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Abstract
Background: Predicting the three-dimensional structure of a protein from its amino acid
sequence is a long-standing goal in computational/molecular biology. The discrimination of different
structural classes and folding types are intermediate steps in protein structure prediction.

Results: In this work, we have proposed a method based on linear discriminant analysis (LDA) for
discriminating 30 different folding types of globular proteins using amino acid occurrence. Our
method was tested with a non-redundant set of 1612 proteins and it discriminated them with the
accuracy of 38%, which is comparable to or better than other methods in the literature. A web
server has been developed for discriminating the folding type of a query protein from its amino acid
sequence and it is available at http://granular.com/PROLDA/.

Conclusion: Amino acid occurrence has been successfully used to discriminate different folding
types of globular proteins. The discrimination accuracy obtained with amino acid occurrence is
better than that obtained with amino acid composition and/or amino acid properties. In addition,
the method is very fast to obtain the results.

Background
Deciphering the native conformation of a protein from its
amino acid sequence, known as, protein folding problem
is a challenging task. The recognition of proteins belong-
ing to same fold/structural class is an intermediate step to
protein structure prediction. For the past few decades, sev-
eral methods have been proposed for predicting protein
structural classes. These methods include discriminant
analysis [1], correlation coefficient [2], hydrophobicity
profiles [3], amino acid index [4], Bayes decision rule [5],
amino acid distributions [6], functional domain occur-
rences [7], supervised fuzzy clustering approach [8] and

amino acid principal component analysis [9]. These
methods discriminated protein structural classes with the
sensitivity of 70–100% and it mainly depends on the data
set. Wang and Yuan [5] developed a data set of 674 glob-
ular protein domains belonging to four different struc-
tural classes and reported that methods claiming 100%
sensitivity for structural class prediction could predict
only with the sensitivity of 60% with this data set.

On the other hand, alignment profiles have been widely
used for recognizing protein folds [10,11]. Recently,
Cheng and Baldi [12] proposed a machine learning algo-
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rithm for fold recognition using secondary structure, sol-
vent accessibility, contact map and β-strand pairing,
which showed a pair wise sensitivity of 27%. On the other
hand, amino acid properties have been used for discrimi-
nating membrane proteins [13], identification of mem-
brane spanning regions [14], prediction of protein
structural classes [15], protein folding rates [16], protein
stability [17] etc. Towards this direction, Ding and
Dubchak [18] proposed a method based on neural net-
works and support vector machines for fold recognition
using amino acid composition and five other properties,
and reported a cross-validated sensitivity of 45%. Further,
Ofran and Margalit [19] showed the existence of signifi-
cant similarity in amino acid composition between pro-
teins of the same fold. In this work, we have used amino
acid occurrence (not composition) for discriminating 30
different folding types of globular proteins. We have
developed a method based on linear discriminant analysis
(LDA), which discriminated a set of 1612 proteins with an
accuracy of 38%, which is comparable to other methods
in the literature, in spite of the simplicity of the method
and large dataset.

Results and discussion
Role of re-weighting for fold discrimination
We have computed the occurrence of all the 20 amino
acid residues in each protein, which represents the ele-
ments of 20 dimensional vectors in each protein. We have
applied LDA to these vectors for discrimination. We have
employed two kinds of LDA, i.e., with and without re-
weighting. In LDA with re-weighting, i.e. Wk = 1 in eq. (1),
all folds equally contribute to maximize the performance
of discrimination irrespective of the number of proteins in
each fold; i.e., if one fold has hundreds of proteins and
another has only few proteins, LDA is optimized to
achieve the highest performance equally in all folds. This
re-weighting is important especially when the number of
proteins included in each fold has large variations. On the
other hand, LDA without re-weighting, i.e. Wk = Nk in eq.
(1), tends to achieve the maximum performance for the
whole dataset.

We have used the measures, accuracy, sensitivity, preci-
sion and F1 for examining the performance of the
method. In general, accuracy has the tendency to show
high values without re-weighting since it is computed

with all data. Sensitivity tends to increase by re-weighting,
giving equal weight to each fold. In contrast, precision has
the tendency to decrease by re-weighting, since re-weight-
ing increase FP for folds with less number of proteins. On
the other hand, F1 is independent of re-weighting as it is
harmonic mean of sensitivity and precision.

In Table 1, we presented the discrimination results
obtained with different measures and two kinds of LDA
(with and without re-weighting). As expected, re-weight-
ing significantly changed all the performances other than
F1. Re-weighting increased the sensitivity whereas an
opposite trend was observed for precision and accuracy.
This is due to the divergence in the number of proteins in
each fold (min. 25, max. 173, mean 54, see Table 2). F1
does not change significantly by re-weighting.

Remarkably, we achieved the accuracy of 38% (without
re-weighting), which is the best performance to our
knowledge, for large number of folds (30) and proteins
(1612). Further, the method is extremely simple, which
indicates that the amino acid occurrence of proteins carry
sufficient information to discriminate protein folds.

Discrimination of proteins belonging to different folding 
types
We have examined the ability of the present method for
predicting proteins belonging to 30 major folds. In Table
2, we have shown the performances of discriminating 30
different folds. We observed that the folds with less
number of proteins have the sensitivity of less than 10%
without re-weighting. For example, SAM domain like fold
has the sensitivity of 8%, which has only 26 proteins. Sim-
ilar tendency is also observed for the folds b.2, b.34, c.3,
c.47, c.55, d.15 and d.17. The sensitivity of these folds
increased significantly with re-weighting. On the other
hand, many folds with less than 30 proteins have the sen-
sitivity of more than 20% without re-weighting (e.g., a.3,
a.24, a.39 etc.). As there are 30 folds, the expected sensi-
tivity is only 3.3% if classification is supposed to be ran-
dom. In Table 2, we have also shown the ratio between the
number of proteins in each fold and the total number of
proteins, which ranges from 2 to 11%. Hence the sensitiv-
ity of 20% obtained for several folds is significantly higher
than that of random for fold discrimination. Interestingly,
most of the folds that were discriminated with more than

Table 1: Role of re-weighting. Leave-one-out cross validation results [%] obtained with different measures and two types of LDA

with re-weighting without re-weighting

sensitivity precision F1 accuracy sensitivity precision F1 accuracy

Occurrence 33 29. 29 33 28 35 30 38
Composition 27 23 23 26 24 27 27 33
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20% sensitivity belong to either all-α or all-β class. This
might be due to the fact that these proteins have different
secondary structural patterns and hence they are easy to
discriminate them. In addition, folds in each of these
classes are near-by each other in amino acid occurrence
vector space, which caused high sensitivity. On the other
hand, an opposite tendency was observed for precision.
Re-weighting decreased the precision for several folds
including a.3, a.24, a.29, a.60, b.6, b.18, b.29, c.23, c.47,
d.15, and g.41. Most of these folds have less number of
proteins.

The re-weighting procedure causes two opposite effects:
increased the sensitivity and decreased the precision.
Hence, F1 may be used to balance these effects. Only two
folds, c.23 and d.58 decreased the F1 with re-weighting

and several folds significantly increased the F1 by re-
weighting (e.g, b.2, b.34, c.26, d.17, and g.41).

The comparison between experimental versus predicted
folds is shown in Fig. 1. In this figure, dark block indicates
the presence of many proteins. The data are normalized in
such a way that the total percentage of true fold is 100%.
Fig. 1a showed that mainly the folds with more number of
proteins are misclassified without re-weighting (e.g., a.4,
b.1, c.1 and d.58). The trend has been changed after re-
weighting: the misclassified proteins are observed to be
within the same structural class. Especially, in α + β class,
the block diagonal region is distributed almost uniformly,
which is partially caused by re-weighting. Since each fold
is equally weighted, α + β class is less weighted than other
classes. This causes inter-class misclassification between α

Table 2: Performances of fold recognition. Leave-one-out cross validation performances [%] in each fold. wo: without re-weighting, w: 
with re-weighting

Sensitivity Precision F1

ID Fold Fold Description Number Ratio wo w wo w wo w

all-α
1 a.3 Cytochrome C 25 2 24 48 50 27 32 35
2 a.4 DNA/RNA binding 3-helical bundle 103 6 73 49 43 51 54 50
3 a.24 Four helical up and down bundle 26 2 23 38 35 20 28 26
4 a.39 EF hand-like fold 25 2 40 44 45 26 43 33
5 a.60 SAMdomain-like 26 2 8 27 29 12 12 16
6 a.118 α-α superhelix 47 3 47 45 50 50 48 47

all-β
7 b.1 Immunoglobulin-like β-sandwich 173 11 76 38 41 69 54 49
8 b.2 Common fold of diphtheria toxin/transcription factors/

cytochrome f
28 2 4 29 11 21 5 24

9 b.6 Cupredoxin-like 30 2 27 37 42 22 33 27
10 b.18 Galactose-binding domain-like 25 2 20 36 50 26 29 30
11 b.29 Concanavalin A-like lectins/glucanases 26 2 23 27 24 18 24 22
12 b.34 SH3-like barrel 42 3 0 29 0 20 - 24
13 b.40 OB-fold 78 5 22 24 24 24 23 24
14 b.82 Double-stranded α-helix 34 2 12 18 19 17 15 17
15 b.121 Nucleoplasmin-like 42 3 52 52 51 47 52 49

α/β
16 c.1 TIM barrel 145 9 44 27 57 65 50 38
17 c.2 NAD(P)-binding Rossmann-fold domains 77 5 34 31 30 32 32 32
18 c.3 FAD/NAD(P)-binding domain 31 2 10 16 13 11 11 13
19 c.23 Flavodoxin-like 55 3 11 5 17 8 13 7
20 c.26 Adenine nucleotide a hydrolase-like 34 2 12 29 14 22 13 25
21 c.37 P-loop containing nucleoside triphosphate hydrolases 95 6 43 34 42 53 43 41
22 c.47 Thioredoxin fold 32 2 9 19 38 10 15 13
23 c.55 Ribonuclease H-like motif 49 3 4 6 11 8 6 7
24 c.66 S-adenosyl-L-methionine-dependent methyltransferases 34 2 29 29 31 21 30 24
25 c.69 α/β-Hydrolases 37 2 35 41 39 34 37 37

α + β
26 d.15 β-Grasp, ubiquitin-like 42 3 5 21 40 18 9 19
27 d.17 Cystatin-like 25 2 0 8 - 4 - 5
28 d.58 Ferredoxin-like 118 7 32 7 17 25 22 11

small
29 g.3 Knottins 80 5 98 89 72 82 83 85
30 g.41 Rubredoxin-like 28 2 11 71 75 32 19 44
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+ β and other classes, because α + β class has only three
folds. However, two folds in small structural class can be
discriminated with high accuracy/sensitivity/precision/F1
and α + β folds are difficult to discriminate using our
method.

Comparison among different re-weighting procedures
The results presented in Tables 1 and 2 showed that the
sensitivity of discriminating protein folds differs signifi-
cantly between different methods (with and without re-
weighting). Hence, it would be difficult to choose the best
method for fold recognition. However, it may be selected
based on the interest of the users, whether the prediction
is optimized for each fold or over all dataset.

Usually, training and test sets of data are obtained from
sequence and structure databases and are culled with
sequence identity. However, these data sets do not always
reflect proper representatives of all proteins in different
folds, e.g., protein population in each fold. Further, the
proteins available in databases such as, PDB are biased
with the proteins that can be solved experimentally,
which may be different from the proportion of real pro-
teins. Hence, considering these aspects would help to

develop "good" methods for protein fold recognition in
future.

In essence, based on the methods and data sets used in the
present work, we suggest that the performance with re-
weighting is better than that without re-weighting.

Influence of amino acid occurrence in recognizing protein 
folds
The importance of amino acid occurrence is illustrated
with Figure 2(a). In this figure we show the occurrence of
the 20 types of amino acid residues in DNA/RNA binding
3-helical bundle (a.4) and Immunoglobulin-like β-sand-
wich (b.1). The average number of amino acid residues in
these folds are 88 and 110, respectively. We observed that
the residues Gly, Pro, Ser, Thr and Val are dominant in the
fold b.1 whereas an opposite trend was observed for Leu
and Arg. In Figure 2(b), we have shown the distribution of
residues in "amino acid occurrence" space. It is clearly
seen that the two folds are more or less separated in this
space. We observed similar results about the variation of
amino acid occurrences among different folds in our data
set.

Prediction versus experimentFigure 1
Prediction versus experiment. Comparison between predicted and experimental folds in 1612 proteins. The diagonal ele-
ments show the correctly predicted proteins. Dark block indicates the presence of more number of proteins and solid line 
indicates the boundary between five classes as shown in Table 2, i.e., all-α, all-β, α/β, and α + β and small proteins. (a)without 
re-weighing. (b) with re-weighing.
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In addition, we have tested the performance of the
method using amino acid composition (i.e., amino acid
occurrence/total number of residues) in each protein. We
noticed that the accuracy without re-weighting decreased
to 33% indicating the importance of amino acid occur-
rence (un-normalized composition) in each fold (Table
1). Similar tendency is also observed for discriminating β-
barrel membrane proteins [16]. Hence, we suggest that
the amino acid occurrence is better than composition for
discriminating protein folds. In fact, the normalization of
amino acid composition produced the problem of co-lin-
earity, i.e., diversity of vectors is not sufficient compared
with the number of proteins. The reason for the depend-
ency of F1 upon different types of LDA (with or without
re-weighting) is that four folds have no positive proteins
without re-weighting. On the other hand, amino acid
occurrence has only two folds without any positive pro-
teins (without re-weighting) as seen in Table 2.

Probability measure of discrimination
In order to have the feasibility of combining the results of
our method with other methods we provided the proba-
bility of being a protein in a specific fold along with the
predicted folding type. In Figure 3, we have shown the
probability for fold a.4 (DNA/RNA binding 3-helical bun-

dle). Clearly, the fold a.4 has the highest average probabil-
ity. However, some other folds, (e.g., a.60, d.15, d.17 and
d.58) have relatively higher probabilities. This may result
in wrong discrimination, which may be fixed by combin-
ing the results with other methods.

Comparison with other methods
We have compared the performance of our method with
other related works in the literature. Ding and Dubchak
[18] introduced a combined method for predicting the
folding type of a protein. They have used six parameters,
amino acid composition, secondary structure, hydropho-
bicity, van der Waals volume, polarity and polarizability
as attributes, and neural networks and support vector
machines for recognition. These features have been com-
bined with the number of votes in each method. They
reported the sensitivity of 56% in a test set of 384 proteins
and 10-fold cross validation sensitivity of 45% in a train-
ing set of 311 proteins from 27 folding types. We have
used the same dataset of 311 proteins and assessed the
performance of our method. We observed that our
method could predict with the leave-one-out cross valida-
tion accuracy of 42% (with LDA without re-weighting),
which is close to that (45%) reported in Ding and
Dubchak [18].

Amino acid occurrenceFigure 2
Amino acid occurrence. (a)Comparison between mean amino acid occurrence of two typical folds, DNA/RNA binding α-
helical bundle (a.4, black) and Immunoglobulin-like β-sandwich (b.2, red) (b) Distribution of these two folds over the first two 
discriminant functions with re-weighting. a.4: filled black circles, b.2: red crosses.
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In addition, we have selected the proteins from the folds
that are common in both the studies and tested the per-
formance of our method (trained with our dataset of 1612
proteins) in predicting the folding types of the proteins
used in Ding and Dubchak [18]. The results are presented
in Table 3. Interestingly, our method with re-weighting
could correctly identify the folding types with F1 value of
more than 30% in 11 among the 19 considered folds. The
performances are similar to or better than that reported
with the dataset of 1612 proteins. Although our method
is optimized with different datasets it has the power to
predict the folding type of independent dataset of proteins
with similar sensitivity.

Further, there are several advantages in our method: (i)
only one feature, amino acid occurrence is sufficient for
prediction rather than six features. The comparison of

results obtained with only one feature showed that the
performance of our method (42%) is significantly better
than that of Ding and Dubchak [18] reported with amino
acid composition (20–49%), (ii) voting procedure is not
necessary; our method can be directly used for multi-fold
classifications, (iii) our method uses LDA, which requires
significantly less computational power compared with
SVM. In SVM one has to diagonalize the matrix with the
size of (protein number) × (protein number); on the
other hand, LDA requires only diagonalization of 20 (the
number of kinds of amino acid residues) × 20 matrix
independent of number of proteins and (iv) although
they have reported the dependency of fold specific sensi-
tivities upon number of proteins in each fold, it is difficult
to compensate this effect without modifying the compli-
cated voting systems; our method has freedom to com-
pensate it as discussed in the previous sections.

Probability measure of discriminationFigure 3
Probability measure of discrimination. Rows : 103 proteins in fold (a.4). Columns : 30 folds. From left to right, the order 
is ID in Table 2. The darkest square corresponds to probability 0.5, and the lightest is zero.
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Recently, Shen and Chou [20] reported better sensitivity
for the same data set of Ding and Dubchak [18]. However,
the results are biased with training set of data. We have
evaluated the sensitivity of identifying proteins belonging
to the folds, four helical up and down bundle (a.24) and
EF hand-like (a.39) and we observed that the sensitivity is
30.5% and 24%, respectively. Our predicted sensitivities
(38% and 44%, with re-weighting, see table 2) are better
than that of Shen and Chou [20].

Possible reasons for obtaining good performance with 
amino acid occurrence

We have analyzed the possible reasons for obtaining good
performance with amino acid occurrence. In Table 4, we
have summarized the performance as a function of differ-
ent features. When we use more than two features to dis-
criminate folds, we simply apply LDA to merge feature

vectors. This means, if there are two features vectors 

with n components and  with m features,

then we merge and apply LDA to

The usage of five features, i.e., predicted secondary struc-
ture, hydrophobicity, normalized van der Waals volume,
polarity, polarizability [18] along with amino acid com-
position yielded the accuracy of 45% using sophisticated
and time consuming methods. On the other hand, our
simple method employing amino acid occurrence and
five features has also showed almost the same value
(44%).

The in-depth analysis of the results presented in Table 4
revealed many interesting features. For example, amino
acid composition alone showed the accuracy of 35%,
which is 7% less than that obtained with occurrence
(42%). On the other hand, composition and length (i.e.,
the first 20 components of feature vectors consist of com-
position and the 21th component is amino acid length)
increased the accuracy from 35% to 38%. The composi-

fn

fm

f f f fn n n nn= ( , ,..., )1 2

f f f fm m m mm= ( , ,..., ),1 2

f f f f f f fm n n n nn m m mm+ = ( , ,..., , , ,..., ).1 2 1 2

Table 3: Performances with independent dataset Predictive ability [%]of our method to the independent dataset of proteins used in 
Ding and Dubchak [18]. wo: without re-weighting, w: with re-weighting

Number Ratio Sensitivity Precision F1

Fold Description [%] wo w wo w wo w

Cytochrome C 16 3 56 94 64 47 60 63
DNA/RNA binding 3-helical bundle 32 6 75 56 41 47 53 51
Four helical up and down bundle 15 3 33 33 71 42 45 37
EF hand-like fold 15 3 53 53 57 42 55 47
Immunoglobulin-like β-sandwich 74 14 66 31 44 68 53 43
Cupredoxin-like 21 4 29 38 50 33 36 36
Concanavalin A-like lectins/glucanases 13 2 38 38 42 33 40 36
SH3-like barrel 16 3 0 50 - 44 - 47
OB-fold 32 6 16 28 26 31 20 30
TIM barrel 77 14 40 25 66 70 50 37
FAD/NAD: (P)-binding domain 23 4 22 30 114 50 37 38
Flavodoxin-like 24 5 8 13 28 35 13 18
NAD: (P)-binding Rossmann-fold domains 40 8 40 35 5 8 8 13
P-loop containing nucleoside triphosphate hydrolases 22 4 23 18 38 50 29 27
Thioredoxin fold 17 3 18 35 33 25 23 29
Ribonuclease H-like motif 22 4 5 18 14 22 7 20
α/β-Hydrolases 18 3 33 39 43 41 38 40
β-Grasp, ubiquitin-like 15 3 0 33 0 20 - 25
Ferredoxin-like 40 8 23 3 11 10 15 4

Total/Mean 532 31 35 42 38 34 34

Accuracy

without reweighting 36
with reweighting 32
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tion and five features showed the accuracy of 39%, which
is similar (38%) to that obtained with composition and
length. Hence, length of the protein has an important role
as that of five features for discriminating protein folds.
This analysis demonstrates the importance of amino acid
length and obtaining good performance with amino acid
occurrence.

As an individual feature amino acid occurrence showed
the best performance among all features, including sec-
ondary structure. The combination of amino acid occur-
rence with other features did not increase the sensitivity
and the increase of other parameters is only marginal. This
result reveals that the amino acid occurrence contains
most of the information that are reflected in other physi-
cal features.

Generally, any physical feature can be expressed by amino
acid occurrence. Hence, linear combination of amino acid
occurrence may express many of physical properties of
proteins. In order to verify this concept, we have com-
puted the correlation coefficients between 49 amino acid
properties [21-23] and the first discriminate function.
Each property consists of 20 dimensional vector, like

where  is the kth physical property of ith amino acid.

Since discriminant function is also 20 dimensional vector
and each component of which describes contribution

from each amino acid, one can compute correlation coef-
ficient between them.

As can be seen in Table 5, 23 out of 49 properties have
high correlation coefficients and less than 5% q-values
(i.e., FDR corrected p-values). This analysis shows that lin-
ear discriminant function can express many of physical
properties, at least, partly. Hence, even if we do not con-
sider physical properties directly, the consideration of
amino acid occurrence could discriminate folds well.

Fold recognition on the web
We have developed a web server for discriminating pro-
tein folds from amino acid sequence [24]. It takes the
amino acid sequence as input and displays the folding
type in the output along with probability. Further, the
server has the feasibility of selecting the method, with and
without re-weighting, and the display options to show the
probability details for each fold.

Advantages and limitations of the method
The main advantage of the present method is the discrim-
ination of 30 different folding types of globular proteins
with high accuracy/sensitivity/precision/F1. Further it will
provide the probability of being a protein in a specific
fold. The discrimination results along with probability
may be helpful to select templates to build models to new
protein. Further, it can be combined with other methods
for better performance. The limitation of the method is
the usage of only 30 specific folds for discrimination.

P P P P Pk k k
i
k k= ( , ,..., ,..., ),1 2 20

Pi
k

Table 4: Performances with other features Mean performances [%] obtained with different features for the data set used in Ding and 
Dubchak [18]. Re-weighting scheme is employed

Sensitivity Precision F1 Accuracy

Features

secondary structure 35 32 40 36
polarity 19 18 26 21
polarizability 18 18 26 19
hydrophobicity 23 22 28 24
volume 21 20 25 22

Composition

composition 34 33 34 35
composition + length 36 35 38 38
composition + other five features 35 39 39 39

Occurrence

occurrence 40 40 39 42
occurrence + other five features 40 46 42 44
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Conclusion
In this paper, we have proposed a simple method for dis-
criminating 30 folding types of globular proteins. Interest-
ingly, the simplest method is the best method for the truly
complicated problems. Although complicated methods

have several possibilities for tuning they generate over fit-
ting to the data set. Further, the method proposed in this
work is better than or comparable to other complicated
methods, such as, neural networks and support vector
machines proposed in the literature for discriminating

Table 5: Correlation between physical properties and the first discriminant function Brief descriptions of 49 selected physico-chemical, 
energetic and conformational properties, their correlation coefficient with the first discriminate function, and q-value. Asterisks in the 
last column shows q-value is less than 5%

No. Description Corr. Coef. q-value [%] q ≤ 5%

1. Compressibility 0.04 38.6
2. Thermodynamic transfer hydrophobicity 0.54 1.9 *
3. Surrounding hydrophobicity 0.74 0.4 *
4. Polarity 0.36 9.2
5. Isoelectric point 0.02 41.2
6. Equilibrium constant with reference to the ionization property 0.01 41.7
7. Molecular weight 0.06 38.4
8. Bulkiness 0.49 3.0 *
9. Chromatographic index 0.51 2.7 *

10. Refractive index 0.36 9.2
11. Normalized consensus hydrophobicity 0.48 3.4 *
12. Short and medium range non-bonded energy 0.11 32.7
13. Long-range non-bonded energy 0.65 0.7 *
14. Total non-bonded energy 0.57 1.5 *
15. Alpha-helical tendency 0.29 14.1
16. Beta-helical tendency 0.63 0.8 *
17. Turn tendency 0.61 0.9 *
18. Coil tendency 0.60 1.1 *
19. Helical contact area 0.20 23.0
20. Mean rms fluctuational displacement 0.57 1.5 *
21. Buriedness 0.63 0.8 *
22. Solvent accessible reduction ratio 0.70 0.4 *
23. Average number of surrounding residues 0.72 0.4 *
24. Power to be at the N-terminal of alpha helix 0.57 1.5 *
25. Power to be at the C-terminal of alpha helix 0.18 26.4
26. Power to be at the middle of alpha helix 0.05 38.6
27. Partial-specific volume 0.25 18.8
28. Average medium-range contacts 0.11 32.7
29. Average long-range contacts 0.65 0.7 *
30. Combined surrounding hydrophobicity (globular and membrane) 0.69 0.4 *
31. Solvent accessible surface area for denatured protein 0.12 32.7
32. Solvent accessible surface area for native protein 0.52 2.5 *
33. Solvent accessible surface area for protein unfolding 0.47 3.7 *
34. Gibbs free energy change of hydration for unfolding 0.30 14.1
35. Gibbs free energy change of hydration for denatured protein 0.40 7.3
36. Gibbs free energy change of hydration for native protein 0.46 4.1 *
37. Unfolding enthalpy change of hydration 0.05 38.6
38. Unfolding entropy change of hydration 0.37 8.9
39. Unfolding hydration heat capacity change 0.54 1.9 *
40. Unfolding Gibbs free energy change of chain 0.16 27.6
41. Unfolding enthalpy change of chain 0.22 21.7
42. Unfolding entropy change of chain 0.44 4.7 *
43. Unfolding Gibbs free energy change 0.33 11.0
44. Unfolding enthalpy change 0.35 10.2
45. Unfolding entropy change 0.34 10.3
46. Volume (number of non-hydrogen side chain atoms) 0.11 32.7
47. Shape (position of branch point in a side-chain) 0.10 32.8
48. Flexibility (number of side-chain dihedral angles) 0.24 19.5
49. Backbone dihedral probability 0.51 2.5 *
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folding types. In addition, our method has several advan-
tages including the less computational time and classify-
ing the folds at a single run rather than pair-wise
comparisons. We have developed a web server [24], which
takes the amino acid sequence as the input and displays
the folding type in the output. The main limitation of the
method is that its application is restricted to 30 folds con-
sidered in this work. However, the approach can be
extended to other folds when significant representatives
are available.

Methods
Dataset
We have used a dataset of 1612 globular proteins belong-
ing to 30 major folding types obtained from SCOP data-
base [25] for recognizing protein folds. This dataset has
been constructed with the following criteria: (i) there
should be at least 25 proteins in each fold and (ii) the
sequence identity between any two proteins is not more
than 25%. The amino acid sequences of all the proteins
are available at [24].

Linear discriminant analysis
We have employed LDA in this work and a brief descrip-
tion is given below. First, we compute the amino acid
occurrence of each protein,

ni ≡ (ni1, ni2, ..., nij, ..., ni20),

where i is the number of protein; ni1, ni2 etc. represents the
number of amino acids of each type (Ala, Arg etc.) in ith
protein. Then LDA tries to maximize

SB(ST) is the summation of squared distance between the
center of mass of all proteins and that within fold (coor-
dinate of each protein) along axis z, i.e.,

where K is the number of folds, Nk is the number of pro-

teins belonging to kth fold and  is the center of mass
along the axis z, and zk is that within kth fold, i.e.,

where i' is the i' th protein within the kth fold. zi is the lin-
ear combination of nij with the set of coefficients a ≡ (a0,
a1, ..., aj, ... a20),

Hence, LDA tries to find a which maximizes η2. In total,
we can get 20 kinds of zis which are orthogonal to each
other, and discrimination is done based on these zis. In
addition one can introduce weights Wk for each group
using the equation:

The discrimination is done with Bayesian scheme employ-
ing Gaussian kernel. Proteins in each fold are assumed to
distribute in amino acid occurrence space obeying Gaus-
sian distribution whose center is the mean occurrence
within each fold and variance is computed along the 20
kinds of z coordinates. Then the fold with maximum
probability is used assign the folding type of a protein.
The probability of each fold may also be used to find other
probable folds for a specific sequence.

We have used lda module in MASS library of R [26] and
the computational time is less than few seconds using
Intel Pentium M processor (1.10 GHz) and 1 GB memory.

Scoring
In this paper, we employed four performances to validate
the results. We computed TPk which is the number of pro-
teins being correctly discriminated to be in kth category
(e.g., fold). We have also computed FPk (FNk), which is
the number of proteins which are incorrectly discrimi-
nated as being (not being) in kth category. Then we
defined sensitivity (or recall), Precision, and F1 as
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For validating whole data set we have taken the category
average,

where (Performance) is sensitivity/precision/F1. For some
cases denominator of precision and/or F1 will be zero and
we excluded these categories to compute the average.

The accuracy is defined as,

N is the total number of proteins.
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