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Abstract
Background: In a recent report the authors presented a new measure of continuous entropy for
DNA sequences, which allows the estimation of their randomness level. The definition therein
explored was based on the Rényi entropy of probability density estimation (pdf) using the Parzen's
window method and applied to Chaos Game Representation/Universal Sequence Maps (CGR/
USM). Subsequent work proposed a fractal pdf kernel as a more exact solution for the iterated map
representation. This report extends the concepts of continuous entropy by defining DNA
sequence entropic profiles using the new pdf estimations to refine the density estimation of motifs.

Results: The new methodology enables two results. On the one hand it shows that the entropic
profiles are directly related with the statistical significance of motifs, allowing the study of under
and over-representation of segments. On the other hand, by spanning the parameters of the kernel
function it is possible to extract important information about the scale of each conserved DNA
region. The computational applications, developed in Matlab m-code, the corresponding binary
executables and additional material and examples are made publicly available at http://kdbio.inesc-
id.pt/~svinga/ep/.

Conclusion: The ability to detect local conservation from a scale-independent representation of
symbolic sequences is particularly relevant for biological applications where conserved motifs
occur in multiple, overlapping scales, with significant future applications in the recognition of foreign
genomic material and inference of motif structures.

Background
Biological sequences are the ultimate support for the
description of Biological Systems. In particular, key
aspects of sequence analysis are known to play a role in
integrated analysis of regulatory networks: for example in
motif searching and inference.

Over the last decades and more recently due to the devel-
opment of a considerable number of whole genome
sequencing projects, several efforts have been made to
mathematically model DNA sequences. In particular from
the statistical side, the use of Markov based models [1] has
widespread and proven to be effective in tackling the
problem of data mining of biological sequences, through
variable length Markov chains [2,3], interpolated Markov
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models [4], fractal prediction machines [5] for symbolic
time series based on Chaos Game Representations [6], to
name just a few. Other algorithmic approaches based on
the computational side have also proven to be useful [7].
All this effort allowed establishing important relations
between the results obtained (computationally and statis-
tically) with real biologically significant findings. From
these models developed for DNA, it is now apparent that
each genome has pervasive [8] motif and compositional
characteristics in terms of the frequencies of its constitu-
tive L-tuples or L-length motifs, which gave rise to the
genomic signature concept [9]. This fact can be directly
employed for horizontal transfer detection and character-
ization, coding vs. non-coding discrimination [8,10],
study and compare DNA through the use of composition
profiles [11] and spectra [12] and other applications
partly reviewed in [13].

In this regard and more specifically, an important statisti-
cal problem in bioinformatics that emerged is the evalua-
tion of the number of repetitions occurring in biological
sequences. More generally, they can occur in distinct hier-
archical levels, from single symbols [14] to genes. In fact,
in a recent paper, the number of gene repetitions was
shown to be a key aspect of gene expression and pheno-
type [15]. Apparently theses repetitions, not only at
nucleotide level, might play a key role in genome organi-
zation and functionality of networks. The notions of rep-
etitions, entropy and correlation in DNA are
unquestionably connected [16-18] and references therein
– the degree of predictability of a sequence, which is
closely related with its internal repetition and compres-
sion, can be measured by its entropy. The major impor-
tance of this research has provided evidence that is already
too vast to fully account for. In particular, the relation
between motif over- or under-representation is usually
related with their biological function. This creates the
need for an efficient method to analyze, for different
parameters sets, the degree or scale of each DNA region.

In a recent report [19], the authors defined a new contin-
uous measure of DNA entropy, based on non-parametric
density estimation applied to Chaos Game Representa-
tion (CGR) and Universal Sequence Maps (USM) within
the Rényi theory. The idea therein explored was that there
is a close relationship between the statistics of the
sequences, given by their constitutive motifs, and their
entropy, measured under information theory methodolo-
gies. In that report the Rényi entropy was estimated in a
global approach, and the measures obtained were com-
pared with random sequences by Monte Carlo simula-
tion. Although the main concepts were then introduced,
that report was incomplete in the sense that just a global
analysis was conducted. Specifically, no exploration of
local patterns and fine tuned neighboring analysis was

conducted, which is finally allowed by the present work,
with the introduction of the concept of the Entropic Profile
(EP).

Entropic profiles were defined previously but in a differ-
ent context and scope: they were estimated using the his-
tograms of the L-mer or L-tuple frequencies in DNA [20].
In that report the authors could discriminate between ran-
dom and natural DNA sequences using the Shannon
entropies of the histograms obtained from the CGR for
different resolutions or oligomer lengths. Although the
same name was used, that previous endeavor focused on
a global perspective of sequence entropy [19] whereas this
report proposes and investigates a local entropy formula-
tion instead. In fact, the results obtained by Oliver and
colleagues are global features for each DNA sequence, dif-
ferent from the present proposal of local based informa-
tion per position/symbol. Another type of sequence
profile also explored was based on linguistic complexity
[21] and low entropy DNA zones [22].

In the present report the definition of entropic profile
arises from the direct estimation of a local density, derived
from the Parzen's window method described before. In
our last report this estimation allowed the calculation of a
global entropy measure, according to the Rényi defini-
tion. This report describes the next logical step of explor-
ing complementary methods to access local information
as to identify the location and composition of the con-
served sequence which existence might have been antici-
pated from the global measures of entropy. The rationale
is to have a function that assesses, for each position in the
sequence (illustrated here for DNA), the information con-
tent of L-tuple suffixes directly from the density kernel
function estimate. Such a solution should enable the
scale-independent extraction of motifs without the need
to identify complex state automata for unit succession.

In addition to our preceding report on Rényi entropy for
global characterization of sequences, the study reported
here also builds on the identification of a kernel function
that produces a more accurate density estimation in CGR/
USM projections of symbolic sequences [23]. The more
conventional use of symmetrical functions as we did with
a Gaussian Parzen kernel produces a rough fit to the char-
acteristically fractal nature of iterative map projections.
That approximation did suffice for assessment of global
entropy [19] but it is not refined enough for the intended
density estimation resolved locally at the sequence unit
level.

Future applications of the methodologies here proposed
might include motif inference and extraction, providing
tools for the construction and inference of generalized
sequence models for whole genomes.
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Results and Discussion
This section presents some entropic profiles calculated for
the DNA sequences described below. The relation
between this values and former results is also investigated.
Additionally, the influence of the parameters on the pro-
files is discussed.

DNA sequence dataset description
For sake of clarity this report uses the same dataset previ-
ously studied [19], thus allowing a comparison of results,
in the continuity of the former proposal. In particular, the
results for a subset of those sequences with known present
motifs will be shown and extensively studied. In order to
further test the estimation of the profiles to more chal-
lenging datasets, the analysis of whole genomes is also
included. More specifically, the detection of Chi
sequences in Escherichia coli and Haemophilus influenzae
will be assessed. These genomes have been extensively
analyzed after the completion of its DNA sequencing
projects, thus constituting an excellent dataset to test new
procedures. In particular, several important motifs have
been studied elsewhere and can be compared directly with
the proposed method. The following Table 1 recalls the
DNA sequences examined.

All the datasets and additional information are available
in the webpage referred to above.

Entropic profiles and parameters optimization

The tests consisted on calculating the entropic profiles

(EP) for different combination of parameters L and φ and
check for particular features. The use of artificial DNA
allows the accurate study of the impact of the parameters
on the profiles obtained. The results can be directly
obtained by using the deduced formulae of Equations 5

for L, φ (xi) and their corresponding normalized values

L, φ (xi) (Eq.3), after specifying the parameters (see Meth-

ods and online software).

The results presented in this section are focused on the
analysis of specific positions, known to be important and/
or contain statistical significant motifs as suffixes. For
example, Figure 1 represents the profiles obtained for the
sequence m4 with the motif 'ATCG' implanted. This motif
was implanted n = 20 times at equally spaced positions p
= 50+i100, i = 1, ..., 20 (see details in [19]). By studying
one of the positions where this suffix ends (as an illustra-
tive example p = 353 was chosen), one immediately
assesses for which combination of parameters L and φ the
maximum values of the profiles is obtained. In this case
this maximum is achieved with L = 4 and φ approximately
of 1 (one might further search this parameter space con-
tinuously in order to optimize φ but this is not pertinent
in this explanatory step).

As seen from the Figure 1a) and 1b), there are parameter
combinations for which that particular position/suffix is
highlighted, with normalized density values way above
alternative choices. It was not by chance that the maxi-
mum was attained at L = 4, since this is precisely the
length of the suffix highly repeated, so Lmax ≥ 4 was
expected to be a local maximum of EP.

In the other panels of Figure 1 the entropic profile for the
complete sequence is plotted, using the parameters previ-
ously optimized for the chosen position (p = 353). These
plots allow the overview of all the sequence using local
information obtained for a specific putative important
suffix and, in fact, using this combination of parameters
one immediately recovers all the positions where the
known motif appears, which are simply the peaks on the
graph. Panel d) shows a detail of the EP (from position
300 to 400), clearly illustrating the position where the
implanted motif "ATCG" ends, with a density local maxi-
mum around EP(353) = 3.9. The expected number of
counts under a first-order Markov Chain model would be
10.7 (p-value = 0.0027, z-score = 2.78).

In Figure 1e) and 1f) is also shown the corresponding
density estimations on the CGR map for two distinct

f̂

ĝ

Table 1: DNA sequence dataset used in this report.

Name Sequence description Length [bp]

m3 random with inserted motif L = 3 'ATC' 2000
m4 random with inserted motif L = 4 'ATCG' 2000
m5 random with inserted motif L = 5 'ATCGA' 2000
Es experimental promoter regions of B. subtilis 2000
Ec Escherichia coli K12, complete genome [GenBank:NC_000913] 4639675
Hi Haemophilus influenzae Rd KW20, complete genome [GenBank:NC_000907] 1830138

The artificial sequences m3, m4 and m5 are obtained by generating random DNA (with symbol emission probabilities pA = pT = pC = pG = 0.25) and 
subsequently implanting the motifs described (respectively 'ATC', 'ATCG' and 'ATCGA') in specific positions. The sequence Es corresponds to the 
concatenation of real DNA from 20 promoter regions of Bacillus subtilis [45, 46], with known consensus structured motif TTGACA-(space)-TATAAT 
with at most one point mutation or substitution. The sequences Ec and Hi are the complete genomes of Escherichia coli and Haemophilus influenzae 
extracted from NCBI GenBank.
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Entropic profile (EP) for sequence m4Figure 1
Entropic profile (EP) for sequence m4. Artificial DNA sequence with implanted motif "ATCG" in positions 
[50i...53i+100], i = 0, ..., 19 (see Table 1). Several parameter combination L and φ are presented, and the corresponding EP val-
ues are plotted a) as a function of L for several φ and b) as a function of φ (for the same L values). The maximum values of nor-
malized estimations g vary along the positions. In this example, position 353 corresponds to the last symbol of one (randomly 
chosen) occurrence of motif ATCG, and its EP attains a maximum value for L = 4 and φ = 1, with more than 3.5 standard devi-
ations from the mean densities (EP θ(353) = 3.8). c) and d) The complete profile for these parameter values, showing the peaks 
on the implanted suffix ATCG. The most representative parameter values are plotted. e) and f) The CGR densities obtained 
from the profiles using the fractal kernel described.
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parameter sets. Comparatively with the Gaussian function
this kernel is better adjusted to the CGR square-based
geometry and presents a more clear-cut profile, as
expected. The darker squares correspond precisely to the
implanted motif sub-quadrants.

The following figures present the same results obtained
with the other datasets under study.

In Figure 2 the same pattern occurs, with maxima EP(393)
= 3.8, obtained for L = 3, again the implanted motif
length. It should be mentioned that occasionally, for
some positions where the motif "ATC" appears, the

maxima occurs for a value L > 3. This can also happen and
simply means that longer, non-implanted motifs
appeared more often that would be expected by chance –
in this case "ATC" is embedded in a longer significant
motif, i.e. is contained in a longer string with potential
significance. Interestingly, when plotting all the EP for the
sequence using L = 3, one obtains additional, non-
implanted motifs, which occurred just by chance – extra
peaks with non-equal spacing in Figure 2c) and 2d). In
fact, the probability of one specific motif of length 3
(under a null model of symbol equiprobability) is 4-3,
which implies, for a sequence of 2000, that the expected
number of counts is roughly equal to 31. This simply

Entropic profile (EP) for sequence m3Figure 2
Entropic profile (EP) for sequence m3. Artificial DNA sequence with implanted motif "ATC" in positions [30i+1...30i+3], i 
= 1, ..., 66 (see Table 1). Same analysis conducted. See legend of Figure 1.
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means that the motif already existed in the random
sequence m3 before the implantation took place. The
detail graph – Fig. 2d) – shows precisely these "extra"
appearances. If one uses a first-order Markov chain model
as previously the expected number of counts becomes
60.08 (p-value = 2.8E-10, z-score = 6.2).

A similar interpretation can be made regarding sequence
m5: the positions where the suffix "ATCGA" appears have

maximal values  (x) for L = 5, although with high values

in the range L = 4 to L = 7, which indicate nested signifi-

cant motifs. The entropic profile for the complete 2000
base-sequence shows the maxima of the equally spaced
motif (see Fig. 3), where it is noticeable an extra peak that
corresponds to a previously existing motif ATCGA (end-
ing at position 729).

By spanning the parameters space (L, φ) it is possible to

find maximum values for  (x). For example, in specific

positions 854 one finds out that  attains a maximum

value for memory L = 5 and φ ≥ 10 with EP(854) = 7.1, a

ĝ

ĝ

ĝ

Entropic profile (EP) for sequence m5Figure 3
Entropic profile (EP) for sequence m5. Artificial DNA sequence with implanted motif "ATCGA" in positions 
[50+100i...54+100i], i = 0, ..., 19 (see Table 1). Position analysis for sequence m5, analogous to those conducted previously. See 
legend of Figure 1.
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high relative value. By using these optima in the EP one
obtains a profile that highlights immediately the suffixes
where the highly repeated motif appears. Some other
maxima appears sometimes (results not shown), but were
discovered to correspond to other interpretable extreme
values. The expected number of counts for this motif is
just 3.07 that, comparing with the observed 21 occur-

rences, gives a p-value≈0 (z-score = 10.02).

Finally, Figure 4 shows part of the results for the real DNA
sequence in the position corresponding to the ending of
the TATA box (motif = "TATAAT"). The graph for this posi-
tion shows precisely that L = 6 is an interesting scale to
search for. The EP, in contrast to the former ones, does not
exhibit a clear trend. In fact, differently to the former
sequences, which were artificially generated and pre-
sented non-degenerate highly conserved motifs, the real
DNA exhibits several point mutations that introduce
some "noise" in the estimations. When plotting the com-
plete profile for this sequence and observing one detail it
is possible to recover the complete structured motif,
known to bind to specific transcription factor binding
sites, with values EP(TATAAT) = 4.3 and EP(TTGACA) =
3.6. It should be stressed however, that these results are
biased towards the sequence itself: in this particular case,
the concatenation of the promoter regions of B. subtilis
provided a set with conserved motifs, at least to the point
where they could be detected by density estimations. Of
course, if non-conservation is allowed up to a higher level,
the EP becomes noisier and eventually the signal will be
lost, hampering the recovering of any significant motif if
no pre-processing correction is performed. The analysis
based of Markov chains gives for the TATAAT motif an
expected number of counts of 1.60 (p-value≈0, z-score =
10.38) and 0.94 for TTGACA (p-value≈0, z-score = 9.54).
The most common motif EP(AAAAAA) = 5.4 is highly
periodic which explains the peak, although under a
Markov chain it is expected to occur 11.67 (p-value =
0.1245, z-score = 1.15).

The two last datasets are constituted by whole genomes
from two Gammaproteobacteria: Escherichia coli K12 and
Haemophilus influenzae Rd (see Table 1 for NCBI GenBank
accession numbers).

The study of the regions where Chi sequences appear will
be analyzed in both genomes. Chi (crossover hotspot
instigator) sites are homologous recombinational hotspot
octamer sequences which modulate the exonuclease activ-
ity of RecBCD. This enzyme is necessary for chromosomal
dsDNA repair and integration of exogenous dsDNA,
which supports the idea that Chi sites have a biologically
functional role [24].

Since Chi motifs are orientation-dependent and strand-
specific, the sequence to be analyzed should be previously
processed to comply with this property. This means that
one should extract the whole genome and use the DNA
sequence from the origin of replication up to the terminus
plus the reverse complementary sequence, since chromo-
some replication in bacteria start from one replication ori-
gin (oriC) and proceeds bi-directionally until the
replication forks reach the termination site (terC). These
pre-processed genomes will conform the 5'->3' direction
of replication and therefore will be used throughout the
analysis. The oriC and terC positions (referred to the
NCBI GenBank database) have been estimated based on
experimental data and asymmetric properties [25] and are
specified in Table 2.

Chi sequences (see Table 2) are statistically overrepre-
sented in the genome of E. coli (5'-GCTGGTGG-3'),
appearing more often than would be expected by chance
whereas in H. influenzae (5'-GNTGGTGG-3' and 5'-GST-
GGAGG-3' show Chi activity) they are known to be less
frequent and less conserved. This makes for two different
datasets with distinct features that involve a different
degree of difficulty to detect these regions.

The study of Chi sites have been subject to many analyses
and therefore constitute an excellent test dataset to assess
the strength of the entropic profile approach to detect
these motifs. In particular several recent papers have
assessed its statistical significance using Markov models
[1], analyzing the 8-tuple frequency for the whole genome
of E. coli [26] and also comparing Chi site conservation in
both organisms [24].

The expected number of an 8-tuple in E. coli and H. influ-
enzae using a Markov model of order 0 (only nucleotide
abundance is taken into account) is respectively 70.796
and 27.926. One immediately sees that in E. coli this motif
is highly represented whereas in H. influenzae this fact is
less evident.

Interestingly, when analyzing whole genomes, several
motifs appear with p-values near 0, i.e. they occur in
exceptionally high number when considering a Markov
chain model. This fact does not allow their accurate com-
parison and is a major drawback of using solely the p-val-
ues to assess the statistical significance and correctly
compare and order the relative importance of these
motifs. Therefore, as explained in the Methods, the nor-
malized z-scores are also reported for clarity.

For example, using a first order Markov Chain model the
expected number of counts for the chi-sequence in E. coli
and H. influenza is 85.06 and 12.34 respectively. Although
this motif has a p-value≈0 for both sequences, the corre-
Page 7 of 19
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sponding z-score of 73.37 and 12.43 respectively puts it in
different ranks among all motifs of the same length.

When analyzing one (random) position where Chi
sequence ends in E. coli (exactly in the same way as the
previous analysis) the following profiles are obtained
(Fig. 5). The position p = 35840 shows that the maximum
EP values are obtained for parameters (L = 8, φ = 10) and

(L = 9, φ = 5), for which the profiles attain similar values
of EP = 8.04 and EP = 8.08 respectively. For L = 7 the motif
also appears relevant. The complete profiles for that
region are plotted in the panels c) and d), showing strik-
ing and evident peaks at the positions where Chi
sequences end. The other local maximum corresponds to
a chi-related sequence (GCGCTGGC), which in fact shares
the 5-mer GCTGG. Indeed, the family containing the

Entropic profile (EP) for sequence Es of the promoter regions in B. subtilisFigure 4
Entropic profile (EP) for sequence Es of the promoter regions in B. subtilis. The peaks in the EP correspond to the 
structured motif TTGACA-TATAAT. This particular position is well conserved so that the motif is easily detected. Other 
positions where the motif is degenerated do not exhibit a similar conservation and clear profile. The highest peaks in panel c) 
correspond to the motif 'AAAAAA', which is repeated more often in the sequence than the previous ones. The overlapping 
capacity of this motif can partially explain this behavior.
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trimer CTG, often within the pentamer GCTGG, is very
frequent in this genome [27], all with p-values≈0 and
highest scoring ranks

When analyzing the genome of H. influenzae and studying
one particular position where motif 5'-GGTGGTGG-3'
ends (in the example, p = 36532), the following Figure 6
is obtained.

From Figure 6a) is it possible to see that the maximum EP
= 0.1252 is obtained for parameters (L = 8, φ = 10), a rel-
atively low value when compared with the previous exam-
ples so far. Interestingly other peaks exhibit a period of 3
(L = 3 and L = 6) – the motif TGGTGG repeats every 3 and
6 bases and therefore that property is patent in the graph
(Figure 6a) through the appearance of this local maxima
every 3 bases. When using the above parameters to plot
the entire profile one immediately sees that other posi-
tions of extremely high significance appear. This is the
case of the 8-tuple motifs AAGTGCGG and AGTGCGGT,
which corresponds to EP(36549) = 11.1281, p-value≈0, z-
score = 174.80, and EP(36550) = 9.7819, p-value≈0, z-
score = 186.20, marked in Figure 6d). These motifs appear
867 and 770 times in the genome, which makes them the
most common 8-tuples, along with CCGCACTT (820
times; EP = 10.4869, p-value≈0, z-score = 184.47), ACCG-
CACT (755 times; EP = 9.5784, p-value≈0, z-score =
210.81) and AAAGTGCG (699 times; EP = 8.8696, p-
value≈0, z-score = 97.35), using the same parameters.

As expected, the Chi sites are not detected solely based on
EP maximization. In fact, the motif is not especially over-
represented when compared with all the others, so it
would be impossible to detect based solely on the raw
entropic profiles. Furthermore and evident from the fig-
ures, the H. influenzae genome has one extremely ubiqui-
tous 9-tuple motif, the extensively studied uptake signal
sequence (USS+) AAGTGCGGT (appears 740 times) and
its inverted complement sequence (USS-) ACCGCACTT
(731 times) with a total number of 1471 occurrences.

Their p-values≈0 and their extremely high z-scores of
293.28 and 329.74, puts them in the first rank positions
of exceptionality. Furthermore, all the motifs present
among the first 25 highest scoring positions greatly over-
lap USS sequences [1].

USSs are involved in natural competence, which is a geneti-
cally controlled form of horizontal gene transfer in some
bacterial species, related to their ability to take up DNA
from the surrounding environment (reviewed in [28]).
This process allows genetic exchange in bacteria, which is
the only organism known to actively take up DNA from
the environment and recombine it into their own genome
[29]. The DNA uptake machinery on the cell surface pref-
erentially binds and takes up fragments containing this
specific short sequence. In particular H. influenzae is able
to take up double-stranded DNA of its own species and
closely relatives, facilitated through the recognition of
USS, which are indeed over represented in its genome.

One interesting statistical aspect of the USS distribution,
besides its extremely over-representation, is that these
sequences appear equally partitioned in both strands and
are remarkably and significantly evenly spaced around the
chromosome [30]. They can be constituted by the 9 bp
core referred to but allowing a longer 29 bp consensus.
The USS evolutionary origin and function was recently
addressed [31] by confronting two models, preference
first hypothesis and a molecular drive hypothesis. Never-
theless this issue remains controversial [32].

Through the analysis of H. influenzae complete genome
conducted above one obtains peaks on the entropic pro-
files precisely at these ubiquitous motifs, which definitely
obscures the retrieval of Chi sequences, whose number of
occurrences is not at all comparable with USS frequency.

In fact, the profile obtained for the maximum values (L, φ)
shows that the Chi sequence (with G) attains a maximum
entropic density value of 0.12, which is way below the

Table 2: Description of Chi sites in E. coli and H. influenzae genomes.

Genome Chi sequence Nr. occurrences

E. coli 5'-GCTGGTGG-3' 761
oriC – 3,923,500 (bp)
terC – 1,588,800 (bp)
H. influenzae 5'-GGTGGTGG-3' 77
oriC – 603,000 (bp) 5'-GCTGGTGG-3' 56
terC – 1,518,000 (bp) 5'-GTTGGTGG-3' 63
5'-GNTGGTGG-3' 5'-GATGGTGG-3' 28
5'-GSTGGAGG-3' 5'-GGTGGAGG-3' 11

5'-GCTGGAGG-3' 7

The number of occurrences of Chi motifs in the genomes shows that they are overrepresented in E. coli (761 occurrences) but not in H. influenzae 
(maximum of 77 occurrences).
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detection level when compared with the value obtained
for USS which was equal to EP(AGTGCGGT) = 9.78 and
EP(AAGTGCGG) = 11.13. This phenomenon is well
understood, and some authors name it "contamination"
[1]: the highly overrepresented expressed motif contami-
nates the calculation of low expressed segments. The pro-
gram R'MES [33] lists precisely USS motifs and their
variants showing this behavior. One idea to assess the sta-

tistical significance excluding this bias is to delete, from
the original sequence, the regions/positions where this
ubiquitous 9-tuple appears [1]. This is approximately
comparable to perform exact Markov calculations and
therefore can be used to further study the sequence. The
obtained values for the transformed sequence were never-
theless very low around EP = 0.16 (results not shown).
After investigation what might be happening it was found

Entropic profile (EP) for sequence Ec – complete genome of EE. coliFigure 5
Entropic profile (EP) for sequence Ec – complete genome of E. coli. a) and b) Analysis of position 35840 (from the 
beginning of replication). c) and d) Detail for positions 35800 to 35900. The peaks in the EP correspond to the Chi sequence 
motif 5'-GCTGGTGG-3'. This particular position is well conserved so the motif is easily detected.
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that other motifs emerged even when USS were all deleted
from the genome.

For example, the 8-tuple AAAATTTT (p-value→1, z-score
= -10.70) appears with high EP values, along with other

motifs constituted by long successions of A's and T's.
These long adenine-thymine tracts, previously detected
for other organisms such as Yeast [34,35], might have an
important role due to their strong DNA bending proper-
ties [36]. Although the detection of Chi sites failed, other

Entropic profile (EP) for sequence Hi – complete genome of H. influenzaeFigure 6
Entropic profile (EP) for sequence Hi – complete genome of H. influenzae. a) and b) Analysis of position 36532 (from 
the beginning of replication). c) and d) Detail for the EP for positions 36200 to 38200 and 36500 to 36600. The highest peaks 
in the EP correspond to uptake signal sequences (USS+) 5'-AAGTGCCGGT-3', its reverse complement (USS-) 5'-ACCG-
CACTT-3' and related motifs, such as AGTGCGGT and AAGTGCGG. The Chi sites are not particularly well conserved nei-
ther overexpressed [24] and therefore are not easily detected with this approach.
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motifs emerged that have notable biological functions
and roles in the cell.

This effort highlight an important possible procedure, to
be explored further, that one should plot the motifs hier-
archically and delete the influence of more ubiquitous
motifs that highly "pollute" the calculations, starting from
the most exceptional. In fact, from the profile information
we could further envisage an algorithm that automatically
extracts putative motifs for each position. This is accom-
plished by searching the parameters space for which the
estimation is maximal for position i:

and then use these parameters to retrieve the suffix

.

Using this methodology one obtains precisely the
implanted motifs of the previous datasets. As an example,
the "TATA"-box referred to before is correctly inferred and
also the above mentioned examples with the artificial
sequences (Figure 7).

It should be stressed however that this is not the most con-
venient procedure for motif inference problems since sev-
eral algorithms already exist that perform these searches
very efficiently. Nevertheless is interesting to find that
combinatorial and probabilistic methodologies are com-
parable as the latter come with broader opportunities for
theory development albeit leading to advantageous
numerical solutions. The observation that there is a close
relationship between the overrepresentation, detected by
the majority of the algorithms, and the proposed Entropic
Profiles with its density and statistical significance meas-
ure suggests that it could provide a way of simultaneously
finding and statistically classifying the motifs instead of
pursuing the two goals separately.

The analysis also showed that the statistical significance z-
scores and p-values are unequivocally related with the
entropic profiles, since most of the algorithms detected
the same motifs. Over-represented motifs exhibit a very
low p-value, very near zero, and high z-scores and EP val-
ues; common motifs, that appear a median and/or
expected number of times, have high p-values and low z-
scores, which indicate its non-exceptionality under the
Markov chain model considered. These are the motifs that
also attain low EP values. The full correspondence
between both methods is still under study.

By expressing the density estimation as a function of the
suffix counts, one is also allowed to search for under-rep-

resented segments, i.e., those whose density is below aver-
age. Although not explored in this work, minimum
entropic profile values might also play a role in under-rep-
resented motifs detection. In fact, rare motifs/substrings
are known to correspond to traits/regions with very spe-
cific functions in high precision biological processes. The
use of unique sub-strings, or UniMarkers, that appear only
once in the genome, recently allowed to locate single
nucleotide polymorphisms (SNP's) [37,38]. These unique
substrings were shown to be clustered close to genes [39].
All these positions can be detected as low-density areas in
the CGR and consequently correspond to local minima in
their Entropic Profiles. Another example also related with
low-density points is related with 6-tuple palindromes.
These short sequences, which often correspond to restric-
tion sites, are under-represented in E. coli and in the bac-
teriophage lambda [1,40], thus providing a self-protecting
effect. More generally this methodology can be used to
find heterogeneous traits in the genome, both related with
local under- and over- representation of motifs. This result
can indicate the presence of foreign material which can
have significant applications in the detection of horizon-
tal transfer [11].

Conclusion
In this report, Entropic Profiles (EP) were proposed as a
novel local information entropy measure for DNA
sequences. This function is built on previous work on con-
tinuous Rényi quadratic entropy where the Parzen win-
dow method was applied to the non-parametric density
estimation of the Chaos Game Representation/Universal
Sequence Maps (CGR/USM) of a sequence. Subsequently,
the estimation was decisively refined to the accuracy that
the determination of local entropy requires. This advance,
reported elsewhere, introduced a two-parameter fractal-
based kernel, instead of Gaussian functions, which is
more adequate to the geometry of the CGR domain.

The Entropic Profiles proposed here assess point/symbol
normalized deviations from a mean composition signa-
ture. EP calculation was based on a density estimation
value per position, thus depicting local sequence informa-
tion related with the statistical significance of a motif,
measured as its global over- or under-representation. Fur-
thermore, it was shown that using this kernel the EP can
be calculated independently from a particular representa-
tion. The local genome scale (or resolution) is defined by
the combination of parameters for which a particular suf-
fix emerges. Therefore, this scanning procedure identifies
simultaneously the position and the scale at with the
sequence composition is singular, by focusing and adjust-
ing the best parameters locally and then looking back to
the overall sequence. There is a strong biological rationale
for such an approach as the genome is organized to con-
serve motifs at different scales (lengths) and with varying
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stringency. The underlying hypothesis is that over- or
underrepresented motifs may be indicative of important
biological functions.

This conclusion was illustrated with the analysis of artifi-
cial DNA sequences, reference genomic datasets and also
whole genomes from E. coli and H. influenzae, where

known regulatory components and motifs were correctly
recovered – both as regards position and scale (length) of
the conserved segments. By spanning the parameter space
of this new function it was possible to study the local scale
for which a given suffix and position were implicit. This
effort highlighted the interaction between several meth-
odologies in this field. Specifically, it greatly simplifies the

Conserved motif detection and extractionFigure 7
Conserved motif detection and extraction. By searching the parameter space (L, φ) for a specific position i and finding 

the values  it is possible to extract the most significant suffix in) the entropic profile con-

text, illustrated here for the first four sequences. Each of the panels corresponds to a different sequence and position where 
the motif was correctly recovered just by using these maxima: a) m3, b) m4, c) m5 and d) Es (see also Table 1). The profiles for 
the Lmax and φmax are also shown: apparently one can obtain a non-decreasing function of the positions, which means that pre-
vious suffixes are embedded in the implanted motifs.
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exploration of fundamental relationships between dis-
tinct sequence analysis approaches and concepts such as
metrics on strings, information theory and entropy, iter-
ated function systems and statistical significance of DNA
segments, providing a common ground in kernel-based
learning theory.

The procedure proposed here is easily extendable to other
kernel function classes, which might be more adequate to
model specific traits or genomes. Future work includes the
generalization for point mutations and also dealing with
nested or embedded motifs.

The proposed entropic profiles provide promising new
tools for the study of biological sequences, allowing the
quantification of repeatability and identifying key param-
eters for which relevant features arise.

Methods
This section recalls the background work that led to the
new analysis described here and defines the main con-
cepts proposed, namely: the CGR/USM representation of
DNA sequences; the assessment of entropy in biological
sequences and definition of local Entropic Profile (EP);
the use of specialized kernel density estimation functions
and its conjugation with the EP method.

CGR/USM representation of DNA sequences and Parzen's 
method

The CGR/USM representation, introduced in [6] and gen-
eralized to higher-order alphabets in [41], allows the
mapping of a discrete DNA sequence onto �n. Formally,

the CGR mapping xi ∈ �2 of a N-length DNA sequence S

= s1 s2 ... sN, si ∈  = {A, C, G, T }, i = 1, ..., N is given by

Equation 1:

The properties and generalizations of this method have
already been studied and extensively applied as a conse-
quence to the natural development of alignment-free
techniques for sequence comparison [13,42].

As previously, the variables employed in this work will be
the USM coordinates sample points {xi}i = 1, ..., N that cor-
respond to the symbols {si}i = 1, ..., N in the original
sequence.

In particular, it was seen in the previous report that these
points could be adequately used to estimate the Rényi

entropy of the original sequence through the Parzen's
window density estimation method [43]. This is a non-
parametric technique used to estimate a probability den-
sity function f from a sample. This method is one of the
most widely used kernel-based methods and consists on

the choice of a weighting function or kernel κθ (x). The

estimation  (x) of a random vector x is a linear combi-

nation of the kernels centered in the observed sample
points ai, i = 1, ..., N, and is defined for a specific window

width τ (Eq.2):

In that former report [19] Gaussian or normal distribu-
tion functions were used in order to estimate the Rényi
quadratic entropy of the CGR of a given DNA sequence.
Due to important algebraic simplifications and properties
of the Gaussian kernel it was shown that this calculation
was obtained by using a simple potential function of the
CGR map.

Entropic profile definition

The former equations provide a natural method to extract
local information from a DNA sequence. By calculating

the values θ (xi) for each coordinate xi that represents the

ith symbol in the original sequence and parameter set θ, it
is possible to plot, for each position i = 1, ..., N, normal-

ized values θ (x) ≡ θ (x; a) of the density function esti-

mated previously, obtained as the number of standard
deviations from the mean (taking into account all the
sample points or symbols, omitted for notation simplifi-
cation):

In fact, this corresponds to extracting the local density,
estimated for each coordinate that represents a symbol in
the original sequence context. For example, if a particular
motif appears more often than what would be expected by
chance, the density estimation for that particular posi-
tion/coordinate will be higher than the average mθ.

For each parameter set θ one can define the Entropic Profile

EPθ (i) ≡ θ (xi), i = 1, ..., N, that measures precisely the

density deviations from the mean in each coordinate, or
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equivalently, in each last symbol of all the suffixes appear-
ing in the original sequence.

Therefore, these values obtained with the kernel estima-
tions are related to the statistical significance of the corre-
sponding suffix present at that particular position, since
they represent a density, which is strongly associated with
the degree of repetition of a given suffix in the sequence.

It is worth noting that the proposed entropic profiles are
a descriptive measure of local DNA properties and that a
full extensive comparison with other methods that search
for motifs and assign p-values to the results are out of the
scope of this work. Future efforts will quantitatively com-
pare these profiles with other models, e.g. Markov chain
models, to confirm for the quantitative correspondence
between methods on the assessment of under and over-
representation of motifs.

Fractal kernel definition
The former approach used Gaussian distribution function
to model the generalized Markov models. One possible
drawback of this methodology is related with the domain
issue above mentioned, since the normal distribution
function is defined in �n whereas the CGR/USM domain
is explicitly defined in unit hypercubes. This concern lead
to the development of another kernel [23] to be used in
the CGR density estimation, which is recalled, reformu-
lated and further discussed in this section.

Let χA : X → {0,1}, A ⊂ X ⊆ �, be an indicator or charac-
teristic function such that:

Each function  : X → {0,1} with parameters k and xj

is defined for a point x ∈ X as:

where the interval  depends on the point xj ∈ X and

on the resolution k chosen:

and NxjQ denotes the floor function. The interval above

defined  has length V ( ) = 2-k.

Intuitively, this function rounds the value of xj, respecting
the borders of the regions that represent specific k-tuples,

which are always given by multiples of 2-k (see figure 1
in[19]). This might also be interpreted as the number of
common digits of the binary representation of xj and x, up
to the kth decimal digit. This is more clearly deduced using
numeric representation in base 2.

For the CGR mapping  ≡ (x(1), x(2)) ∈ �2, the 2D step

function for a point  ∈ �2 is defined as

, i.e., the

function is 1 when both coordinates x(1) and x(2) belong
the above mentioned intervals and is zero otherwise. This

is due to the indicator function property χA ∩ B = χA χB. For

sake of clarity and notation simplification, in the follow-
ing formulas all the variables x and xj will be assumed in

�2 otherwise stated, i.e. .

The kernel κf (x) used in this work and extensively pre-
sented in [23] is based on the linear combination of block
functions Ik, using particular resolutions k and a parame-
ter h that defines the height (or weight) of each block:

Additionally, considering the restriction of probability
density functions, the following equation is obtained:

since  and

.

Defining φ as the (constant) ratio between two consecu-
tive volumes Ak and Ak-1, k = 1, ..., L (in 2D):

it is possible to express this restriction in terms of φ as:

And finally the (normalized) kernel  (x) with

parameters L, φ and xj is:
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The underlying idea is to weight, by powers of 4 φ, each

step function  (x), which corresponds to a sort of gen-

eralized Markov model. An illustration of this kernel func-
tion (projected to one-dimensional space) is given in

Figure 8 for L = 2 which correspond to three blocks 

(x), k = 0,1,2.

Another important property of this function κ is its sym-
metry regarding xi and xj, in fact,

 since .

Actually, if xi belongs to the interval Ak means that xi and

xj have the same binary expansion up to the k digit, which

obviously implies symmetry.

This allows a straightforward generalization under kernel
learning theory in which specific transformation of the
data with kernel functions induce dot products and norms
in other function spaces [44]. In fact, this kernel is related
with the Cantor distance in strings, which measures pre-
cisely the suffix similarity.

Furthermore, it should be clear that this new fractal kernel
is more adjusted to the CGR geometry: instead of Gaus-
sian functions that span all �n domain the proposed κ (x)
is defined on unit hypercubes, which is definitely more in
agreement with these iterative maps.

Entropic profiles with fractal kernels
When using the above-defined fractal-based kernel, the
expression for the estimation for the entropic profile is
significantly simplified, thus allowing its optimal and
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straightforward calculation. In fact, for a particular coordi-
nate, each density block is only different from zero if the
points in that neighborhood are close, in the sub-quad-
rant sense. In other words, for one position, the only non-
zero blocks of length k correspond to the nearest points,
which are at a distance less than 2-k apart.

Another important note is that this particular kernel, con-
trary to the Gaussian which only has two parameters
(mean and variance), depends on the point xj: in effect,
the format of the kernel varies according to the rounding
procedure and the particular coordinate xj considered.

Therefore, the Parzen density estimation for position i or
point xi is given as a function of all the other sample coor-
dinates xj, j = 1, ..., N, and parameter set θ ≡ {L, φ}, where
L represents the Markov resolution and φ is a smoothing
parameter:

By simple algebraic simplification and using Eq.4 one
obtains a more condensed formula:

Due to the CGR suffix property, the last condition is
equivalent of having the same suffix of length k, i.e.,

 and  if and only if the string

with length k corresponding to the CGR coordinate xi is

the same as the one represented by coordinate xj. There-

fore the sum  (xi) that appears in the last equation

is calculated by simply counting the number of common
suffixes of length k shared through all the sequence S:

where δij is the Kronecker delta and  is the suffix of

length k that ends in position i.

Finally, and using this result, the Parzen density estima-
tion with this kernel can be simplified to the formula
given by the following Equation 5:

Computationally, this is a significant result since it allows

the simplification of L, φ (xi): instead of having to calcu-

late individual kernel function for each point and sum all
the contributions, one can simplify the calculation up to
a desired resolution or memory length L, greatly reducing
the associated algorithmic complexity from quadratic to
linear on L and sequence length. In the supplementary
MATLAB functions available along this report this simpli-
fication was taken into account. In practice this is an
important result since low resolutions L are commonly
used, remembering that they represent Markov orders.
Indeed, most approaches in sequence modeling use
Markov orders below 8, which greatly simplifies the calcu-
lation time. Some limiting properties of the estimation f

for different φ include:

These results show that the parameter φ is weighting dif-
ferent Markov chain models: φ = 0 means that a zero
order, background (equal) frequencies are taken, whereas
φ → ∞ corresponds to weighting higher L-tuples, ignoring
the lower order counts, which, in the limiting case, is
equivalent to a L-order Markov chain.

In effect, L, φ (xi) can be interpreted as a linear combina-

tion of suffixes counts up to a given memory length, with

increasing (φ > 1/4) or decreasing weights (φ < 1/4). These
results came up as quite unpredictably, since the kernel
defined above was based on a different rationale. It turned
out that both perspectives are equivalent in terms of final
formulation. It is also noteworthy the relation between
this methodology and generalized Markov models and
interpolated Markov chains (IMM). In fact, similar pro-
files were obtained recently [39] representing the shortest
unique substrings in sequences.
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In the application section when calculating the normal-

ized values EPθ (i) ≡ θ (xi), one has to consider a burnt-

in period corresponding to the first symbols in the
sequence. Since the estimation of the profile is biased in
the sense that only higher order tuples are considered, it is
necessary to exclude these first points f(xi), i = 1, ..., b0,

given that no information is provided for higher suffixes
up to that position. For that reason, this correction was
taken into account when using the EP normalized values.
This border effect is nevertheless negligible and can be
ignored for longer sequences. The background just pre-
sented will allow the representation of the entropic pro-

files EPθ ≡ L, θ as a function of both L and θ and search

for key parameters combinations to unravel the scale
upon which important features might arise in the original
DNA sequence.

Markov Chain-based p-value calculation
In order to compare our method with previous efforts, we
also report the p-values and respective statistical z-scores
for the motifs analyzed. These values were calculated
using first-order Markov Chain transition probability
tables estimated directly from the whole sequences. This
estimation was based on the relative frequency of each oli-
gonucleotide, using pseudo-counts to avoid zero transi-
tion probabilities when necessary. After this step, the
probability of each motif can be easily accessed along with
their expected number of occurrences in a specific
sequence. The calculation of the p-value of a motif m is
therefore the probability of observing more counts N(m)
than those expected under that given model, i.e.,
prob{N(m) ≥ Nobs(m)}. The normal distribution was used
as an approximation for the distribution of N(m), with
expected values and variances described in [1]. These var-
iances took into account the overlap capacity or period of
each motif, as described in the same reference. Other
approximations, such as using the Poisson distribution,
give the same relative order for the motifs. The p-values
calculated are reported for each motif referred in the text.
To complement the analysis and since many of the motifs
studied exhibit very low p-values, practically equal to
zero, i.e. they are exceptionally frequent, the z-scores and
their relative rank order was also reported. In this way a
more accurate comparison can be performed.
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ĝ

Page 18 of 19
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14751999
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14751999
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9421513
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9421513
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2336393
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12171605
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12171605
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7482779
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7482779
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10563018
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10563018
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10563018
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15653627
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15653627
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15653627
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15716010
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15716010
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17187668
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17122850
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17122850


BMC Bioinformatics 2007, 8:393 http://www.biomedcentral.com/1471-2105/8/393
Publish with BioMed Central   and  every 
scientist can read your work free of charge

"BioMed Central will be the most significant development for 
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central 

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

18. Holste D, Grosse I, Herzel H: Statistical analysis of the DNA
sequence of human chromosome 22.  Phys Rev E 2001,
6404:041917.

19. Vinga S, Almeida JS: Rényi continuous entropy of DNA
sequences.  J Theor Biol 2004, 231:377-388.

20. Oliver JL, Bernaola-Galvan P, Guerrero-Garcia J, Roman-Roldan R:
Entropic profiles of DNA sequences through chaos-game-
derived images.  J Theor Biol 1993, 160:457-470.

21. Troyanskaya OG, Arbell O, Koren Y, Landau GM, Bolshoy A:
Sequence complexity profiles of prokaryotic genomic
sequences: a fast algorithm for calculating linguistic com-
plexity.  Bioinformatics 2002, 18:679-688.

22. Crochemore M, Verin R: Zones of low entropy in genomic
sequences.  Comput Chem 1999, 23:275-282.

23. Almeida JS, Vinga S: Computing distribution of scale independ-
ent motifs in biological sequences.  Algorithms Mol Biol 2006, 1:18.

24. Sourice S, Biaudet V, El Karoui M, Ehrlich SD, Gruss A: Identifica-
tion of the Chi site of Haemophilus influenzae as several
sequences related to the Escherichia coli Chi site.  Mol Micro-
biol 1998, 27:1021-1029.

25. Freeman JM, Plasterer TN, Smith TF, Mohr SC: Patterns of
Genome Organization in Bacteria.  Science 1998, 279:1827a.

26. Arakawa K, Uno R, Nakayama Y, Tomita M: Validating the signifi-
cance of genomic properties of Chi sites from the distribu-
tion of all octamers in Escherichia coli.  Gene 2007.

27. Blattner FR, Plunkett G 3rd, Bloch CA, Perna NT, Burland V, Riley M,
Collado-Vides J, Glasner JD, Rode CK, Mayhew GF, Gregor J, Davis
NW, Kirkpatrick HA, Goeden MA, Rose DJ, Mau B, Shao Y: The
complete genome sequence of Escherichia coli K-12.  Science
1997, 277:1453-1474.

28. Dubnau D: DNA uptake in bacteria.  Annu Rev Microbiol 1999,
53:217-244.

29. Davidsen T, Rodland EA, Lagesen K, Seeberg E, Rognes T, Tonjum T:
Biased distribution of DNA uptake sequences towards
genome maintenance genes.  Nucleic Acids Res 2004,
32:1050-1058.

30. Karlin S, Mrazek J, Campbell AM: Frequent oligonucleotides and
peptides of the Haemophilus influenzae genome.  Nucleic Acids
Res 1996, 24:4263-4272.

31. Chu D, Rowe J, Lee HC: Evaluation of the current models for
the evolution of bacterial DNA uptake signal sequences.  J
Theor Biol 2006, 238:157-166.

32. Bakkali M, Chen TY, Lee HC, Redfield RJ: Evolutionary stability of
DNA uptake signal sequences in the Pasteurellaceae.  Proc
Natl Acad Sci USA 2004, 101:4513-4518.

33. Bouvier A, Gélis F, Schbath S: R'MES: Recherche de Mots Excep-
tionnels dans les Séquences d'ADN – Version 2.  Guide de l'uti-
lisateur INRA, Biométrie, F78352 Jouy-en-Josas 1999.

34. Ettwiller LM, Rung J, Birney E: Discovering novel cis-regulatory
motifs using functional networks.  Genome Res 2003, 13:883-895.

35. Vilo J, Brazma A, Jonassen I, Robinson A, Ukkonen E: Mining for
putative regulatory elements in the yeast genome using
gene expression data.  Proc Int Conf Intell Syst Mol Biol 2000,
8:384-394.

36. Koo HS, Wu HM, Crothers DM: DNA bending at adenine. thym-
ine tracts.  Nature 1986, 320:501-506.

37. Chen LY, Lu SH, Shih ES, Hwang MJ: Single nucleotide polymor-
phism mapping using genome-wide unique sequences.
Genome Res 2002, 12:1106-1111.

38. Liao BY, Chang YJ, Ho JM, Hwang MJ: The UniMarker (UM)
method for synteny mapping of large genomes.  Bioinformatics
2004, 20:3156-3165.

39. Haubold B, Pierstorff N, Moller F, Wiehe T: Genome comparison
without alignment using shortest unique substrings.  BMC Bio-
informatics 2005, 6:123.

40. Vandenbogaert M, Makeev V: Analysis of bacterial RM-systems
through genome-scale analysis and related taxonomy issues.
In Silico Biol 2003, 3:127-143.

41. Almeida JS, Vinga S: Universal sequence map (USM) of arbi-
trary discrete sequences.  BMC Bioinformatics 2002, 3:6.

42. Vinga S, Almeida J: Alignment-free sequence comparison – a
review.  Bioinformatics 2003, 19:513-523.

43. Parzen E: On Estimation of a Probability Density Function and
Mode.  The Annals of Mathematical Statistics 1962, 33:1065-1076.

44. Schoelkopf B, Smola AJ: Learning with kernels: support vector machines,
regularization, optimization, and beyond Cambridge, Mass.: MIT Press;
2002. 

45. Helmann JD: Compilation and analysis of Bacillus subtilis
sigma A-dependent promoter sequences: evidence for
extended contact between RNA polymerase and upstream
promoter DNA.  Nucleic Acids Res 1995, 23:2351-2360.

46. Vanet A, Marsan L, Sagot M-F: Promoter sequences and algorith-
mical methods for identifying them.  Res Microbiol 1999,
150:779-799.
Page 19 of 19
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15501469
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15501469
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8501918
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8501918
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8501918
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12050064
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12050064
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12050064
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10404620
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10404620
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17049089
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17049089
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9535091
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9535091
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9535091
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17270364
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17270364
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17270364
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9278503
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9278503
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10547691
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14960717
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14960717
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14960717
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8932382
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8932382
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16023142
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16023142
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15070749
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15070749
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12727907
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12727907
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10977099
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10977099
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10977099
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3960133
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3960133
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12097348
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12097348
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15217808
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15217808
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15910684
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15910684
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12762852
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12762852
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11895567
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11895567
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12611807
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12611807
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7630711
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7630711
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7630711
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10673015
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10673015
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Results and Discussion
	DNA sequence dataset description
	Entropic profiles and parameters optimization

	Conclusion
	Methods
	CGR/USM representation of DNA sequences and Parzen's method
	Entropic profile definition
	Fractal kernel definition
	Entropic profiles with fractal kernels
	Markov Chain-based p-value calculation

	Competing interests
	Authors' contributions
	Acknowledgements
	References

