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Abstract

Background: As in many other areas of science, systems biology makes extensive use of statistical
association and significance estimates in contingency tables, a type of categorical data analysis
known in this field as enrichment (also over-representation or enhancement) analysis. In spite of
efforts to create probabilistic annotations, especially in the Gene Ontology context, or to deal with
uncertainty in high throughput-based datasets, current enrichment methods largely ignore this
probabilistic information since they are mainly based on variants of the Fisher Exact Test.

Results: We developed an open-source R-based software to deal with probabilistic categorical
data analysis, ProbCD, that does not require a static contingency table. The contingency table for
the enrichment problem is built using the expectation of a Bernoulli Scheme stochastic process
given the categorization probabilities. An on-line interface was created to allow usage by non-

programmers and is available at: http://xerad.systemsbiology.net/ProbCD/.

Conclusion: We present an analysis framework and software tools to address the issue of
uncertainty in categorical data analysis. In particular, concerning the enrichment analysis, ProbCD
can accommodate: (i) the stochastic nature of the high-throughput experimental techniques and (ii)
probabilistic gene annotation.

Background

The system-level approach to data analysis known as
enrichment analysis (also known as over-representation
or enhancement analysis) is now commonplace. Moreo-

sis, including multiple and/or ordered outcomes; and
diverse types of gene classification schemes, such as Gene
Ontology (GO), KEGG or organism-specific ones. For a

ver, the number of available software tools to perform
such analysis is large (see [1,2] for comprehensive
reviews). The preferred way to formalize the enrichment
problem is by means of a contingency table, often 2 x 2.

The mathematical problem is conceptually generic, being
applied to diverse types of data, such as genomics, tran-
scriptomis or proteomics datasets; diverse types of analy-

given ontology term ¢ defining the set of genes G, and its

complementary set Gy, the general enrichment analysis

contingency table is:
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G, G
outcomey | X117 Xj5
outcomey | Xp1 Xo2
outcomey, | X1 Xp2

Besides measuring the statistical significance of the null
hypothesis that the rows and columns are independent, as
yielded by Fisher's Exact Test [3] and Fisher-like methods
[1,2], it is also possible to measure statistical association
between a table's rows and columns [4] (a detailed discus-
sion on significance vs. association in the enrichment
problem context can be found in [5]).

Most of the attention in the enrichment analysis problem
has focused on issues such as the search for the best mul-
tiple-test correction or the implementation of better user-
friendly software interfaces to facilitate biologist's explor-
atory work [1]. However, one of the limitations that the
available approaches still share is that they assume, explic-
itly or implicitly, that one is able to construct the contin-
gency table exactly, without uncertainty in populating its
cells. Some efforts to consider ranked lists of genes,
ranked by their reliability, were proposed to ameliorate
the aforementioned limitations [6], however they do not
work on the categorical data framework and incorpore the
probabilitic information in a heuristic fashion [7].

Recently, the computational biology community has been
witnessing an increasing interest in probabilistic
approaches to gene annotation, particularly in the Gene
Ontology (GO) context, as a realization of the limitations
imposed by the traditional deterministic and context-
independent gene annotation schemes [8-15]. These
efforts are motivated by: the necessity to assess the error
propagation in automatic gene annotation [9,15]; desire
to include different types of evidence sources such as pro-
tein-protein interaction [8,13] or phylogenomics [10,12]
and annotation extrapolation from model organisms to
others [11,14]. Meanwhile, the probabilistic nature of
data obtained by high-throughput measurement tech-
niques is well recognized and a number of attempts to
model it were proposed over the past decade in various
experimental contexts [16,17]. However, these efforts are
not integrally taken into account when usual enrichment
analysis is performed.

We describe a computational solution that is able to deal
with the uncertainty introduced in enrichment analysis
due to: (i) the stochastic nature of the results obtained
with such high-throughput experimental techniques or
(ii) probabilistic gene annotation.

http://www.biomedcentral.com/1471-2105/8/383

Implementation

ProbCD is an open-source software designed to perform
probabilistic categorical data analysis. ProbCD is written
in R [18] with a level of modularity that makes it suitable
to be incorporated by existing development efforts of inte-
grative tools [19]. To facilitate the usage by researchers
with no knowledge of R, we implemented a user-friendly
web-based interface for the software, which is not limited
to any particular organism. The on-line interface and the
source-code are available on the project's website [20].

The idea behind ProbCD's implementation is to formally
represent the intuitive process of building a contingency
table in a probabilistic manner. Informally speaking, each
element to be placed in the contingency table is not con-
sidered to be indivisible, but instead is "shared", accord-
ing to probabilistic rules, among the contingency table's
cells in a manner that is conceptually similar to fuzzy
membership. The theoretical and computational imple-
mentation aspects are described in detail below.

Without loss of generality, the following descriptions are
applied considering one particular ontology term ¢ that is
associated with a set of genes, named simply as G,. It
should be noted that G, is not restricted to the Gene
Ontology categorization and can be any kind of classifica-
tion or annotation.

The vector ¢ contains a probabilistic annotation for all g
of the organism's genes: ;= I (gene; € G,) forj e {1,U, g}.
This probabilistic annotation is assumed to be given, typ-
ically obtained from some analysis process. The determin-
istic scenario corresponds simply to P (gene; € G,) € {0,
1}, and hence is a special case.

The matrix P contains a probabilistic description for all k
possible outcomes of the property being studied. There-
fore, P is a k x g matrix with elements P; ;= P (gene; € out-
come;) forj e {1,U, g} andi € {1,U, k}. This probabilistic
description of the data uncertainty is assumed to be given.

To motivate the general probabilistic model, it is useful to
examine an arbitrary 2 x 2 example in the deterministic
scenario:

where all x's are the counts of a regular contingency table
over the gene sets G and H. In its matrix representation:
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21 %22 zjl{gene]eHE}l{ge"e]EG} zjl{gene/EHc}l{genqeGE}
where 1 0 is the indicator function.

Inspired by this representation, it is easy to see that the
"hard" indicator functions may be substituted by Ber-
noulli random variables in order to account for the cate-
gorization uncertainty. Since all sets are finite, the
indicator functions can be represented as vectors in {0,
1}8 and the sums over all genes as dot products. In a
generic scenario, with given non-deterministic P and g,
the contingency table represented by X|P, ¢4 is a random
matrix that is difficult to describe in closed form. It is also
not compatible with the statistical formalism supporting
Fisher's Exact Test or other well-known Fisher-like
approaches, as these are not applicable to random tables.

The contingency table is defined in terms of Bernoulli
Schemes [21] which is the generalization of the Bernoulli
Process to more than two possible outcomes. The nota-
tion Z ~Be(p,,U, p,) represents the distribution:

[(1,0,0,--+,0) with probability py;
(0,1,0,---,0) with probability p,;
(0,0,1,---,0) with probability ps;

Z =
(0,0,0,---,1) with probability p,,.
[pr+t Py =1

The random variable X is a matrix representation of a k x
2 contingency table:

X1 X1 d-a; dy-a

Xep Xk d-a dy-ay

where- is the usual dot-product, a;= (4; ;,U, 4; ) is arow-
vector of a 2 x g binary matrix A such that (A, ; A, ;)|q;
~Be(q; 1 -¢;) and d;= (D; ;,U, D; ,) is a row-vector of a k
x g binary matrix D such that (D; ;,U, Dy, )|(Py,;U, Py ;)
NBe(PLj,U, p, j).

It is very easy to extend this framework for completely
generic k x m tables (m > 2), but this would be outside the
scope of the ontology enrichment problem.

To measure statistical association between rows and col-
umns in contingency tables, analogously to correlations
for non-categorical data, we recall the pivotal works by

http://www.biomedcentral.com/1471-2105/8/383

L.A. Goodman and W.H. Kruskal [4]. Depending on the
problem under consideration, an appropriate association
measure function p can be chosen. ProbCD calculates the
statistical association accounting for the stochastic nature
of the table's categorization, reporting p= p (E [X|P, q]),
where [E is the expectation operator. If the categorical
data is represented by a regular 2 x 2 matrix, then Yule's Q
can be used as the statistical association function p=Q :
R4 — [-1, 1]. If one is dealing with ordered contingency
tables, then Goodman-Kruskal's gamma, p= y: R2%— [-1,
1], can be used since it is the generalization of Yule's Q.
Considering non-ordered categories, there is no analogy
with the usual correlations in [-1, 1] and in this case, as
suggested by [4], Cramer's T is used with p=T : R2k— [0,
1].

All the association measures implemented can be calcu-
lated for E [X|P, q] € R2k, while 2 x 2 Fisher's Exact Test
p-value cannot, since it is a function in 4 — [0, 1]. Moreo-
ver, a p-value is related to the significance only, containing
no information about the actual association level.

The dichotomous case, which is the simplest one, gives a
more intuitive illustration on how the association is calcu-
lated in practice for the particular implementation: E
[X1,1|P, q] =E;, ;=P 1q;+ U + Py od, B [X,4|P, q] =E,,
1=(1-Py ) g1+ U+ (1-Py ) q B [X,|P, q] =E, =Py,
1(1-g) +U+Py o (1-q) E [X,,|P, q] =E, ,=(1-Py )
(1-q)+U+(1-P,)(1-q)and p=(E E),-E LE,)
/(Ey 1E,y 5+ E, ,E, 1), which corresponds to Yule's Q.

To measure the statistical significance of the estimated
association, ProbCD uses a randomization approach. The
null distribution for the association measure, p*, is pro-
posed to be estimated from several permutation rounds.
In each round a gene j receives randomly its probabilities

( Pfij,‘ . -,P;:]» ) from one of the g possible columns of P and

an association value is calculated. The significance of the
statistical association between rows and columns in the
contingency table is calculated as p = P (p* 2 p). A term ¢
is significantly over-represented (or equivalently, the gene
list is enriched for t) depending on user-defined thresh-
olds for significance and/or association.

Results

The following examples illustrate the potential utility of
considering probabilistic annotations and/or data uncer-
tainty assessment in the enrichment analysis using
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ProbCD on artificial datasets and a published yeast data-
set.

The point of the following illustration is to show that even
ontology terms annotated with modest probabilities can
be considered to be over-represented if the list of genes
obtained behave in a supportive pattern. Consider a hypo-
thetical organism with 100 genes annotated in several GO
terms, as described in the Additional Files. The genes gene,
to gene,, are deterministically annotated to the ontology
term t = a. In other words, assume that it is well known
that these 20 genes have some given functionality a. The
experiment, for example from a hypothetical proteomics
dataset, yielded a deterministic list of differentially
expressed (DE) genes ranging from gene, to gene,,. The
contingency table for this problem is, therefore:

In this case, the DE gene list is clearly enriched for a within
any meaningful significance cutoff. Consider now a sec-
ond ontology term b obtained from a probability-based
source with [ (gene; € G,) = 40%, i € {1,U, 20}. A prob-
ability of only 40% generally would not be sufficient evi-
dence to warrant the inclusion of those 20 genes in G,
considering a usual deterministic framework and, there-
fore, would not be analyzed by deterministic-based meth-
ods, such as the Fisher's Exact Test. However, ProbCD is
able to incorporate this information and yields: p = 0.87
and p < 104 in 10000 permutation rounds, a significant
enrichment for b. One can easily imagine, for example,
genes that have a main function a but also have a different
function b in, say, 40% of documented conditions.

The point of the following illustration is to show that the
incorporation of probabilistic annotation information
does not always translate to addition of terms into the
enrichment result, as in the example above, but it can also
mean the exclusion of non-relevant terms. Consider a
hypothetical organism with 1100 genes. Let the genes
gene, to gene,,, be grouped together in a cluster H after
some genomic sequence analysis. Let the term a be anno-
tated deterministically (Additional Files) yielding the con-
tingency table:

In this situation, H is clearly enriched for a within any
meaningful significance cutoff. Now let the same annota-

http://www.biomedcentral.com/1471-2105/8/383

tion incorporate some evidence levels by defining: P
(gene; € G,) =99% fori e {1,U, 10} and P (gene; € G,) =
1% fori € {11,U, 100}. Intuitively, this means that only
10 out of 100 genes clustered in H are, in fact, confidently
annotated with the ontology term a. The incorporation of
this information results in non-significant enrichment of
H for a since: p = 0.0425 and p = 0.42 in 1000 permuta-
tion rounds. Therefore, it can be useful to incorporate
uncertainty information into the enrichment analysis to
also down-rank potentially spurious enrichment results.

The following illustration shows that the use of ordered
categories (k > 2) can produce useful results when addi-
tional information, regarding the order, is added. Con-
sider a hypothetical organism with 4000 genes. In a
hypothetical network analysis, let the genes be catego-
rized, for simplicity and without loss of generality, in a
deterministic fashion in a natural order: hubs (H), regular
nodes (N) and leaves (L). Let the term a be annotated
deterministically (Additional Files) yielding the contin-
gency table:

L | 180 3420

If one cannot express the difference between hubs and reg-
ular nodes in the enrichment analysis, the contingency
table is forced to be described as:

| Ga Gi
H+N |20 380
L |180 3420

The most connected nodes in the network are not
enriched for a considering the consolidated table above
using either the Fisher's Exact Test (p-value = 0.54) or
ProbCD (p =0, p = 0.48). However, using the original cat-
egorization order, ProbCD suggests a significant enrich-
ment for a with p=0.98 and p < 104. The conclusion that
the property a must be related to gene connectivity seems
subjectively reasonable considering the numbers in the
first contingency table. The rationale used for the hypo-
thetical network analysis could be useful in other scenar-
ios where there is a natural order that can provide extra
information such as: highly expressed, expressed, and not
expressed or up-regulated differentially expressed, not dif-
ferentially expressed, and down-regulated differentially
expressed.

The next illustration demonstrates the impact of consider-
ing the uncertainty in lists of genes, rather than in the
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annotations, on the enrichment analysis. In this example,
the aim is to find which GO terms, annotating the yeast
Saccharomyces cerevisiae, are statistically associated with
periodic expression levels, measured by microarray tech-
nology [22]. Andersson and colleagues [22] devised an
elaborate Bayesian model which produces the probability
that a gene is periodically expressed during the cell-cycle.
Since the final probability values are sufficient for our
objectives in this work, we refer the interested reader to
the original work by Andersson and colleagues [22] for
more details. In this example, the annotation is consid-
ered to be deterministic and was downloaded from the
GO project page (March 2007) [23].

To perform the usual enrichment analysis one needs to
define a probability cutoff value in order to split the gene
list in two: the periodic genes and the non-periodic genes.
Consider initially the reasonable cutoft P (gene; is peri-
odic) > 70% and focus on a single GO term GO:0007090
(regulation of S phase of mitotic cell cycle), defined as "a
cell cycle process that modulates the frequency, rate or extent of
the progression through the S phase of mitotic cell cycle".
Although this GO term is clearly associated with periodic

10

08
I

Pr
04

0z
L

15%
T T T T T T T
1 1000 2000 3000 4000 5000 6000

rank

Figure |

Probability of being periodic. The blue curve represents
the probability of a gene being periodic (Pr) according to the
model of [22]. The genes are sorted by probability values
(rank) on the horizontal axis to facilitate the visualization.
The red curve is the deterministic approximation using a 70%
probability cutoff to consider a gene as periodic: P (gene; is
periodic) > 0.70 = P (gene; is periodic) = | and P (gene;is
periodic) < 0.70 = [P (gene; is periodic) = 0. This approxima-
tion labels 15% of the genes as periodic.
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gene expression, performing a usual enrichment analysis
results in the conclusion that the periodic genes are not
significantly enriched for GO:0007090 within usual sig-
nificance cutoffs (p-value = 0.065).

Suspecting that this non-intuitive result could be due to
the probability threshold chosen to select periodic genes,
illustrated in the Figure 1, one could repeat the same anal-
ysis above building the contingency table considering the
cutoffs [P (gene; is periodic) > 50%, 95%, 99% or 99.99%.
The result of this repeated analysis is also non-intuitive
since the p-values are: 0.12, 1.0, 1.0 and 1.0 for 50%, 95%,
99% and 99.99% cutoffs, respectively, meaning that
increasing the stringency to define a gene as periodic only
decreases the significance of the enrichment for
GO0:0007090.

Using ProbCD, one can consider the actual probability of
being periodic (blue curve in Figure 1) in the enrichment
analysis instead of using the deterministic approximation
(red curve in Figure 1). This results in a relatively high sta-
tistical association between periodicity and the term "reg-
ulation of S phase of mitotic cell cycle" (p = 0.78) with
high significance (p = 0.009 in 1000 simulation rounds).
Judging subjectively by the definition of GO:0007090,
ProbCD returned a meaningful result.

Other similar cases can be easily identified. For example,
the GO term GO:0000083 (G1/S-specific transcription in
mitotic cell cycle) exhibits erratic behavior depending on
the chosen cutoff for the probability of being periodic: p-
value of 0.15, 0.10, 0.01, 0.096 and 1.0 for 50%, 75%,
95%, 99% and 99.99% cutoffs, respectively. The probabil-
ity stringency used to build the contingency table and the
subsequent significance test are not necessarily correlated.
ProbCD yielded a significant (p = 0.006) moderate associ-
ation (p=0.48) for GO:0000083. Other examples include
GO0:0045787 (positive regulation of progression through
cell cycle), defined as "any process that activates or increases
the frequency, rate or extent of progression through the cell
cycle", which would be called significant using the regular
enrichment method only if the right probability cutoff P
(gene; is periodic) > 95% is guessed initially: p-value of
0.047, 0.024, 0.0058, 0.086 and 0.024 for 50%, 75%,
95%, 99% and 99.99%, respectively.

The above analysis process is repeated for all GO terms,
with the results available as Additional Files and summa-
rized in Figure 2. This figure suggests that there is a large
variability in the possible final outcome of an enrichment
analysis depending on the probability cutoff used to build
the associated contingency table. This variability is
avoided by ProbCD because it directly takes into account
the uncertainty in the data instead of introducing a discre-
tization step (Figure 1).
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Figure 2

Venn diagram of over-represented terms. The Venn
diagram shows the number of GO terms considered signifi-
cantly over-represented (p-value < 0.01) by the Fisher Exact
Test using four different probability cutoffs P (gene; is peri-
odic) > A, B, C or D = periodic: A=0.70, B =0.95, C=0.99
and D = 0.9999.

Figure 3 shows that ProbCD considers more terms (verti-
cal axis in Figure 3) containing the word "cell cycle", likely
associated to periodically expressed genes, as significant if
compared to the usual enrichment analysis in a wide
range of significance values (p in Figure 3). Although this
is not a proof, since one cannot be certain about which
"cell cycle"-marked terms should be enriched, this is a rea-
sonable indication that one can, in fact, avoid the discre-
tization step when building the enrichment problem
using ProbCD and obtain meaningful results.

Discussion and Conclusion

The usual enrichment analysis is a particular case in this
probabilistic framework and can be obtained by ProbCD
ignoring the difference between evidence sources in gene
annotation and defining fixed gene lists, which would
correspond to the deterministic setting: ¢;= P* (gene; € G,)
=1or0and P, ;=P (gene; € outcome;) = 1 or 0.

Even if a probabilistic annotation is not readily available
for a given organism, it could be interesting to perform
enrichment analysis taking into account some form of
weighting on available annotations according to their reli-
ability. For a concrete example, the GO Consortium [24]
provides annotations accompanied with evidence codes
related to the kind/level of evidence available for a given
GO annotation [25], such as IEA: Inferred from Electronic

http://www.biomedcentral.com/1471-2105/8/383
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Figure 3

Fraction of "cell-cycle" GO terms selected as a func-
tion of the p-value. The curves show the fraction of GO
terms containing the word "cell-cycle" in their definition that
are considered significant as a function of the significance cut-
off (p). The red curve is obtained with ProbCD and all others
are obtained with one of the probability cutoffs: 50%, 70%,
95%, 99% or 99.99%.

Annotation, IMP: Inferred from Mutant Phenotype, RCA:
inferred from Reviewed Computational Analysis or IDA:
Inferred from Direct Assay. It is known that some evidence
sources are more reliable than others and this knowledge
can be used, in a Bayesian sense, as subjective probabili-
ties.

Once an annotation is considered in a probabilistic
framework, it could reflect a dependence on the context.
One can consider cases in which [ (gene; € G|disease) >
P (gene; € G,), defining context-dependent gene annota-
tions derived, for instance, from automatic literature min-
ing [26].

Our intention is to complement existing approaches,
rather than substitute them. Toward this aim, we built
ProbCD to be as modular as possible in order to be incor-
porated into existent software or pipelines [19], com-
posed of ontology pre-processing [27] or powerful
visualization capabilities [28,29].

It is important to note that ProbCD is also applicable to
other categorical data analysis contexts in which the con-
struction of contingency tables is subject to uncertainty, a
recurrent theme in science.
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Availability and requirements
® Project Name: ProbCD

e Project Home Page: http://xerad.systemsbiology.net/
ProbCD

e Operating Systems: platform independent

® Programming Languages: R

e License: GNU Lesser General Public License 3.0
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Additional material

Additional file 1

ProbCD source-code and Examples. Source-code used to build the
ProbCD package. Future upgrades will be available at the project website
[20]. Dataset and results for the three examples presented in the Results
section.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-8-383-S1 zip|
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