different organisms with glyceraldehyde-3-phosphate as

substrate

Organism K., (mM)* Keae (10° min-t)

keat/ K (107 M5!y SwissProt ID Sequence

Conditions, Reference
identity to Ir2rA

Trypanosoma brucei 0.46 (0.25-0.46) 3.1 (2.6-3.7) 1.120
Trypanosoma cruzi 0.45 27 1.000
Oryctolagus cuniculus muscle  0.43 (0.32-0.43) 1.86 (1.9-5.1) 0.721
Gallus gallus muscle 0.47 2.56 0915
Saccharomyces cerevisiae 1.22 (0.62-1.5) 7.9 (1.4-10))  1.080
Leishmania mexicana 0.41 (0.30-0.41) 2.52 (4.3-2.5) 1.020
Plasmodium falciparum 0.35 2.68 1.280
Vibrio marinus 1.9 42

Escherichia coli 1.03 5.4 0.874
Homo Sapiens 0.49 2.7 0918
Giardia lamblia 0.53 29 0.912
Spinacia oleracea 0.68 27 0.662

0.368 (0.515)#

TPIS_TRYBB 53%
TPIS_TRYCR 53%
TPIS_RABIT 100%
TPIS_CHICK 89%
TPIS_YEAST 52%
TPIS_LEIME 52%
TPIS_PLAFA 42%
TPIS_VIBMA 41%
TPIS_ECOLI 45%
TPIS_HUMAN 98%
TPII_GIALA 45%
TPIC_SPIOL 60%

20°C, 100 mM, pH 7.4 [56]
20°C, 100 mM, pH 7.4 [57]
30°C, 50 mM, pH 7.6 [56]

30°C, 100 mM, pH 7.4 [58]
25°C, 100 mM, pH 7.6 [59]
25°C, 100 mM, pH 7.6 [60]
30°C, 50 mM, pH 7.9 [56]

10°C, 100 mM, pH 7.6 [61]
25°C, 100 mM, pH 7.6 [61]
25°C, 100 mM, pH 7.6 [62]
25°C, 100 mM, pH 7.4 [63]
25°C, 100 mM, pH 7.5 [64]

* The range of values extracted from BRENDA is given in brackets.

#The value after correction to 25°C obtained by multiplying by 1.4 (the ratio of water viscosity at 10°C compared to 25°C).

Page 7 of 16

(page number not for citation purposes)



BMC Bioinformatics 2007, 8:373

15 — @ 1 . v (©)
08
06
0.4
0.2 _.“.E.',
0 X
-0.2 ‘.'!'i‘"

0.4 oy

-0.6
08 Fe”

Difference in electrostatic potentials (kcalimole/e)
°

Difference in electrostatic potentials (kcal/mole/e)

-1
-1 08 06 -04-02 0 02 04 06 08 1
Difference in In(ky/K,y)

A s
-1 08 06 04 02 0 02 04 06 08 1
Difference in In(kz/K,)

(©) (d)

TPI1_GIALA
TPH_GIALA

Ms)

TPIS_RABIT «

]
X
3
2

TPIS_RABIT »

Predicted k. /K, (Ms")
Predicted ko,/K,, (

5108 107 2107 5106 107 2107

Experimental k,/K,, (M's"") Experimental k.,/K,, (M-'s!)

Figure 5

(a and b) Correlation between experimental In(k_,,/
K,,) and electrostatic potential differences for TPI
and (c and d) prediction of k_, /K, for TPI for the sub-
strate glyceraldehyde-3-phosphate. Correlations (a and
b) are for differences in In(k,,/K,) and electrostatic potential
differences of each TPl protein pair, after excluding
TPII_GIALA and TPIS_RABIT. The straight lines correspond
to the best linear fit and are given by y = 1.59*x (a) and y =
0.95%x (b). Predictions (c and d) were made for 10 TPIs
based on experimental measurements for the two TPIs (from
V. marinus (TPIS_VIBMA) and P. falciparum (TPIS_PLAFA), see
Table 2) at the minimum and maximum points on the y = x
line, respectively. These 2 cases were selected to derive the
correlation factor o in equation (1). Then this factor was
used to compute the kinetic parameter in the other cases —
there are 2 predictions for each case and their deviation
defines the error bars. Two outliers (with errors greater
than 1.5 RMS deviation from y = x) are labeled, see text.
Correlations and predictions for (a) and (c) were done using
Modeller protein structural models, whereas SwissModel
models were used for the correlations and predictions pre-
sented in (b) and (d).

approximately half the magnitude and an inverted sign
compared to the AchE case, in accord with its physical
meaning, described in the Theory section. This is indeed
the case for the correlation between the electrostatic
potential differences and K, values.

Molecular electrostatic potential correlates with substrate
K., and k_,./K , values for Class | Fructose 1,6-bisphosphate
aldolase (FBA) when an appropriate conformation of the
C-terminal part of the protein is used
Fructose-1,6-(bis)phosphate aldolase is a ubiquitous
enzyme that catalyzes the reversible aldol cleavage of fruc-
tose-1,6-(bis)phosphate to glyceraldehyde-3-phosphate

http://www.biomedcentral.com/1471-2105/8/373
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Prediction of K, values for TPI for the substrate glyc-
eraldehyde-3-phosphate. Predictions were made for 10
TPIs based on experimental values for 2 TPIs (from V. mari-
nus (TPIS_VIBMA) and P. falciparum (TPIS_PLAFA). Two out-
liers (with errors greater than |.5 RMS deviation from y = x)
are labeled by TPIS_TRY*, referring to the enzymes
TPIS_TRYBB and TPIS_TRYCR, see Table 2).

and glycerone phosphate. Class I aldolases of animals and
higher plants use covalent catalysis through a Schiff-base
intermediate. Class II aldolases of most bacteria and fungi
require a divalent metal cation as a cofactor [33].

Kinetic data for 10 different class I fructose 1,6-bisphos-
phate aldolase enzymes and isozymes from 6 different
species are available from the BRENDA database [31], see
Table 3. FBA was selected for study here as it is rather well
characterized experimentally, with both k_, and K, data
available for the 10 different aldolases. The comparison
region was chosen to be a collection of points on the skin
of the protein (see Methods section) within 10 A of the
active site of human aldolase A. In order to achieve an
unbiased assignment of the active site, the center of this
region was determined to be the most probable location
of the active site pocket using the Putative Active Sites with
Spheres (PASS) tool [34]. Other choices, such as the
region around K146NZ or K229NZ, atoms of residues
known to be involved in substrate binding and reaction,
give similar results. The values of k_,,/K,, are highly corre-
lated with electrostatic potentials in the active site. The
correlation corresponds to a change of k,,/K, by 1 In unit
when the electrostatic potential changes by 0.21 kcal/
mol/e, see Fig. 7a. This value is smaller than the 1.59 kcal/
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Table 3: Kinetic data for 10 different Class | Fructose-1,6-bisphosphate aldolases (FBA) with fructose-1,6-bisphosphate as substrate

Organism K., (mM) Keae (s Ko/ Ky (106 M-1s71) SwissProt ID Sequence identity to |zaiA Reference
Trypanosoma brucei 0.0092 10.3 1.12 ALF_TRYBB 49% [65]
Oryctolagus cuniculus 0.0095 10.2 1.07 ALDOA_RABIT 100% [35]
Oryctolagus cuniculus 0.00084 2.94 3.50 ALDOB_RABIT 71% [35]
Entosphenus japonicus 0.018 46.1 2.56 ALFI_LAMJA 75% [66]
Entosphenus japonicus 0.0048 15.8 3.29 ALF2_LAMJA 74% [66]
Leishmania mexicana 0.049 8.2 0.167 Q9US5N6_LEIME 49% [67]
Rattus norvegicus 0.0089 33 3.71 ALDOC_RAT 81% [68]
Homo sapiens 0.052 59.7 1.15 ALDOA_HUMAN 98% [68]
Homo sapiens 0.012 20.1 1.68 ALDOB_HUMAN 69% [68]
Homo sapiens 0.013 12.6 0.969 ALDOC_HUMAN 82% [68]

mol/e for TPI. This can be explained by considering that
the substrate in this case is bisphosphate with 2 phos-
phate groups and a -4e charge at pH 7.

When making predictions for 8 of the aldolases based on
known k,, /K, values for two aldolases, it is found that
two proteins, ALF2_LAMJA and ALDOC_RAT, appear as
outliers, see Fig. 7b. In both cases, the k_,,/K,, values are
predicted to be more than 4 times lower than the experi-
mental values. This deviation is outside the uncertainty of
the qPIPSA method and points to either the need for addi-
tional experimental assays or to additional contributions
to the catalysis of these two enzymes. Removing the out-
liers changes the R-coefficient of correlations between
experimental and predicted In(k_,/K,,) from 0.63 to 0.87.
The K, values for aldolases also show a detectable correla-
tion with electrostatic potentials - 60% error defined by
formula (3) and R-coefficient -0.59, see Fig. 8.
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Figure 7

Correlation between experimental In(k_, /K, ) for
bisphosphate and electrostatic potential differences
for different aldolases (a) and prediction of k_,./K,,, for
bisphosphate and class | aldolase (b). Correlations (a)
are for differences in In(k/K,,) and electrostatic potential
differences of each aldolase protein pair, after excluding
ALF2_LAMJA and ALDOC_RAT. Predictions presented on
part (b) were made for 8 aldolases based on ALDOB_RABIT
and Q9U5N6_LEIME experimental parameters. Two outliers
(with errors greater than 1.5 RMS deviation from y = x) are
labeled, see text for discussion.

Aldolases present a rather complicated case for the analy-
sis based on the electrostatic potential in the active site
region because it is known that the kinetic parameters of
aldolases are modulated by a flexible C-terminal part as
well as isozyme specific residues that are not located in the
active site of the enzyme [35,36]. Nevertheless, kinetic
parameters correlate with the interaction properties near
the active site of the enzyme. The electrostatic potential
changes here have a much larger impact on K, than in the
other cases investigated in this manuscript: changes of
electrostatic potential by 0.3 kcal/mol/e change K by 1 In
unit. As was already mentioned, this can be attributed to
a larger charge of the substrate in this case. At the same
time, there is a possibility that putative conformational
rearrangements, that are not included in our modeling,
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Figure 8

Correlation between experimental In(K,,)) for
bisphosphate and class | aldolase electrostatic poten-
tial differences. Correlations are for differences in In(K,,)
and electrostatic potential differences for each aldolase pro-
tein pair. All possible pairs of the 10 aldolases are compared.
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are accounted for by electrostatic potential changes
implicitly - conformational changes could cause further
changes in electrostatic potential and these changes could
account for changes in K, directly by contributing to the
interaction with the substrate. We also find that, in this
case, the selection of a reference structure with an appro-
priate conformation is very important. The correlation
was lost when we used the structure of the human aldo-
lase A (muscle-type) with PDB code 1ALD instead of the
structure of the rabbit muscle aldolase A (PDB code 1ZAI)
as a template, even though these proteins have 98%
sequence identity. The main difference between the two
crystal structures is in the conformation of C-terminal res-
idues: in 1ALD, the C-terminal forms part of the active site
of the enzyme [37] whereas in 1ZAl, it does not. The crit-
ical involvement of the C-terminal loop in catalysis has
been noted before. C-terminal truncated aldolases are
practically catalytically inactive. See also reference [38].

A conservative comparative modeling protocol is required
for correlating MIFs and kinetic parameters

The results described above for TPI are for protein struc-
ture models built using Modeller [32] with the "Turbo"
modeling protocol (see Methods section). Other mode-
ling protocols were tried and it was found that the mode-
ling accuracy is important for establishing good
correlations. We compared two protocols: the "Auto-
model" mode of Modeller with extensive optimization of
the structures and the "Turbo" mode, in which only
molecular mechanics minimization of the structures after
building the initial homology model (based on a single
template) is performed. There is a ca. 1 A RMS deviation
of Ca atoms between these models, but the side chain ori-
entations are more variable in the "Automodel" models.
The models showed different degrees of correlation of the
electrostatic potential difference and In(k/K,,) values,
when the region radius, R, was varied from 7.5 to 30 A.
The region itself is a collection of points on a "skin" of 3
A thickness and accessible to a probe of 1, 2 or 3 A radius
within a distance R from the center, here atom L2300, see
Fig. 9a.

When a probe radius, 8, of 1 A was used to define the skin,
the correlation error was roughly constant up to R = 18 A
and then abruptly increased for larger values of R. The use
of a probe radius of 3 A gave errors systematically increas-
ing with R for "Turbo" models, and decreasing and reach-
ing a minimum for "Automodel" models. The smallest
correlation error, 17%, was obtained at a probe radius of
2 A and "skin" thickness of 3 A with "Turbo" models at R
=10 A. "Automodel” models only gave a correlation error
minimum of ca. 50% and this was obtained at R = 20 A.
This shows that the orientation of side chains is important
for obtaining correlations. Inconsistent side-chain posi-
tioning, as in the "Automodel" case, reduces the possibil-
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Correlation errors for In(k_, /K, ) for TPI for (a) dif-
ferent protein structural models and (b) different
specifications of the MIF comparison region. (a) The
relative error of predicted In(k /K., values of protein struc-
tural models generated by 3 different modeling protocols
(see Methods for details) as a function of radius R of the
sphere of comparison (with error defined as in expression
(3) of the Theory section). Calculations were done with a
skin accessible to a probe of radius & = 2 A. (b) Relative
error in correlation of protein structural models using the
"Turbo" protocol in Modeller with different probe radii § in
A (see Methods). The radius of the comparison region, R, is
varied from 7.5 to 30 A and it is centered on the atom
L2300. The degree of correlation is described by the relative
correlation error, formula (3).

ities for deriving a correlation between the structure and
the kinetic parameters. Nevertheless, a weak correlation
can still be identified by using a larger radius R for the
comparison region so that errors due to side chain confor-
mational differences are partly cancelled out.

We also tested the models obtained by modeling with
SwissModel [39]. We were able to model all 12 TPIs using
the the SwissModel web-server, although the web-server
does not produce any model when the sequence identity
is too low or modeling problems are encountered. The
SwissModel models differ from the Modeller "Turbo"
models by the same amount (in terms of RMSD of Ca
atoms) as the Modeller "Automodel” models, but the
SwissModel models have more ordered side chain confor-
mations than the Modeller "Turbo" models, see Fig. 10.
The correlations derived from the SwissModel models
were better than the correlations found for the Modeller
"Turbo" models, although differences in RMSDs were very
small (Fig. 10).

Correlation of kinetic parameters depends on the
comparison region and this dependence may give insights
into determinants of kinetic parameters

In comparing MIFs and correlating their differences with
kinetic parameter differences, a comparison region must
be chosen. An appropriate size, shape and location are not
obvious, although one can expect that the comparison
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Comparison of three different protein structure
modeling protocols for modeling TPIls. The RMSD of
atoms of charged side chains is plotted against the RMSD of
Ca atoms of equivalent residues in all pairs of TPl models.
The data for three different sets of models are presented in
green (SwissModel), blue (Modeller "Turbo") and red (Mod-
eller "Automodel"), see Methods for details. The charged
side chain atoms selected for RMSD calculations are CC, NC,
Cy and C9 of the residues ARG, LYS, ASP and GLU, respec-
tively. This plot shows clear differences between the three
sets of models: the charged side chain atom RMSDs are on
average 0.01, 0.1 and 1.0 A for the SwissModel, "Turbo" and
"Automodel" Modeller models, respectively, even though the
Ca. RMSD:s differ insignificantly, being less than | A in all
three sets.

region should be near the active site of the enzyme. We
already noticed that the comparison region should nei-
ther be too small nor too large (see Materials and Methods
section for a detailed description), a region with a radius
of approximately 10 A is optimal (see Fig. 9).

In the case of AChE, comparisons over a single region in
the gorge near the buried active site result in correlations
for the inhibitor association rate constant as well as the
substrate k_,,/K,, and K, parameters. Moving the compar-
ison region to the active site results in slightly poorer cor-
relations. Moving the comparison region to the entrance
of the gorge results in significantly poorer correlations for
the majority of cases. This means that the electrostatic
potential closer to the active site is of more importance for
the kinetic parameter values, i.e. rate-determining. At the
same time, the contribution from the surface residues to
the potential in this region does not fully account for the
contribution of these residues to the inhibitor association

http://www.biomedcentral.com/1471-2105/8/373

rate constant (Fig. 2a). This means that the interaction
field in this region does not fully describe the kinetics.
However, in this case a single region still describes kinetic
parameters quite accurately.

In the case of TPI, the best correlations are obtained for
different comparison regions for the two different kinetic
parameters, K and k_/K,. The region best describing
k../K., is located near the active site (Fig. 11), while vari-
ations in K, value are better described by the region
around the flexible loop of TPI that can close over the
active site for the reaction. The hinge residues have been
shown by mutagenesis to be important for the reaction
catalyzed by TPI [40,41].

Figure 11

Identification of regions on the surface of TPI rele-
vant for k_,/K, and K, kinetic parameters. By scan-
ning patches and residues on the protein surface, calculating
the correlation between electrostatic potential differences

and the respective kinetic parameters k_,/K_ (a) and K, (b)
at each position, different regions on the TPl protein surface
were found to give the best correlations with experimental
data. Regions where variations in the electrostatic potential
are best correlated with variations in k_, /K, (a) and K, (b)
(see text for details). (c) ribbon presentation of the TPl mon-
omer with important residues shown: the flexible loop is in
magenta (W 168-T175), the catalytic residues Glul65 and
His95, as well as the conserved Lys|3 important for electro-
static steering of the substrate are shown in red. The centers
of the regions selected for correlating K and k_, /K, param-
eters are shown by red balls, on the left - W168CZ3 and on
the right — L2300. (d): electrostatic potential conservation:

red: highest to blue: lowest.

Page 11 of 16

(page number not for citation purposes)



BMC Bioinformatics 2007, 8:373

It can be expected that the same region is responsible for
parameters correlated with each other. The appearance of
two different regions responsible for 2 different kinetic
parameters is expected when the 2 different kinetic param-
eters are not correlated with each other, as in case of TP,
because the interaction field changes in a single region can
describe only one set of parameters. The region responsi-
ble for the TPI parameter k_, /K, can be interpreted as con-
tributing to the interaction between the substrate and the
enzyme, because it is located near the substrate binding
position. The region responsible for K, is close to the
active site, but one cannot expect that the substrate inter-
acts with the enzyme there, because the region is on the
other side of the flexible loop from the active site. One can
assume that the interaction field variations define K, var-
iations indirectly. It is the variation of physico-chemical
properties of the residues at the beginning of the flexible
loop that changes K, values, but we see these variations as
variations of the electrostatic potential around W168.

Conclusion

We have shown that protein interaction field differences
can correlate with changes in the kinetic parameters of
enzymes. The application possibilities of this observation
are two-fold. First, the correlation method can be used to
check the consistency of kinetic measurements with avail-
able structural data. In the case that the predictions are sig-
nificantly different from measured parameters, significant
structural changes can be expected or the measurement
conditions are not consistent with the structure of the
enzyme. Second, prediction of kinetic parameters is possi-
ble when data consistency is present — given two enzymes
with known kinetic parameters and structure, one can
derive a correlation and make predictions for the rate con-
stants of a similar enzyme with known structure. Two is
the minimum number of known parameters required for
application of the method. For error estimates, more
known kinetic parameters are needed and the more meas-
ured kinetic parameters are used, the more reliable the
predictions will be.

An important area of application is the use of protein
three-dimensional models to bring experimental meas-
urements into consistency with each other. Measurements
of kinetic constants are frequently done under different
conditions and often result in different values for the
same parameter. Here, the structural properties can be
used as a reference point for rationalising two different
measurements.

The generality of the qPIPSA method is that it uses a con-
cept of similarity that does not require a priori knowledge
of the specific mechanism of the enzymatic reaction.
Although only consideration of the detailed mechanism
can permit quantification of all the contributions, general
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structural differences can explain the differences between
the enzymes resulting in their different kinetic properties.
This is analogous to the case of protein association, in
which relative association rates of protein mutants are
described well by differences in interaction energies calcu-
lated in a simple way [42], although the association proc-
ess itself may be changed significantly by mutations [43].

The consistency of kinetic measurement conditions and
structural data is dependent on the accuracy of structural
modeling. The requirement for protein structural model
accuracy is in general high. It varies according to the type
of parameter. k_, or k_,/K, values, for which long-range
interactions are important may be less sensitive to struc-
tural details than k_, which is defined by short-range
interactions. In our study, we avoided the problem of
rotating side-chains by forcing equivalent side-chains to
have the same conformation. This approach may over-
look parameter changes due to side-chain conformational
changes, but as shown here, in many cases it allows signif-
icant correlations between structural and kinetic parame-
ters to be detected. Improvements in homology modeling
methods [44] may result in improvements in this type of
prediction.

The minimum requirements for performing qPIPSA are
(i) that a structural model of the enzyme of adequate
quality for computation of the electrostatic potential in
the region of the active site must be available or modella-
ble, and (ii) that enzymatic kinetic parameters for related
enzymes having the same reaction mechanism must be
available. According to our estimates, a significant frac-
tion of characterized enzymes satisfy these requirements
and as such can be investigated by qPIPSA. Factors influ-
encing the validity of qPIPSA include the following. (i)
The relevance of the protein structures analysed for the
rate-determining catalytic step. Proteins may adopt multi-
ple conformations. Sometimes it may be necessary to do
calculations with more than one conformation, e.g. with
open and closed forms of an enzyme active site. If one of
these gives MIFs that correlate better with known kinetic
parameters, this provides some mechanistic information
about the determinants of the kinetic parameter. (ii) Sim-
ilarly, the region over which to compare the MIFs should
be chosen. Calculations can be done for a number of
regions. For TPIs, the best correlation with kinetic param-
eters was obtained for different regions for k_,/K, values
and K, values. This again provides some mechanistic
information on the parameter determinants. (iii) The
method is most suitable when the rate-determining step is
mechanistically the same across the set of protein struc-
tures compared. An outlier might be mechanistically dif-
ferent, but if there is wide mechanistic variation in the
dataset, the comparative approach cannot be expected to
work. (iv) Molecular dynamics are not currently consid-
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ered in the approach and if they alter the protein struc-
tures in different ways across the dataset they will
adversely affect the value of the MIF comparison.

In summary, we have described qPIPSA and demonstrated
its validity for establishing correlations between kinetic
parameters and MIFs, as well as estimating kinetic param-
eters using MIFs computed from enzyme structures.
PIPSA can be a useful tool for parameter estimation in
biochemical network modelling in systems biology appli-
cations as well as in investigating enzymatic structure-
function relationships and enzyme mechanisms.

Methods

Modeling of protein structures

All protein structures were modeled by comparative mod-
elling techniques with SwissModel [39]. In addition,
Modeller [32] was used to model TPI structures. Compar-
ative modeling techniques are suitable as the level of
sequence identity between the template protein with
experimentally determined structure and the modeled
protein was rather high, being greater than 40% for all
cases studied.

One X-ray crystal structure was chosen as the template for
each enzyme family (with PDB and subunit identifiers as
follows: 1mahA for AChE, 1cbjA for SOD, 1r2rA for TP],
1zaiA for FBA). TPI and SOD are homodimers, but mon-
omeric models were used here, as there is little interweav-
ing of the monomer structures. Only one monomer of
FBA was used for the same reason, although the majority
of aldolases are homotetramers.

For a given enzyme family, all comparative models were
built from one single template crystal structure even when
other crystal structures were available with higher
sequence similarity to the modeled protein. This was done
to ensure that the differences between the models of dif-
ferent proteins of one enzyme family were due to differ-
ences in sequence only and not influenced by differences
in crystallization conditions of different template crystal
structures. Such differences can, for example, result in dif-
ferent rotamers of flexible side chains being seen in differ-
ent structures corresponding to the same protein
sequence.

For Modeller, as well as using the default mode "Auto-
model", we used a modeling procedure called "Turbo", to
avoid excessive optimization of models. Excessive optimi-
zation and MD refinement can result in differences
between models of different proteins in one enzyme fam-
ily that do not reflect the sequence differences.

The "Automodel" class in Modeller8v.1 [32] provides a
convenient set up of default parameters for the generation
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of homology models. By default, protein structural mod-
els are energy minimized and then subject to a molecular
dynamics and simulated annealing procedure to over-
come bad contacts or local minima. A detailed description
of the procedure and settings can be found in the Model-
ler documentation http://salilab.org/modeller/manual/.
The CHARMM?22 [45] force field for proteins is used with
modified dihedral parameters. Energy minimization is
done using a conjugate gradients optimisation method for
a given maximum number of iterations. The minimal
atomic shift for the optimisation convergence test is 0.010
A. The molecular dynamics integrator uses the Verlet algo-
rithm; the time step in MD simulations is set to 4 fs.

The default (referred to here as "Automodel" procedure)
settings correspond to a minimization for a maximum of
200 steps, followed by a "very_fast" MD and simulated
annealing simulation. Initial models are randomised in
their xyz coordinates by adding a random number
between -4.0 and +4.0 A to the initial coordinates. MD
equilibration is performed at 150, 400 and 1000 K for 50
iterations each. Simulated annealing is done at 1000, 800,
500 and 300 K for 300 iterations at each temperature.

The simplified protocol (referred to here as the "Turbo"
procedure) uses the "automodel.very_fast" pre-defined
settings. They differ from the default in that initial coordi-
nates are not randomised; energy minimization is done
for a maximum of 50 steps with no subsequent MD and
simulated annealing runs. In both cases, the quality of the
generated models was checked with WHATCHECK [46] to
remove bad models.

We applied different additional protein structure quality
verification tools (PROSA [47], Verify3D [48] and ERRAT
[49]). These gave little preference to any one of the three
modelling procedures.

Analysis of molecular interaction fields

The PIPSA (Protein Interaction Property Similarity Analy-
sis) [13] software (version 2 http://projects.villa-
bosch.de/mcm/software/pipsa with minor modifica-
tions) was used to quantify MIF differences. The MIF used
was the molecular electrostatic potential. Other MIFs for
the interaction of different chemical fragments or func-
tional groups with macromolecules (these can, for exam-
ple, be computed with the GRID program [50] for a range
of probes such as carboxylate, amino and hydrophobic
probes), were not used in this work.

PIPSA permits the comparison of the interaction fields for
a superimposed protein pair in a region defined by the
intersection of the "skins" of these two proteins. The
"skin" is defined as a region outside the protein surface,
accessible to a probe of radius 3, and inside the surface
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accessible to a probe of radius 8 + o; the "skin" thus has a
thickness o. The comparison region can be restricted to be
within a specified distance from a given point, for exam-
ple, a chosen atomic center. Using PIPSA, we have previ-
ously carried out large scale classification of Plekstrin
Homology (PH) domains [12], WW domains [8] and E2
ubiquitin conjugating domains [14] by electrostatic simi-
larity to infer binding characteristics. We have also corre-
lated electron transfer rates with the similarity of
electrostatic potentials for a set of plastocyanin mutants
[20]. In these studies, a probe of radius y = 3 A and a
"skin" of thickness 6 = 4 A were used. In the present study,
a probe of radius & = 2 A and a "skin" of thickness 6 = 3 A
were used. These values are smaller than those used previ-
ously because the kinetic parameters of enzymes can be
influenced by the interaction fields in the active site close
to the enzyme surface. The use of a skin closer to the sur-
face meant that it was important to derive models with
consistent side chain orientations (see above).

For each protein structure, the molecular electrostatic
potential was computed as follows. Polar hydrogen atoms
were added using Whatif [46] and electrostatic potentials
were calculated by numerically solving the linearized
Poisson-Boltzmann equation using the UHBD program
[51] with atomic radii and partial atomic charges assigned
from the OPLS parameter set [52]. The grid spacing was
set to 1 A and grid was dimensioned to 1103 points. The
dielectric surface of the protein was defined as the molec-
ular surface accessible to a spherical water probe of radius
1.4 A. The relative dielectric constant of the protein inte-
rior was set to 2, the dielectric constant of the solvent was
80. The ionic strength of the solvent was 0 mM in the case
of AChE, 100 mM for TPI, 150 mM for FBA and variable
for SOD in accord with the corresponding experimental
conditions.

In all cases, we used the following protocol to select the
MIF comparison region:

1. The skin is assigned a thickness & of 3A extending from
the probe accessible surface around the protein computed
with a probe of radius (8) 2 A.

2. The region is assigned a radius of 10A. If there are fewer
than 50 points for comparison in this region, the radius is
incremented in 2 A intervals until enough points are
included for reliable calculations.

3. The center of the region is assigned in the active or bind-
ing site. How this is chosen depends on the information
available on the enzyme under study. If a structure is
known of an enzyme-ligand complex, the region can be
centered on the ligand. If the catalytic residues are known,
the center can be one of these or their geometric center.
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The comparison region should cover the region in which
the ligand interacts with the enzyme, but may also be cho-
sen to include a region relevant for ligand access such as
the gorge in AChE.

For AchE, the MIF comparison region was selected to be
within 10A of a point near His447 in the substrate active
site gorge [25] (namely, the mid-point between the
atomic coordinates of H447ND1 and Y1240H in the X-
ray crystal structure with PDB identifier 1mah, subunit A).
The spherical region thereby included the active site, the
gorge and the peripheral substrate binding site at the
gorge entrance. There were about 50 grid points in the 3 A
thick skin extending from the surface accessible to a 2 A
radius probe. Residues Glu202 was protonated and
His447 was doubly protonated, as described previously
[53].

SOD structures were modeled based on the structure of
Bovine superoxide dismutase [54]. The pH dependence of
protein charges was modeled by calculating the pK, values
of ionisable sites using a Poisson-Boltzmann electrostatics
method [28]. Calculations were done for assignments of
high (78) and low (4) values of the dielectric constant of
the protein. The charges of the Cu and Zn ions and their
ligands were assigned as described previously [27] and
these charges were not changed with pH. The electrostatic
potentials were compared in the "skin" region within 10
A of the catalytic copper ion. The comparison region in
TPI and FBA cases has the same radius with the centers
assigned as described in the text.
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