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Abstract
Background: Domains are the basic functional units of proteins. It is believed that protein-protein
interactions are realized through domain interactions. Revealing multi-domain cooperation can
provide deep insights into the essential mechanism of protein-protein interactions at the domain
level and be further exploited to improve the accuracy of protein interaction prediction.

Results: In this paper, we aim to identify cooperative domains for protein interactions by
extending two-domain interactions to multi-domain interactions. Based on the high-throughput
experimental data from multiple organisms with different reliabilities, the interactions of domains
were inferred by a Linear Programming algorithm with Multi-domain pairs (LPM) and an
Association Probabilistic Method with Multi-domain pairs (APMM). Experimental results
demonstrate that our approach not only can find cooperative domains effectively but also has a
higher accuracy for predicting protein interaction than the existing methods. Cooperative domains,
including strongly cooperative domains and superdomains, were detected from major interaction
databases MIPS and DIP, and many of them were verified by physical interactions from the crystal
structures of protein complexes in PDB which provide intuitive evidences for such cooperation.
Comparison experiments in terms of protein/domain interaction prediction justified the benefit of
considering multi-domain cooperation.

Conclusion: From the computational viewpoint, this paper gives a general framework to predict
protein interactions in a more accurate manner by considering the information of both multi-
domains and multiple organisms, which can also be applied to identify cooperative domains, to
reconstruct large complexes and further to annotate functions of domains. Supplementary
information and software are provided in http://intelligent.eic.osaka-sandai.ac.jp/chenen/
MDCinfer.htm and http://zhangroup.aporc.org/bioinfo/MDCinfer.
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Background
Many proteins involved in signal transduction, gene regu-
lation and other biological activities require interaction
with other proteins or cofactors to achieve specific proc-
esses [1,2]. Elucidating protein-protein interactions can
provide deep insights into protein functions and intracel-
lular signaling pathways. Owing to the recent rapid
advances in high-throughput technologies, protein-pro-
tein interaction data of various species are increasingly
accumulated from different experiments and deposited in
several main databases such as DIP [3] and MIPS [4]. This
collection of protein-protein interaction data results in a
rich, but quite noisy and still incomplete source of infor-
mation [5,6] which needs to be analyzed and completed
by sophisticated computational methods.

In recent years, a number of computational algorithms
have been developed to infer protein-protein interactions,
such as those methods based on gene fusion (Rosetta
Stone) [7,8], phylogenetic profile [9], protein structure
[10], and domain information [11]. In particular, infer-
ring protein-protein interactions (PPI) based on domain
information, such as association method [11], probabilis-
tic method [12-14], SVM-based method [15], and LP-
based approach [16], has attracted much attention due to
its clear biological implication and simplicity. In addition
to these methods for protein interaction prediction, infer-
ring domain-domain interactions (DDI) by integrating
multiple data sources has also been investigated [17-19].

Domain-based protein interaction prediction assumes
that proteins are composed by a set of recognition ele-
ments which are referred to as domains, and protein-pro-
tein interactions are achieved through domain
interactions [12]. A typical procedure for these methods
includes two steps. Firstly domain interactions are
inferred from experimental protein interactions, and then
new protein interactions are predicted based on the
inferred domain interactions according to either a proba-
bilistic or deterministic model. The difference between
probabilistic and deterministic models is whether or not
they are based on the probabilistic formula describing the
relations between domain interactions and protein inter-
actions [12]. Most existing algorithms consider domain-
domain pairs as the basic units of protein-protein interac-
tions, and these domain-domain interactions are assumed
to be independent. However, such an assumption is actu-
ally not biologically reasonable because two or more
domains may cooperatively interact with another domain
[20]. In addition, there are many superdomains where
two domains always appear together in individual pro-
teins to mediate the interactions. Given the close relations
between two domains in a superdomain, the independ-
ence assumption of domain-domain interactions does
not generally hold. For example, domain 4 of RNA

polymerase Rpb1 (PF05000) and domain 1 of RNA
polymerase Rpb1 (PF00623) constitute a superdomain,
and they always appear together in individual proteins
such as YOR341W, YDL140C and YOR116C, and have
many common domain interaction partners [21].

Recently, Han et al. studied domain combinations in pro-
tein interactions [22,23]. In their work, the appearance
frequencies of domain combinations in a set of interact-
ing and non-interacting protein pairs are counted to con-
struct AP (Appearance Probability) matrices [22,23]
which provide useful information about the distribution
of multi-domain interactions. For example, among the
listed 300 domain combination pairs with high appear-
ance probability values (top300) which are counted based
on the total 5826 protein interaction pairs in yeast, there
are 246 two-domain pairs, 44 three-domain pairs and 10
four and above domain pairs. Such statistical result indi-
cates that many domains are closely correlated and tend
to appear in interacting protein pairs together. In addi-
tion, Wang and Caetano-Anolles [24] used the occurrence
and abundance of the molecular interactome of domain
combinations to construct global phylogenic trees. When
a closely correlated domain combination appears in an
interactome, domains in this combination may mediate
the interaction simultaneously and cooperatively.

Similar to proteins in a complex which cooperatively bind
to each other so as to achieve specific functions [1], there
is also such a cooperation among domains in protein
interactions. For example, Klemm and Pabo [25] found
that two unlinked polypeptides corresponding to the
POU-specific domain and the POU homeo domain in
protein Oct-1 bind cooperatively to the octamer site.
Moza et al. [20] showed that the binding energetics
between different hot regions consisting of interfacial res-
idues in a protein-protein interaction are not strictly addi-
tive. Cooperative binding energetics between distinct hot
regions is significant. They pointed out that cooperativity
between hot regions has significant implications for the
prediction of protein-protein interactions. When the hot
regions are distributed over different domains in proteins,
the cooperativity between different hot regions is actually
embodied by multi-domain cooperation. Hence, reveal-
ing such domain cooperation may provide deep insights
into the essential mechanism of protein interactions at the
domain level, and can also be further exploited to
improve the accuracy of protein interaction prediction.

In this paper, we firstly aim to identify cooperative
domains from protein interaction data by extending two-
domain interactions to multi-domain interactions. Coop-
erative domains mean that the strength of their coopera-
tive interaction with some domain is stronger than the
corresponding domain-domain interactions. Then, by
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employing the information of both multi-domains and
multiple organisms, we propose a general framework
based on a Linear Programming with Multi-domain pairs
(LPM) and an Association Probabilistic Method with
Multi-domain pairs (APMM), to predict protein interac-
tions in a more accurate manner. Experimental results
demonstrate that our approach not only can identify
cooperative domains effectively but also has a higher
accuracy for predicting protein interactions than the exist-
ing methods. Cooperative domains, including strongly
cooperative domains and superdomains, were detected
from major interaction databases, e.g. MIPS and DIP, and
many of them were verified by checking physical interac-
tions from the crystal structures of protein complexes in
PDB (Protein Data Bank). These crystal structures of com-
plexes provide intuitive evidences for such cooperation. In
addition, comparison experiments in terms of protein/
domain interaction prediction also justified the benefit of
considering multi-domain cooperation.

Results
In this paper, we investigate domain cooperation in pro-
tein interactions by extending two-domain interactions to
multi-domain interactions. We first define the types of
domains and domain pairs, and then describe the main
results. Assume that there are M domains D1, , DM
involved in the experimental interaction data. We use
(Dm, Dn) to represent a two-domain pair, one domain in

a protein and the other in another protein, and use (Dm-
Dr, Dn) to denote a generalized pair i.e. a three-domain
pair, where Dm and Dr appear in one protein (denoted by
Dm-Dr) and Dn in another protein. A multi-domain pair
means a two-domain pair or a three-domain pair. In Fig-
ure 1(a), we list all the multi-domain pairs in proteins (P1,
P2). A cooperative-domain pair (cooperative-domain
interaction) implies a generalized pair (Dm-Dr, Dn) in
which two domains Dm-Dr referred as cooperative
domains coexist in a protein P1 and cooperatively interact
with Dn in another protein P2. The cooperative-domain
pair should have a stronger interaction effect than the cor-
responding two-domain pairs (Dm, Dn) and (Dr, Dn). A
strongly cooperative-domain pair (strongly cooperative-
domain interaction) is a cooperative-domain pair (Dm-Dr,
Dn) which satisfies that there is an interaction effect of Dm
or Dr on Dn only if the domains Dm and Dr appear
together. In Figure 1(b), D1 and D2 are strongly coopera-
tive domains interacting with D3 because all other domain
pairs involving D1 or D2 have no interactions. A superdo-
main implies two 'combined' domains Dm-Dr which are
special cooperative domains and always appear together
in individual proteins. Note that we extend two-domain
interactions only to three-domain interactions because
the cooperation of more than three domains is believed to
be rare compared with the cases of two and three domains
according to statistics [22].

An illustrative example for multi-domain interactionsFigure 1
An illustrative example for multi-domain interactions. (a) All multi-domain pairs are listed for two proteins P1 and P2. Proteins: 
P1 = {Da, Db, Dc }, P2 = {De, Df} ; Domains: Da, Db, Dc, De, Df; (b) The illustration of domain interactions by considering multi-
domain pairs in the proposed model. There are one pair of interacting proteins and three pairs of non-interacting proteins. 
The bold line (red) represents interacting domain pair, while the dotted lines (green) are the deleted non-interacting domain 
pairs.
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The concept of cooperative domains in our work seems to
be similar to Han et al.'s "domain combination" [22,23].
However, there are two fundamental differences between
these two concepts. Firstly, the definition of domain com-
bination is not related to domain interaction strength.
Each domain combination pair is considered in their
approach, no matter what its appearance frequency is in
interacting and non-interacting protein pairs. In contrast,
the definition of cooperative domains emphasizes "coop-
eration" and is related to domain interaction strength. By
an elaborated variable selection strategy (see Methods),
only when the interaction strength of a three-domain pair
(Dm-Dr, Dn) is larger than those of the corresponding two-
domain pairs (Dm, Dn) and (Dr, Dn), this three-domain
pair can possibly be a cooperative-domain pair and con-
sidered in the model. Secondly, there is no redundant cor-
relation between different domain combinations in our
work. For example, if a three-domain pair (Dm-Dr, Dn) is
considered in our method according to the rules of select-
ing variables (i.e. Dm, Dr are considered as cooperative
domains), the two-domain pairs (Dm, Dn) and (Dr, Dn)
will not be included into the consideration as interacting
domains in the same protein pair to eliminate the redun-
dancy, in contrast to the high correlation among Han et
al.'s domain combinations [22,23].

In the following text, Pr(dm, n = 1) represents the probabil-
ity that domain Dm interacts with Dn. Pr(dmr, n = 1) repre-
sents the probability that domains Dm and Dr
cooperatively interact with Dn. Similarly, Pr(dm, nr = 1) rep-
resents the probability that domains Dn and Dr coopera-
tively interact with Dm. Our approach for detecting
cooperative domains in protein-protein interactions can
be summarized as three steps. First, we extend the conven-
tional probabilistic model for inferring domain interac-
tions to accommodate multi-domain pairs. Then, the
interaction probabilities of multi-domain pairs are esti-
mated by the proposed approach. Finally, according to
the interaction probabilities of multi-domain pairs, coop-
erative domains and superdomains are detected. The
detailed information on the methodology is given in
Methods.

Identification of multi-domain cooperation
Identifying cooperative domains and superdomains
Our method is able to identify biologically meaningful
superdomains and putative cooperative domains. We
illustrate this feature by using MIPS data set. A cooperative
domain pair has a stronger interaction effect than their
corresponding two-domain pairs. Therefore, domains Dm
and Dr are cooperative domains if Pr(dm, n = 1) <Pr(dmr, n =
1) and Pr(dr, n = 1) <Pr(dmr, n = 1) from the results of LPM
or APMM. From the definitions, domains in a superdo-
main or in a strongly cooperative-domain pair are
expected to have similar biological functions. We applied

our approach to protein physical interaction data in
MIPS1 (see Methods) to get reliable cooperative-domain
interactions.

Totally we found 5187 two-domain interactions (with no-
zero interaction probability), 83 superdomains and 650
cooperative-domain pairs, among which 525 pairs are
strongly cooperative domain interactions according to the
above definition. Some detected (strongly) cooperative
domains and superdomains in MIPS1 are respectively
listed in Tables 1, 2 and 3. To investigate functional rela-
tions of domains in these superdomains and cooperative
domains, we listed their Pfam descriptions and GO anno-
tations. GO similarity was computed for two domains
both with GO annotations in superdomains (Table 1).
From these tables, we can see that two domains in most
superdomains and some cooperative domains have simi-
lar GO annotations or belong to a same family, which is
consistent with our hypotheses, i.e., domains in a cooper-
ative-domain interaction work cooperatively to facilitate
specific functions. For instance, two domains in superdo-
mains PF05000-PF00623, PF02775-PF00205, PF02800-
PF00044 or PF00488–PF05192 have identical or similar
functions at the respective GO levels. For those superdo-
mains without GO annotations, the Pfam descriptions of
two domains in most of them are also similar, such as
PF08033-PF04810, PF03953-PF0009 or PF08544-
PF00288. For cooperative domains, some of them have
similar GO annotations of functions, such as PF00806-
PF00076, where PF00806 is a Pumilio-family RNA bind-
ing repeat and PF00076 is a RNA recognition motif. Both
domains are necessary for RNA binding. Some coopera-
tive domains have no GO annotations but belong to same
families, such as PF01466–PF03931. Both PF01466
(Skp1, dimerisation domain) and PF03931 (Skp1_POZ,
tetramerisation domain) belong to the Skyp1 family. It is
interesting that three domains in the strongly cooperative-
domain interaction (PF04998-PF00623, PF01191) are
found to have same functions, and they are all RNA
polymerase domains. As another example, we identified
cooperative domains PF00036–PF08226, and the Pfam
description also supports the combination of PF08226
(DUF1720) with PF00036 (EF hand) [21]. Such facts
imply that we can infer the functions of cooperative
domains if one of them has known functions. We also
applied our approach to DIP data set, and the detected
superdomains and cooperative domains are given in
Tables I-III (Additional File 1)

Verifying cooperative domains by crystal structures
In this section, we verify the detected cooperative domains
by checking their physical interactions from the crystal
structures of protein complexes in PDB and examine the
essential mechanism of protein interactions at the
domain level. The complex crystal structures in PDB can
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be regarded as a gold standard to verify protein interac-
tions and domain interactions. The seq2struct web
resource [26] was used to search sequence-structure links.
By focusing on the protein pairs in which proteins are
mapped to the same PDB IDs but possess different chain
IDs, we found 50 protein pairs with crystal structures that
contain cooperative-domain pairs identified by our
approach (t-test value is significant by comparing with
randomly generated domain pairs).

Figure 2 shows cooperative domains in a complex crystal
structure formed by physical interactions of proteins
P02994 (ORFs: YBR118W, YPR080W) and P32471 (ORF:
YAL003W), where P02994 has three domains and
P32471 has one domain PF00736. This complex is also
included in the complex database PROTCOM [27]. Inter-
acting protein pairs and their Pfam domain annotations
are described in this figure. Clearly, EF-1 guanine nucle-
otide exchange domain PF00736 in P32471 has interac-
tions with all of the domains in P02994. These
interactions are verified by the binding sites of PF00736
with the domains in P02994. The cartoon of crystal struc-
ture illustrates that all cooperative-domain interactions in
(P02994, P32471) are correctly identified and supported
by the interfacial residues involved in the interaction. The

interfacial residues are picked out by a simple rule, i.e.
their C  atoms are within the distance threshold 10Å,
which is consistent with the more accurate computation
given in PROTCOM. This example provides an intuitive
evidence for the cooperation among domains in the inter-
action of P02994 and P32471.

Furthermore we also revealed some complexes in PDB
which are not reported by PROTCOM [27]. For example,
three domains Arm, IBB and IBN_N which belong to
Armadillo repeat superfamily form a cooperative-domain
interaction (PF00514–PF01749, PF03810), and such
multi-domain cooperation leads to the complex formed
by protein Q02821 (YNL189W) and P33307 (YGL238W)
(PDB ID 1wa5, GTP-Binding nuclear protein RAN). Gen-
erally, multiple cooperative-domain interactions in an
interacting protein pair often correspond to a more com-
plicated complex. The complete list of all the verified
cooperative domain interactions by crystal structures in
PDB and more detailed information are provided on our
web site.

Table 1: Superdomains detected by our method from MIPS protein interaction data, where GO annotations are denoted in italic

Superdomains Descriptions GO similarity

PF00488, PF05192 (1) MutS domain V, ATP binding, damaged DNA binding, mismatch repair
(2) MutS domain III, DNA metabolism

2-1-2-5-11-27-1-8-10
2-1-2-5-11-27-1
Similarity: 7

PF02775, PF00205 (1) Thiamine pyrophosphate enzyme, C-terminal TPP binding domain, catalytic 
activity, thiamin pyrophosphate binding
(2) Thiamine pyrophosphate enzyme, central domain, magnesium ion binding, 
thiamin pyrophosphate binding

1-1-2-12-1-8
1-1-2-12-1-8
Similarity: 6

PF08033, PF04810 (1) Sec23/Sec24 beta-sandwich domain
(2) Sec23/Sec24 zinc finger, COPII vesicle coat, protein binding, intracellular protein 
transport, ER to Golgi vesicle-mediated transport

PF03953, PF00091 (1) Tubulin/FtsZ family, C-terminal domain, protein complex, GTP binding, GTPase 
activity, protein polymerization
(2) Tubulin/FtsZ family, GTPase domain

PF07687, PF01546 (1) Peptidase dimerisation domain, hydrolase activity, protein dimerization activity
(2) Peptidase family M20/M25/M40, metallopeptidase activity, proteolysis

1-1-3-16
1-1-3-16-18-6
Similarity: 4

PF05000, PF00623 (1) RNA polymerase Rpb1, domain 4, DNA-directed RNA polymerase activity, DNA 
binding, transcription
(2) RNA polymerase Rpb1, domain 2, nucleus, DNA-directed RNA polymerase 
activity, DNA binding, transcription

1-1-3-39-16-3-16
1-1-3-39-16-3-16
Similarity: 7

PF08544, PF00288 (1) GHMP kinases C terminal
(2) GHMP kinases N terminal domain, ATP binding, kinase activity, phosphorylation

PF01798, PF08060 (1) Putative snoRNA binding domain
(2) NOSIC (NUC001) domain

PF02800, PF00044 (1) Glyceraldehyde 3-phosphate dehydrogenase, C-terminal domain, NAD 
binding, glyceraldehyde-3-phosphate dehydrogenase (phosphorylating) activity, glycolysis
(2) Glyceraldehyde 3-phosphate dehydrogenase, NAD binding domain, NAD 
binding, glyceraldehyde-3-phosphate dehydrogenase (phosphorylating) activity, glycolysis

2-1-2-5-11-1-4-9-1-5-1
2-1-2-5-11-1-4-9-1-5-1
Similarity: 11

PF08030, PF08022 (1) Ferric reductase NAD binding domain
(2) FAD-binding domain
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PPI prediction based on multi-domain cooperation
Test on numerical PPI data sets
In addition to identifying superdomains and cooperative
domains, our approach has a higher prediction accuracy
for protein interactions by exploiting the information of
both multi-domains and multiple organisms. In this sec-
tion, we compared LPM and APMM with the existing
methods, such as association based methods (ASNM [16],
ASSOC [11]), and EM method [12]. Among those existing
methods, the ASSOC and EM are developed for the binary
interaction data whereas ASNM can be applied to experi-
ment ratio data. We evaluated each method by fivefold
cross validation on Ito's experiment ratio data [28] and
assessed the prediction accuracy by root-mean-square
error (RMSE) (see Methods).

The performance of each method in terms of RMSE and
elapsed training time for fivefold cross-validation is sum-
marized in Table 4. In order to check the effect of cooper-
ative domains on the accuracy, here we computed RMSE
only on those protein pairs containing cooperative-
domain pairs. RMSE comparison results on all protein

pairs are given in Table IV and Table V (Additional file 1).
From Table 4 we can see that the performances of EM and
ASSOC methods on experiment ratio data are not good
since their training and testing errors are very high. ASNM
which is an extension of ASSOC has much better results
than ASSOC. LPM has a lower training and testing error
than the methods based on two-domain pairs. Table 4
also indicates that APMM has the lowest error in both
training and testing prediction of protein interactions. In
addition, there is no significant increase on the computa-
tion time when multi-domain pairs are included.

The results for Ito's dataset in five rounds are not so con-
sistent because there may exist bias in five divided subsets
due to the small size of this dataset. Another larger dataset
used for cross-validation is Krogan's confidence data [29]
(see Methods). We used this set to test if or not various
methods can correctly predict the interaction confidence
of protein pairs. The result is summarized in Table 5, from
which we can see that for the confidence prediction, our
approach (LPM and APMM) employing multi-domain
pairs again has better performance both in training and in

Table 2: Cooperative domains detected by our method from MIPS protein interaction data, where GO annotations are denoted in 
italic

Cooperative domains (Interactor I) Descriptions Interactor II Descriptions

PF00069, PF00786 (1) Protein kinase domain, ATP binding, protein kinase 
activity, protein amino acid phosphorylation
(2) P21-Rho-binding domain

PF00018 SH3 domain, in a variety of 
proteins with enzymatic activity

PF00400, PF00646 (1) WD domain, G-beta repeat, coordinating multi-
protein complex assemblies
(2) F-box domain, mediating protein-protein interactions 
in a variety of contexts

PF01466 Skp1 family, dimerisation domain

PF00439, PF00176 (1) Bromodomain, interacting specifically with acetylated 
lysine
(2) SNF2 family N-terminal domain, DNA binding, ATP 
binding

PF04433 SWIRM domain, mediating 
protein-protein interactions

PF00169, PF00787 (1) PH domain
(2) PX domain, protein-protein interaction domain, 
protein binding, phosphoinositide binding, intracellular 
signaling cascade

PF08632 Sporulation protein Zds1 C 
terminal region, suppress the 
calcium sensitivity of Zds1 
deletions

PF00069, PF00169 (1) Protein kinase domain, ATP binding, protein kinase 
activity, protein amino acid phosphorylation
(2) PH domain

PF00018 SH3 domain, in a variety of 
proteins with enzymatic activity

PF00018, PF00063 (1) SH3 domain, in a variety of proteins with enzymatic 
activity
(2) Myosin head (motor domain), myosin, ATP binding, 
motor activity

PF02205 WH2 motif, actin-binding motif

PF00806, PF00076 (1)Pumilio-family RNA binding repeat, DNA binding
(2) RNA recognition motif

PF00501 AMP-binding enzyme, catalytic 
activity, metabolism

PF02985, PF03810 (1) HEAT repeat, involved in intracellular transport 
processes
(2) Importin-beta N-terminal domain, nuclear pore, 
nucleus, cytoplasm, protein transporter activity, protein import 
into nucleus, docking

PF04096 Nucleoporin autopeptidase, 
nuclear pore, transport

PF02178, PF00271 (1) AT hook motif, DNA binding motifs
(2) Helicase conserved C-terminal domain, ATP binding, 
helicase activity, nucleic acid binding

PF00249 Myb-like DNA-binding domain, 
nucleus, DNA binding
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testing than other methods. LPM generally has less train-
ing error than APMM but its testing error is slightly higher
than that of APMM. An example to illustrate the effect of
cooperative domains on the prediction accuracy is given
in Additional file 1. We also made a direct comparison of
our approach based on two-domain pairs and multi-
domain pairs, and the results are summarized in Figure 3.
We can see that LPM based on multi-domain pairs in
training and testing has less prediction error in each round
of fivefold cross validation than LPM based on only two-
domain pairs. APMM also has such a tendency except the
first round in testing. Such results further confirm the ben-
efit of considering multi-domain interactions.

Test on binary PPI data sets from multiple organisms
Compared with single organism, data sets from multiple
organisms can provide more information, e.g. they cover
more domains. In contrast to the existing methods which
mainly use the data from single organism, LPM and
APMM can employ the data sets from multiple organisms
with the consideration of their different reliabilities. In
this section, we used binary interaction data from multi-
ple organisms collected by Liu et al. [14] (see Methods) to

compare our approach with the extended EM algorithm
[14] and validate the benefit of multi-domain pairs on
binary interaction data.

Based on the same test set and training set, it is convenient
to compare our methods and the extended EM [14]. The
training sets respectively consist of protein interactions
from single organism (yeast) and multiple organisms.
Based on yeast protein interaction dataset, we found 4556
two-domain interactions (with no-zero interaction prob-
ability), 94 superdomains, 652 cooperative domain pairs,
among which 640 pairs are strongly cooperative-domain
interactions. In the protein interaction dataset of three
organisms, we detected 34123 two-domain interactions
(with no-zero interaction probability), 259 superdomains
and 5633 cooperative-domain interactions, where 5400
are strongly cooperative. Among the cooperative-domain
interactions in yeast and three organisms, 117 pairs are
yeast-specific. With these domain interactions, the predic-
tion accuracy of protein-protein interactions is measured
by the receiver operating characteristic (ROC) curve,
which is a plot of the true positive rate (sensitivity) against
the false positive rate (1–specificity) for different thresh-

Table 3: Strongly cooperative domains detected by our method from MIPS protein interaction data, where GO annotations are 
denoted in italic

Cooperative domains (Interactor I) Descriptions Interactor II Descriptions

PF00618, PF00018 (1) Guanine nucleotide exchange factor for Ras-
like GTPases; N-terminal motif, intracellular, 
regulation of small GTPase mediated signal 
transduction
(2) SH3 domain, in a variety of proteins with 
enzymatic activity

PF00012 Hsp70 protein, involved in different 
cellular compartments (nuclear, 
cytosolic, mitochondrial, endoplasmic 
reticulum, etc

PF01466, PF03931 (1) Skp1 family, dimerisation domain
(2) Skp1 family, tetramerisation domain

PF00646 F-box domain, mediating protein-
protein interactions

PF04998, PF00623 (1) RNA polymerase Rpb1, domain 5, DNA-directed 
RNA polymerase activity, DNA binding, transcription
(2) RNA polymerase Rpb1, domain 2, nucleus, 
DNA-directed RNA polymerase activity, DNA binding, 
transcription

PF01191 RNA polymerase Rpb5, C-terminal 
domain, DNA-directed RNA polymerase 
activity, DNA binding, transcription

PF00806, PF00076 (1) Pumilio-family RNA binding repeat, RNA binding
(2) RNA recognition motif, nucleic acid binding

PF00660 Seripauperin and TIP1 family, response to 
stress

PF00036, PF08226 (1) EF hand, calcium ion binding
(2) Domain of unknown function (DUF1720), in 
different combinations with cortical patch 
components EF hand, SH3 and ENTH

PF07651 ANTH domain, phospholipid binding

PF00443, PF00581 (1) Ubiquitin carboxyl-terminal hydro-lase, 
cysteine-type endopeptidase activity, ubiquitin 
thiolesterase activity, ubiquitin-dependent protein 
catabolism
(2) Rhodanese-like domain

PF00611 Fes/CIP4 homology domain, regulatory 
processes

PF00620, PF00787 (1) RhoGAP domain, intracellular, signal transduction
(2) PX domain, protein binding, phos-phoinositide 
binding, intracellular signaling cascade

PF08632 Sporulation protein Zds1 C terminal 
region, sporulation, suppress the 
calcium sensitivity of Zds1 deletions

PF01426, PF00439 (1) BAH domain, DNA binding, involved in 
protein-protein interaction
(2) bromodomain, involved in protein-protein 
interactions

PF00076 RNA recognition motif, nucleic acid 
binding
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Cooperative domains in the complex crystal structure formed by proteins P02994 (with ORFs: YBR118W, YPR080W) and P32471 (with ORF: YAL003W)Figure 2
Cooperative domains in the complex crystal structure formed by proteins P02994 (with ORFs: YBR118W, YPR080W) and 
P32471 (with ORF: YAL003W). Protein sequences are shown using thick gray lines, and Pfam domain annotations are shown 
using colored rectangular boxes and drawn to scale (based on the Pfam database). The names of the protein sequences in this 
protein complex are listed to the upper left of the domain architecture. The identified cooperative domain pairs are listed to 
the upper right of the domain architecture. The domain names are labeled by the same color as in the Pfam domain annotation. 
The cartoon of PDB crystal structure (PDB ID: 1f60, Crystal structure of the yeast elongation factor complex) demonstrates 
the cooperative domain interactions (where domain colors are consistent with the domain annotation), i.e. domain PF00736 in 
protein P32471 interacts physically with domains of protein P02994. Other complexes in PDB containing these cooperative 
domains are also listed by their matched PDB IDs and chain IDs.
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olds. The result is plotted in Figure 4(a), from which we
can see that APMM has a higher prediction accuracy than
the extended EM algorithm on multiple-organism data.
The AUC values of APMM, EM trained on multiple-organ-
ism data and EM trained on single-organism data are
respectively 0.766, 0.701 and 0.611. This result indicates
that APMM is also effective on binary interaction data.
LPM has a similar performance as APMM which is not
shown here.

To examine the effect of cooperative domains on predic-
tion accuracy based on binary interaction data, we used
the same training set and directly compared the prediction
accuracies of APMM with multi-domain pairs and with
only two-domain pairs. The result summarized in Figure
4(b) confirms that APMM with multi-domain pairs has a
higher prediction accuracy. The performance of LPM was
also confirmed in a similar manner.

Evaluation at domain level and comparison with other 
methods
In this section, we evaluated our methods at the domain
level by comparing the predicted domain interactions
with domain interactions in iPfam [30] and the confi-
dence DDI data in InterDom [31] (see Methods). The
same data set in above section was used as training set.

The comparison results of the predicted domain interac-
tions by LPM and APMM with those in iPfam are summa-
rized in Table 6 with the significance of the overlap (p-
value) computed by comparing with randomly predicted
domain pairs (see Methods). We can see that domain
interactions predicted by our approach have a significant
overlap with iPfam and domain interactions predicted
from multiple-organism data have larger overlap with

iPfam owing to exploiting more information. Note that
the overlap proportion is not so big. This is mainly
because the amount of data in iPfam is highly incomplete
and many domain interactions do not appear in iPfam.

The comparison results of the predicted domain interac-
tions by LPM and APMM with those in InterDom are sum-
marized in Table 7 with p-values, which shows that the
overlap with InterDom is significant and the interaction
probabilities of predicted domain pairs are positively cor-
related with those in InterDom, i.e. a higher threshold
corresponds to a higher mean confidence score. In addi-
tion, when selecting the same number of top high-scoring
predicted domain interactions, the prediction result
exploiting multiple-organism data has a much higher
mean confidence score than that based on single-organ-
ism data, which is shown in Figure 5.

The domain interactions in iPfam have been used as a
gold standard set to evaluate the predicted domain-
domain interactions [17,19]. We conducted a comparison
experiment to evaluate the performance of our approach
and the methods in Riley et al. [17] and Guimeraes et al.
[19] based on the number of high-scoring domain-
domain interactions confirmed by the gold standard set.
Specifically, three methods (APMM in our work, DPEA in
[17], PE in [19]) were applied in a same training set (DIP
data, see Methods) and we checked the overlap of the pre-
dicted domain-domain interactions with iPfam by select-
ing a same number of high-scoring predicted domain
interactions. The results based on 3005 high-scoring pre-
dicted domain interactions (provided by Riley et al. [17]
and Guimeraes et al. [19]) are listed in Figure 6, where
PE(1) denotes PE approach with network reliability 60%
(LP-score  0.4, pw-score  0.1) and PE(2) denotes PE

Table 4: Comparisons of several methods in terms of RMSE and training time on Ito's dataset

EM ASSOC ASNM LPM APMM

Train
1st 0.4693 0.4537 0.0486 0.0084 0.0077
2nd 0.4810 0.4670 0.0486 0.0086 0.0079
3rd 0.4746 0.4617 0.0508 0.0071 0.0060
4th 0.4683 0.4545 0.0474 0.0076 0.0057
5th 0.4676 0.4540 0.0493 0.0072 0.0066

Average 0.4722 0.4582 0.0489 0.0073 0.0068
Time (seconds) 6.6622 0.0090 0.003 1.099 0.007

Test
1st 0.6624 0.6072 0.0743 0.0224 0.0189
2nd 0.4880 0.4938 0.0531 0.0104 0.0128
3rd 0.5670 0.5338 0.0591 0.0425 0.0427
4th 0.5848 0.5745 0.0641 0.0296 0.0271
5th 0.6417 0.6308 0.0753 0.0354 0.0307

Average 0.5888 0.5680 0.0652 0.0281 0.0265
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approach with network reliability 50% (LP-score  0.4,
pw-score  0.1). APMM(1) means APMM based on multi-
domain pairs and APMM(2) means APMM based on two-
domain pairs. From Figure 6, we can see that our method
has a comparable result with PE and a better performance
than DPEA in terms of DDI prediction. Of course, this
comparison result suffers from the incompleteness of the
data in iPfam. Compared with APMM based on two-
domain pairs, APMM based on multi-domain pairs has a
slightly smaller iPfam overlap. This is because when our
methods include multi-domain pairs, according to the
definition of cooperative domains and the rule of select-
ing variables, some two-domain pairs are replaced with
cooperative-domain pairs. At the same time, the current
gold standard set only contains two-domain interactions.
The distribution of the iPfam overlaps is shown in Figure
7 which indicates that our method can be an important
complement since there is a large proportion of predicted
DDIs not covered by other methods. Note that except two-
domain interactions, our method can also infer coopera-
tive-domain interactions.

As for identifying cooperative domains, we made a rough
comparison with Han et al.'s domain combination
approach [22,23]. Han et al. provided on their website
[32] a set of 5826 proteins based on which they listed 300
predicted domain combination interacting pairs with top
confidence. Among these 300 pairs, there are 246 two-
domain pairs, 44 three-domain pairs and 10 four and
above domain pairs. We applied our approach to the
same dataset and found 34 cooperative-domain pairs
(with interaction probability 1.0) among 500 high-scor-
ing domain interactions, 225 among 1000 high-scoring
domain interactions, and 635 among 2000 high-scoring
domain interactions. Note that in 500 high-scoring

domain interactions, the number of cooperative domains
is not more than Han's (34/500<44/300), but when the
threshold is lower, we found more cooperative domains.
This is mainly due to the difference between the defini-
tions of cooperative domains and domain combinations.
In our approach, if a two-domain pair has a stronger inter-
action, the three-domain pair in the same protein pair will
not be included as potential cooperative domains. If two-
domain pairs have weaker interactions than the corre-
sponding cooperative-domain interaction, this three-
domain pair will be considered and the two-domain pairs
will be excluded in the same protein pair. In other words,
we eliminate the redundancy between domain combina-
tions, whereas in Han et al.'s method, each domain com-
bination is included.

Discussion
In this work, cooperative domains, strongly cooperative
domains and superdomains in MIPS and DIP were
detected, and many of them were verified by the crystal
structures in PDB. Functional relations in superdomains
and cooperative domains were examined by the terms of
GO. Among the detected superdomains, we found that
two domains in most of them belong to a same family and
have similar or identical functions. Such fact is biologi-
cally reasonable because the two domains in a superdo-
main always appear together in individual proteins and
participate in interaction processes simultaneously. It is
interesting that many domains that act as superdomains
are binding domains, such as snoRNA binding, ATP bind-
ing, DNA binding, FAD-binding, NAD-binding, GTP
binding, protein binding, and Lum-binding. For coopera-
tive domains, some of them have dissimilar functions
partly because domain cooperation needs complementary
functions [33]. Cooperative domains tend to be contained

Table 5: Comparisons of of several methods in term of RMSE and training time on Krogan's yeast extended dataset

EM ASSOC ASNM LPM APMM

Train
1st 0.4156 0.4525 0.4580 0.1262 0.1359
2nd 0.4176 0.4521 0.4607 0.1248 0.1360
3rd 0.4196 0.4548 0.4615 0.1291 0.1365
4th 0.4178 0.4535 0.4585 0.1243 0.1337
5th 0.4184 0.4546 0.4602 0.1256 0.1338

Average 0.4178 0.4535 0.4598 0.1260 0.1352
Time (seconds) 2699.9 0.2000 0.1968 118.21 6.5092

Test
1st 0.5504 0.5548 0.4931 0.3967 0.3588
2nd 0.5390 0.5441 0.4906 0.3804 0.3407
3rd 0.5372 0.5407 0.4822 0.3687 0.3372
4th 0.5422 0.5364 0.4805 0.3854 0.3366
5th 0.5333 0.5291 0.4747 0.3907 0.3455

Average 0.5404 0.5410 0.4842 0.3844 0.3437
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in big complicated protein complexes. For example,
among cooperative domains with crystal structures, 72%
of (36/50) them are involved in large complexes with
more than five proteins. This fact to some extent illustrates
that multi-domain cooperation can be easily achieved in
a multi-protein complex where protein cooperation is
prominent.

Multi-domain cooperation information can be explored
to reconstruct the structure of a large protein complex.
Protein complexes are key molecular entities that inte-

grate multiple gene products to perform cellular func-
tions. Recently, tandem-affinity-purification coupled to
mass spectrometry (TAP-MS) which combines affinity
tags-based protein purification technique and mass spec-
trometry for identifying a tagged protein and its interac-
tion partners [34] has been applied to find the genome-
wide screen for complexes [29,35]. However, although
many complexes have now been identified, the detailed
interacting relationships among the components are
beyond our knowledge because only a few of them have
3D structural information. As pointed in Aloy and Russell

Comparisons of RMSE on two-domain pairs and on multiple-domain pairs for Krogan's yeast extended datasetsFigure 3
Comparisons of RMSE on two-domain pairs and on multiple-domain pairs for Krogan's yeast extended datasets. (a) The results 
of LPM on training. (b) The results of LPM on testing. (c) The results of APMM on training. (d) The results of APMM on testing.
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[36], X-ray crystallography provides atomic-resolution
models for proteins and complexes, but it is difficult for
this technique to obtain sufficient information for the
crystallization of large complexes. NMR is generally lim-
ited to proteins that have no more than 300 residues. It is
therefore necessary and timely to develop new approaches
that can reconstruct the structures of complexes based on
protein structures and their interaction relationships [37].
The detected cooperative domains in this work can be
applied to this problem by combining with docking pro-
cedures.

As an example, Figure 8 illustrates how to reconstruct the
RNA Polymerase II-TFIIS complex (PDB ID 1y1v) by our
approach at protein, domain and atomic levels respec-
tively with the following five steps. In the first step, from
the information of TAP-MS, there are total 13 different
proteins (P04050, P08518, P16370, P20433, P20434,
P20435, P34087, P20436, P27999, P22139, P38902,
P40422, P07273) in this complex as its subunits (Figure
8(a)). Then, in the second step, according to Pfam and
protein sequences, all possible domains for each protein
in terms of Pfam architectures can be obtained (Figure
8(b)). There are 30 domains involved in this complex, so
it is infeasible to clearly explain the interaction relation-
ships between domains and proteins only by two-domain
pairs (total 1435 pairs). In the third step, cooperative
domain interactions are obtained by performing our
approach on protein interaction data, which provide val-
uable information (Figure 8(c)). In the fourth step, phys-
ical interactions of those 13 proteins in the complex can

be predicted at the protein level (see Figure 8(d), where
thick lines denote the physical interactions realized by
cooperative domain interactions and thin ones are real-
ized by two-domain interactions). In the fifth step, the
interactions between protein pairs are further examined at
the domain levels based on complex structure informa-
tion. For example, by examining the domain interactions
between proteins P08518 (seven domains) and P16370
(two domains), we found that all of domains in the two
proteins cooperatively interact with other domains except
PF04566, as shown by a 3D structure from PDB in Figure
I (Additional file 1). On the other hand, it is easy to esti-
mate the interaction relations between proteins by consid-
ering cooperative domains. For example, proteins P04050
and P08518 probably have the strongest interaction
because they have many cooperative-domain interactions.
By further combining our method with a protein docking
procedure (for searching the interacting areas of domains)
[38], the detailed interactions at atomic level can be iden-
tified, which makes it possible to construct the stable and
coherent crystal structure of a complex.

Conclusion
Domains are viewed as the basic functional units of pro-
teins, and it is believed that protein interactions are
achieved through domain interactions. Most existing
methods for inferring protein interactions from experi-
mental data assume that two-domain pairs are dominat-
ing factors for protein interactions. However, like the
cooperation of several proteins in a complex, many
domains may be cooperative in achieving the interaction

(a) ROC curve comparison of APMM and the extended EM on multiple-organism dataFigure 4
(a) ROC curve comparison of APMM and the extended EM on multiple-organism data. (b) ROC curve comparison of APMM 
based on two-domain pairs and multi-domain pairs.

0 0.05 0.1 0.15 0.2 0.25 0.3
0

10

20

30

40

50

1−Specificity (%)

S
en

si
tiv

ity
 (

%
)

 

 

EM−MultiOrgs
EM−SingleOrg
APMM−MultiOrgs

(a)

0 0.5 1 1.5
20

30

40

50

60

1−Specificity (%)

S
en

si
tiv

ity
 (

%
)

 

 

APMM−−two−domain pairs
APMM−−multi−domain pairs

(b)



BMC Bioinformatics 2007, 8:391 http://www.biomedcentral.com/1471-2105/8/391

Page 13 of 20
(page number not for citation purposes)

of a protein pair. In this paper, we focus on revealing such
domain cooperation by considering multi-domain pairs
as the basic units of protein interactions. In addition, in
contrast to the existing methods which mainly use the
data from single organism, data sets for multiple species
with different reliabilities were exploited in this paper to
make full use of the available information. From the com-
putational viewpoint, this paper provides a general frame-
work based on APMM and LPM to predict protein
interactions in a more accurate manner by considering the
information of both multi-domain pairs and multiple
organisms, which can also be applied to identify coopera-
tive domains. Experiment results demonstrated that our
method not only can find superdomains and putative
cooperative domains effectively but also has a higher pre-
diction accuracy of protein interactions than the existing
methods. Cooperative domains, strongly cooperative
domains and superdomains in MIPS and DIP were

detected, and many of them were verified by the crystal
structures in PDB. Comparison experiments on protein/
domain interaction prediction confirm the benefit of con-
sidering multi-domain cooperation. More detailed results
and software can be found at our website.

Methods
Data sources
In this work, we validated our approach using several
types of experiments which employed various experiment
data sets as follows.

Binary PPI data
When we test our method for detecting cooperative
domains and PPI prediction based on multiple-organism
data, we used binary interaction data in which the infor-
mation is whether two proteins interact or not. In other
words, there is not a confidence score for each protein-

Table 6: The overlap of the predicted domain interactions by APMM and LPM with those in iPfam, where  denotes domain 
interaction probability, 'Single organism' means the training set of protein interactions is only from yeast, 'Multiple organisms' means 
the training set is from three organisms: yeast, worm and fly

Thresholds Single organism (p-value) Multiple Organisms (p-value)

APMM
 >0.1 110 (8.1e-009) 256 (8.4e-012)
 >0.2 99 (<1e-013) 202 (2.9e-011)
 >0.3 61 (9.8e-010) 149 (<1e-013)
 >0.4 52 (3.2e-010) 127 (8.1-013)
 >0.5 49 (1.5e-013) 91 (3.3e-012)

LPM
 >0.1 109 (2.1e-008) 256 (5.7e-013)
 >0.2 97 (8.8e-013 201 (5.9e-013)
 >0.3 61 (<1e-013) 148(2.9e-012)
 >0.4 54 (4.4e-011) 130 (<1e-013)
 >0.5 49 (<1e-013) 93 (<1e-013)

Table 7: The overlap of the predicted domain interactions by APMM and LPM with those in InterDom, where  denotes domain 
interaction probability

Thresholds Total domain pairs InterDom overlap (p-value) Mean significance

APMM
 >0.1 26407 8085 (8.0e-012) 75.3815
 >0.2 16798 5834 (1.9e-011) 96.3991
 >0.3 9416 3749 (<1e-013) 124.9704
 >0.4 7582 3125 (1.5e-012) 140.3715
 >0.5 4349 1800 (<1e-013) 170.5464

LPM
 >0.1 26326 8086 (1.7e-011) 75.3558
 >0.2 16854 5844 (<1e-013) 96.6538
 >0.3 9424 3753 (<1e-013) 124.8600
 >0.4 7561 3101 (6.1e-012) 140.8661
 >0.5 4322 1788 (1.3e-012) 171.6955
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protein interaction. We collected 4103 physical interac-
tions in yeast from MIPS [4] (the version is
PPI_141105.tab, denoted as MIPS1) and identified super-
domains and cooperative domains in this dataset.

For PPI prediction based on multiple-organism data, in
order to make comparison convenient, we used the same
training data and testing data collected by Liu et al. [14].
These datasets are from yeast S.cerevisiae, worm C.elegans
and fly D.melanogaster with respectively 5295, 4714 and
20349 protein interactions. The protein-domain relation-
ships for each protein are extracted from PFAM [21] and

SMART [39]. Among these protein interaction data, only
those with domain information were used. In addition,
like in Liu et al. [14], an independent test set including the
3543 yeast physical interaction pairs in MIPS (denoted it
as MIPS2) was used as positive examples and the other
possible protein pairs, totally 6895215 pairs, as negative
examples.

For comparison experiments at the domain interaction
level, we used protein-protein interactions and protein
domain composition dataset in Riley et al. [17] and Gui-
maraes et al. [19]. This set was obtained from the DIP
database [3] and contains 26,032 interactions underlying
11,403 proteins from 69 organisms.

Numerical PPI data
Numerical interaction data are defined as opposite to
binary interaction data. It means that each protein-protein
interaction has a score to denote the interaction strength.
It includes experiment ratio data based on IST [28] and
confidence data by integrating various data sources [29].
IST (Interaction Sequence Tags) was used for decoding
interacting proteins in examining two-hybrid interactions.
Experiment ratio data based on IST mean that each pro-
tein-protein interaction is provided with the number of
IST hitting in a certain number of experiments. We con-
ducted cross-validation experiment on numerical interac-
tion data. The first set is a well known dataset– the full
data of Ito's dataset [28]. This dataset has 1586 interac-
tions with 1420 proteins containing domain information,
and provides the numerical interaction (ratio) data for
protein pairs based on the number of IST hits. The other
is Krogan's extended dataset [29]. This set has 10265 inter-
actions with 2843 proteins containing domain informa-
tion. It provides each protein interaction with a
confidence score.

The distribution of the predicted DDI overlaps with iPfam by DPEA, PE and APMMFigure 7
The distribution of the predicted DDI overlaps with iPfam by 
DPEA, PE and APMM.
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Reconstruction of DNA-directed RNA polymerase complexFigure 8
Reconstruction of DNA-directed RNA polymerase complex. (a) The RNA Polymerase II-TFIIS complex (PDB ID 1y1v) with 13 
subunits (from chain A to chain S). Every chain is one protein (shown by their UniProtKB accessions) and their complex inter-
actions form the large polymer. (b) The PfamA domain architecture for every protein. (c) The cooperative domains identified 
by our method with protein interaction pairs containing them. The red or blue colors of proteins and domains indicate their 
memberships.
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Domain sources and DDI data
The domain information for proteins was extracted from
Pfam 14.0 [21]. For MIPS1, there are total 1483 Pfam
domains involved in 2477 proteins. iPfam database [30]
contains domain-domain interactions confirmed by PDB
crystal structures. It has been used as a gold standard set
for evaluating predicted domain-domain interactions
[17,19]. In this work, 3034 domain interactions in iPfam
(December 2005 version) were used for evaluating
domain interaction prediction. In addition, InterDom
(version 1.2) [31] was also used for this purpose. It is a
database of putative interacting domains derived from
multiple data sources, ranging from domain fusions
(Rosetta Stone), protein interactions (DIP and BIND),
protein complexes (PDB), to scientific literature
(MEDLINE). InterDom 1.2 has 30038 putative domain
interactions with different confidence scores.

Protein complex and crystal structure database
Cooperative domains were confirmed using structural
data of protein complexes from PDB and PROTOCOM.
Protein sequences were mapped from Swiss-Prot/TrEMBL
database to their corresponding structure files using the
seq2struct web resource [26]. PROTOCOM [27] is a col-
lection of protein-protein transient complexes and
domain-domain structures. It provides the detailed infor-
mation about protein interactions by identifying the con-
tacted residues, presenting the number of residues on the
interface and the list of interfacial residues.

Probabilistic model with multi-domain pairs
In this section, we describe an improved probabilistic
model for protein interactions by considering the multi-
domain pairs, which is the essential basis of our method.

Assume that in the protein interactions of K species (or
data sets), there are Nk proteins in dataset k respectively

denoted by , , k = 1, , K, with M domains in

all of these proteins represented by D1, , DM . Let 

also denote a set of domains in the protein i of dataset k.

Define  to represent a protein pair ( , ) and Dm, n

to represent a domain pair (Dm, Dn). We also introduce a

symbol Dm, rn for a cooperative-domain pair (Dm - Dr, Dn)

to represent the case that domains Dm and Dr in protein

 cooperatively interact with domain Dn in protein .

Dm, rn has a similar implication. In our probabilistic

model,  is also used to represent the set of domain

pairs including all multi-domain pairs in , and  i.e.,

Let the interaction between  and  (between Dm and

Dn) be represented by a random variable  (dm, n).

Accordingly we introduce random variables dmr, n to

denote whether domains Dm and Dr cooperatively interact

with domain Dn or not. The probabilistic model [12,13]

for inferring protein interactions has two basic assump-
tions. One is that domain interactions in each protein pair
are independent. The other is that two proteins interact if
and only if there is at least one interacting domain pair in
this protein pair. In the improved model, we also make
these assumptions, but extend two-domain interactions
to multi-domain interactions. Therefore, the interaction

probability of  and  is given by

where Pr(  = 1) represents the interaction probability of

proteins  and  in dataset k, and Pr(dm, n = 1) repre-

sents the probability that domain Dm interacts with Dn.

Pr(dmr, n = 1) represents the probability that domains Dm

and Dr cooperatively interact with Dn. Pr(dm, nr = 1) has a

similar meaning. For each protein pair in (1), if there is a
cooperative interaction of domains Dm - Dr with domain

Dn in the second multiplying term, then (Dm, Dn) and (Dr,

Dn) must be excluded from the first multiplying term in

order to maintain the independence assumption; other-
wise, (Dm - Dr, Dn) should be deleted. The third multiply-

ing term for (Dm, Dr - Dn) should be checked in the same

way. Clearly, the first multiplying term represents the
effect of two-domain pair interactions while the second
and third multiplying terms stand for the effects of coop-
erative-domain interactions. In next section, we will show
how to determine those independent variables.

Note that we extend two-domain interactions only to
three-domain interactions because the cooperation
involving more than three domains is believed to be rare
compared with cases of two and three domains, though
theoretically model (1) can be further extended to four-
domain pair and above but with the sacrifice of the com-
putational efficiency. Figure 1(b) gives an example for
inferring domain interactions from protein interaction
and non-interaction data. It indicates that the classical
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probabilistic model fails to give the correct result for this
case while our model can do it by considering multi-
domain interactions.

Selection of independent variables
In order to make the variables of model (1) independent
with each other, we will delete dependent variables
among dm, n, dmr, n and dr, n according to the following strat-
egy. Define

where Imn is the number of interacting protein pairs in the
training set that contain domain pair Dm, n, and Nm, n is the
total number of protein pairs in the training set that con-
tain Dm, n. Rmr, n and Rr, n are similarly defined. For variables
dm, n, dmr, n and dr, n, the variable deletion strategy is
described by the following procedure.

1. If Rmr, n< Rm, n or Rmr, n< Rr, n, it indicates that the appear-
ance frequency of domain pair Dmr, n in interacting protein
pairs is not higher than those of Dm, n and Dr, n. We con-
sider that there is no cooperation between Dm and Dr in
their interacting with Dn, so we keep the variables dm, n, dr,

n and delete the variable dmr, n in (1).

2. If Rmr, n  Rm, n and Rmr, n  Rr, n, for Dm, n

• when Rmr, n> Rm, n and Imr, n = Im, n, the appearance fre-
quency of domain pair Dmr, n in interacting protein pairs is
higher than those of Dm, n and Dr, n, and furthermore, Dm,

n does not appear in any other interacting protein pair
without Dr. Hence, we consider that Dm and Dr are coop-
erative when interacting with Dn, and thereby the variable
dm, n is deleted, but the variable dmr, n is kept in (1);

• when Rmr, n = Rm, n and Imr, n = Im, n, it means that Dm and
Dr always appear together in individual proteins. Hence,
Dm and Dr are considered as a superdomain and can be
merged to one. For such a case, we delete variable dm, n but
keep the cooperative-domain pair dmr, n.

The operations are performed in the same way for Dr, n.
For the case of Figure 1(b), variables for all domain pairs
except (D1 - D2, D3) are deleted based on this procedure.

Obviously, the above operations do not cover the case Rmr,

n  Rm, n and Imr, n< Imn. For this case, we cannot determine
if or not there is a cooperative effect of domains Dm and Dr
on their interacting with domain Dn since Dm, n also
appears in the interacting pairs without Dr, thereby we
keep all of them. This may affect the assumption of inde-
pendence, but there are few such cases. For example, for
the date set MIPS1, among 22325 multi-domain pairs,

there are only 85 such cases. Hence, by the above variable
deletion operations, the assumption can be primarily sat-
isfied. In the following formulation, all the variables
appearing in the formula are those kept after the deleting
strategy, whereas the probabilities of all deleted variables
are set to be zero. Note that, in contrast to the appearance
frequency or interaction strength for selecting cooperative
domains, the two domains in a superdomain are deter-
mined based on their co-occurrence, and the cooperativity
are also indirectly confirmed by their identical or similar
functions from GO annotations.

Inference of domain interactions
Linear programming with multi-domain pairs

Before predicting protein interactions, we need firstly to
infer domain interactions from multiple datasets. Owing
to experiment noises, each protein interaction dataset has
a false positive rate fpk and a false negative rate fnk·fpk =

Pr(  = 1|  = 0), fnk = Pr(  = 0|  = 1). where  = 1

if the interaction between proteins  and  is observed

in the dataset and  = 0 otherwise. Thus the probability

that proteins  and  in dataset k are observed to be

interacting in the experiments is related with the real
interaction probability in the following way:

The parameters fpk and fnk can be estimated from experi-
mental data in a similar way as that in Liu et al. [14].

With the basic probabilistic model (1) and the formula
(3), we have

Pr(  = 1) when two proteins ( , ) interact and 0

otherwise in the binary PPI data. For numerical interac-

tion data we can set Pr(  = 1)as the ratio of interactions

between proteins  and  in a series of experiments.

Note that the left side may be greater than 1 due to the
incomplete interaction information in binary experiment
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ln(1 - Pr(dm, nr = 1)) and . By

the similar technique adopted in Hayashida et al. [16],
then the above equalities can be written as

This is a set of linear equalities. If we can find xm, n, xmr, n
and xm, nr (xm, n  0, xmr, n  0 and xm, nr  0) satisfying (5) for
all observed protein interaction data, the domain interac-
tion probabilities Pr(dm, n = 1), Pr(dmr, n = 1) and Pr(dm, nr =
1) fully consistent with the training data can be obtained.
However, it is usually impossible to satisfy all constraints
owing to the noise and incompleteness of experimental
data. In such a case it is natural and reasonable to mini-
mize the total error with respect to L1 norm. Therefore we
can obtain the following Linear Programming with Multi-
domain pairs (LPM):

where  is the error for each equality of (5). Model (6)

can be solved by any standard LP technique (see Addi-
tional file 1).

Solving (6), we can obtain a set of interaction probabili-
ties for domain pairs. Then, new protein interactions can
be predicted by these inferred domain interactions
through the probabilistic model (1).

Association probabilistic method with multi-domain pairs
Numerical experiments show that LPM performs well, but
is computationally expensive for large scale problems.
Therefore, we introduce a faster probabilistic method
based on statistics. This method is based on a generaliza-
tion of Association Probabilistic Method [13] with multi-
domain pairs (APMM). It estimates the interaction proba-
bilities of multi-domain pairs in the following way:

where | | represents the number of multi-domain pairs

in , and  is the observed interaction probability

between  and  in the experimental data after consid-

ering the false positive and false negative rates. Note that
the deleted variables are not counted. From these formula,
we can see that all domain pairs have an equal opportu-

nity to contribute the interactions between  and  for

| | > 1 under the independence assumption for domain

interactions. With these interaction probabilities of
domain pairs, we can predict whether a pair of proteins
interact or not by the formula (1). The computation of
this method is much simple and thus highly efficient. In
addition, it does not require any parameter tuning.

Evaluation measures
We validated our method using several types of experi-
ments with different criteria. For computing the similarity
of GO annotations [40], we adopted a simple method
used successfully in Chen et al. [41] and Wu et al. [42]. In
this method, known proteins are assigned with functional
annotations by a GO Identification (ID). According to the
hierarchical structure of GO annotations, each GO term
corresponds to a numerical GO INDEX. The more
detailed level of the GO INDEX, the more specific is the
function assigned to a protein. The maximum level of GO
INDEX is 14. The function similarity between proteins Px
and Py is defined by the maximum number of index levels
from the top shared by Px and Py. The smaller the value of
function similarity, the broader is the functional category
shared by the two proteins. The details can be found in
Chen et al. [41].

For protein interaction prediction on numerical PPI data,
we use root-mean-square error (RMSE) to measure the dif-
ference between the observed probability values and the
predicted probability values:
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where P denotes a set of protein pairs (training set or test-
ing set) including interactions and non-interactions. Non-
interacting protein pairs may be those not appearing in
the observed interaction data or those whose interaction
probabilities are below a threshold.

For protein interaction prediction on binary PPI data, we
use sensitivity and specificity to evaluate the performance
of a method. Specifically, given a set of interacting protein
pairs as positive set and a non-interacting protein pair set
as negative set, sensitivity and specificity (denoted by SN
and SP) are respectively defined as

where the number of true positives (TP), true negatives
(TN), false positives (FP) and false negatives (FN) are esti-
mated with respect to the given test set.

The evaluation of the predicted domain interactions in
this work is based on the overlap with the gold standard
set iPfam. We adopted binomial cumulative distribution
function to compute the significance of the overlap (p-
value) by comparing with randomly predicted domain
pairs:

where n denotes the total number of the predicted
domain interactions and N denotes the overlap of the pre-
dicted domain interactions with the gold standard set. p
represents the probability that a randomly predicted
domain pair is in the gold standard set. This measure char-
acterizes the significance of an overlap.
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