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Abstract
Background: It is widely accepted that genetic regulatory systems are 'modular', in that the whole
system is made up of smaller 'subsystems' corresponding to specific biological functions. Most
attempts to identify modules in genetic regulatory systems have relied on the topology of the
underlying network. However, it is the temporal activity (dynamics) of genes and proteins that
corresponds to biological functions, and hence it is dynamics that we focus on here for identifying
subsystems.

Results: Using Boolean network models as an exemplar, we present a new technique to identify
subsystems, based on their dynamical properties. The main part of the method depends only on
the stable dynamics (attractors) of the system, thus requiring no prior knowledge of the underlying
network. However, knowledge of the logical relationships between the network components can
be used to describe how each subsystem is regulated. To demonstrate its applicability to genetic
regulatory systems, we apply the method to a model of the Drosophila segment polarity network,
providing a detailed breakdown of the system.

Conclusion: We have designed a technique for decomposing any set of discrete-state, discrete-
time attractors into subsystems. Having a suitable mathematical model also allows us to describe
how each subsystem is regulated and how robust each subsystem is against perturbations.
However, since the subsystems are found directly from the attractors, a mathematical model or
underlying network topology is not necessarily required to identify them, potentially allowing the
method to be applied directly to experimental expression data.

Background
Genetic regulatory systems are assumed to be 'modular',
with specific combinations of genes and proteins respon-
sible for different biological functions. Although there is
no authoritative definition of a 'module', one common
description is a group of genes, proteins and/or molecules
that combine to carry out a relatively distinct function
(distinguishable from the functions associated with other

modules) [1]. Rather than being a protein complex or
group of co-expressed genes, such a module can be viewed
as the temporal activity (dynamics) of a group of genes/
proteins that controls a specific function in different envi-
ronmental conditions, cell types and/or tissues. For exam-
ple, the temporal activity of genes/proteins controlling
progression through the cell cycle (in many different envi-
ronmental conditions and cell types) can be viewed as a
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module. Moreover, since genetic regulatory systems are
hierarchical [2], it is likely that these modules also interact
in a hierarchical manner.

It is this concept of a 'dynamical module' or 'subsystem'
that we consider in this paper. An important challenge in
biology is how to identify such subsystems and discover
how they combine hierarchically to determine cell types,
tissues and organisms. A dynamic approach is the most
suitable starting point for decomposing a genetic regula-
tory system into modules, since it is the activity profiles
that control biological functions. The topology of the
underlying interaction network is just a description of the
interactions associated with the activity profiles.

Most previous attempts at modular decomposition have
relied on the topology of the underlying network,
deduced from protein-protein interaction and/or tran-
scription factor binding data. From a generic network
point of view, algorithms have been created which parti-
tion any network into topological modules [3]. From a
biological viewpoint, transcription factor networks have
been used to find 'network motifs' [4] and 'structural
modules' [5], based solely on topological properties of the
network. Although informative, topology based
approaches do not necessarily allow the functions/
dynamics associated with groups of genes/proteins to be
inferred [6]; rather, activity/expression levels over a period
of time are required. When expression data have been
used, the resulting modules tend to be groups of genes
whose expression levels change in unison. For example,
'transcription factor modules' [7,8] are groups of genes
with common transcription factor binding sites and
expression patterns. However, for a biological function, it
may be the case that a series of interactions are involved,
with different genes being affected at different points in
time (e.g. genes involved in cell cycle regulation). Similar
issues arise when applying clustering algorithms to
expression data, which also groups together genes whose
expression levels change in unison. In this paper, we
present a method for identifying subsystems ('dynamical
modules'), given a set of discrete state, discrete time attrac-
tors. The subsystems are found directly from the attractors
(Fig. 1), without the need for topological information,
making the method applicable both to models and
(potentially) to experimental expression data. To demon-
strate the method, we consider a class of mathematical
models called Boolean network models (defined in the
Methods section). These models are used as a starting point
because of their relative simplicity and the fact that differ-
ent dynamics can be easily compared. We also consider
how each subsystem is regulated and how subsystems can
help investigate robustness in these systems. In order to
test our method, we then apply it to a model of the Dro-
sophila segment polarity network.

Results: Identifying subsystems and regulatory 
interactions between subsystems
Given a set of discrete-state, discrete-time attractors as an
input, we have produced a method that optimally breaks
the attractors up and identifies subsystems, each one

1. Conserved across some set of attractors,

2. Distinguishable from the stable dynamics for the rest of
the system.

In order to demonstrate the key features of the resulting
subsystems, we use the simple example network in Fig. 2.
Here, A1, ..., A4 are four attractors for the system, but it is
evident that the sub-dynamics associated with some sub-
networks (S1, ..., S6) can distinguish different sets of attrac-
tors and highlight parts of the system that are dynami-
cally/functionally distinct. For example, the subsystem S1
is conserved across three attractors (A1, A2 and A3) and
provides a way of distinguishing those attractors from the
remaining attractors (A4). Moreover, S1 can be viewed as
dynamically distinct from all remaining sub-dynamics,
since the dynamics of each remaining node (1, 4, 5 and 6)
has a distinguishable profile when viewed alongside S1. In
particular,

(a) Nodes 1, 5 and 6 each exhibit different behaviours/
dynamics alongside S1 (compare A3 with A1 and A2).

Overview of methodsFigure 1
Overview of methods. (A) The main method of identifying 
subsystems only requires a set of attractors (*). These attrac-
tors can be found either from a model or directly from 
experimental data, meaning that a known network topology 
is not essential. (B) More detailed schematic of the methods, 
showing the procedures required at each step (given in the 
Methods section). The attractors are used to find intersection 
sequences and partition sequences (Stage 1), which are then 
used to identify subsystems (stage 2). Once the subsystems 
are identified, regulation sets can be found with the help of a 
suitable mathematical model.
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(b) The activity of node 4 oscillates out of phase with the
activity of nodes 5 and 6, when viewed alongside S1 in
attractors A1 and A2.

The sub-dynamics S1, ..., S6 in Fig. 2 are all subsystems
(according to our method) because each one can be
viewed as dynamically distinct from all the other sub-
dynamics in attractors A1 – A4. The attractors themselves
than can be viewed as combinations of subsystems.

The main method does not explicitly identify functional/
regulatory relationships between subsystems. However, in
the case of logical models such as Boolean network mod-
els, the logical functions can be used to identify suitable
regulatory relationships.

For the remainder of this section we describe these new
techniques in terms of Boolean network models (which
we formally define in the Methods section). Algorithms for

Subsystems in the example Boolean network modelFigure 2
Subsystems in the example Boolean network model. (A, B) Network and Boolean functions for a simple Boolean net-
work model. If the logical condition in a Boolean function is satisfied (for node ni), then that node takes state 1 at the following 
time step (si(t + 1) = 1). Otherwise, if the logical condition fails, si(t + 1) = 0. Interactions in the model are summarised by the 
network edges in A (red arrow = activation, blue dot = inhibition). (C) A1, ..., A4 are the 4 possible attractors for the Boolean 
network model in A, B, which are consistent with both synchronous and asynchronous updating schemes. Each column corre-
sponds to a node in the model, whilst each row corresponds to an attractor state. White/Black corresponds to the node hav-
ing state 1/0 in the attractor state. Once the system enters an attractor it continually cycles through those attractor states (e.g. 
z0, z1, z2, z3, z0, z1, z2, z3, z0, z1 after the system enters A1). (D) 6 Subsystems identified for this model, corresponding to sub-
dynamics that are conserved across/distinguish sets of attractors from C. These were identified by applying the new method 
from this paper to the 4 attractors A1, ..., A4. Each column corresponds to a node in the model, whilst each row corresponds to 
a partial state. White/Black corresponds to the node having state 1/0 in the partial state.
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these new techniques are described in the Methods section
of this paper, whilst formal proofs for all the methods can
be found in Additional files 1 and 2. It should be noted
that all of the definitions and algorithms can be extended
to any set of discrete state, discrete time attractors, with or
without a detailed mathematical model.

Partial state sequences
Much of this paper involves looking at the sub-dynamics
in Boolean network models. Therefore, for a subset of
nodes N ⊆ V, we consider partial states.

Definition 1. A partial state, xN ∈ {0, 1}|N| is a set of
Boolean states, one for each node ni ∈ N ⊆ V. i.e. xN = {si:
ni ∈ N}.

Definition 2. A partial state sequence,

, is an ordered set of partial states,

for a node set N (⊆ V).

These partial state sequences can be used to represent sub-
dynamics in Boolean network models, and therefore, can
be used as a starting point when defining subsystems. In
particular, we are looking for partial state sequences that
occur (or cycle within) attractors.

Definition 3. A partial state sequence

occurs in an attractor A = {z0, ..., zp-

1} if there exists integers b0, ..., bp-1 ∈ {0, ..., q - 1} for which

the following are true

1. For k = 0, ..., p - 1,  = {si ∈ zk : ni ∈ N}.

2. For each k ∈ {0,..., p - 1} and j = k - 1 (mod p), either

(a) bk = bj or (b) bk = bj + 1 (mod q)

3. Properties 1 and 2 are not true for any smaller partial

state sequence  and integers c0, ...,

cp-1 ∈ {0, ..., q' - 1} (q' <q).

As an example of a partial state sequence that occurs in an
attractor, consider the partial state sequence

and the attractor A1 = {z0, z1, z2, z3} in Fig. 2. As the sys-
tem enters the attractor A1, we continually cycle through

the component states over time (i.e. z0, z1, z2, z3, z0, z1, z2,
z3, z0, ...). Therefore, since

-  is contained in z0 and z1 (i.e.  = {si ∈ z0 : ni ∈ N}

= {si ∈ z1 : ni ∈ N})

-  is contained in z2 and z3 (i.e.  = {si ∈ z2 : ni ∈ N}

= {si ∈ z3 : ni ∈ N})

we also continually cycle through the partial states of P

over time (i.e. , ...). We note that the

time taken to change from one partial state to the next is
not considered (2 time steps in this example). Ignoring
such time lags could be especially important in genetic
regulatory systems, where the same process may take dif-
ferent lengths of time under different conditions (in dif-
ferent attractors). For example, in cell cycle regulation,
some mutations can alter the time taken for a round of cell
division, without necessarily altering the relationships
that exist between other groups of genes/proteins [9].
Properties 1 and 2 allow us to capture the fact that P con-
tinually cycles within the the attractor A1 by noting that a

sequence of integers {b0, b1, b2, b3} = {0, 0, 1, 1} exists that

maps the partial states in P onto the attractor states in A1.

Property 2 ensures that the partial states in P occur in the
correct order, whilst allowing different lengths of time
between each change. Properties 2 and 3 ensure that P is
the smallest set of partial states that occurs in the attractor
A. This leaves a partial state sequence that just describes
the 'order' in which the node states change in A (for nodes
in N), ignoring any time lags associated with individual
partial states and the number of times P cycles within A.
Returning to the example in Fig. 2, S3 cycles twice in A1

and A2. However, just two partial states (  = {s4 = 1}

and  = {s4 = 0}) are sufficient to capture the fact that

S3 occurs in A1 and A2 (letting {b0, b1, b2, b3} = {0, 1, 0, 1}

and {1, 0, 1, 0} respectively).

Given a node set N and a set of attractors, the Methods sec-
tion of this paper gives detailed algorithms of how to
identify the unique partial state sequences (within an
order of rotation) that occur in each attractor. Essentially
this is done by going through each attractor state and writ-
ing down the partial states involving the node set N. We
then remove partial states when
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(a) Multiple adjacent partial states are identical (in which
case only one copy is kept)

(b) A sequence of states cycles many times within an
attractor (in which case only one copy is kept).

leaving a partial state sequence that just describes the
'order' in which the node states change in that attractor.

Method for identifying subsystems
The new method of identifying subsystems is a two stage
process that breaks up the system's attractors, to leave par-
tial state sequences that are optimally distinguishable
from one another. A summary of these two stages, along
with relevant definitions, is given below using the simple
example in Fig. 2 and Fig. 3. Detailed descriptions of the
algorithms are given in the Methods section for those
wanting to implement this method. A flow diagram of the
procedures involved can be seen in Fig. 1

Stage 1: Partition sequences
The first stage of the method involves identifying every
partial state sequence that satisfies Definition 5. Each such
partition sequence (for a node set N) is both (a) conserved
across a set of attractors and (b) has a fundamentally dif-
ferent dynamical profile from that associated with any
larger node set M ⊇ N. We first introduce intersection
sequences that are used in the definition of partition
sequences and set up a hierarchy amongst them.

Definition 4. A partial state sequence P for a node set N is
an intersection sequence, if there exists a subset of attractors

 for which the following hold

1. P occurs in every attractor A ∈ 

2. P does not occur in any attractor A ∉ 

3. Given a larger node set M ⊃ N, there is no partial state
sequence P' (for the node set M) that satisfies condition 1.

If the above properties hold, we say P intersects at .

In order to identify every intersection sequence, node sets
(N) are analysed to identify which partial state sequences
occur in which attractors. Any such partial state sequence
(P) and corresponding set of attractors ( ) will then sat-
isfy properties 1 and 2 of Definition 4. These pairs {P, }
are stored for each node set N and then compared during
the procedure to remove those that fail property 3. In the
Methods section of this paper we give a detailed algorithm
for this as well as providing some notes on improving effi-
ciency. In practice, many node sets N and/or attractors can

be ignored because we know that the pairs {P, } will fail
property 3.

The set of all intersection sequences provide a hierarchical
breakdown of the system's dynamics (see Fig. 3A, B and
Table 1). At the top of the hierarchy are partial state
sequences that contain only a few nodes but are conserved
over (relatively) many attractors. Then as you go down the
hierarchy, extra nodes are added but the resulting partial
state sequences are conserved over fewer attractors. Prop-
erty 3 above ensures that each partial state sequence is
optimal in the sense that no more extra nodes can be con-
sidered without the new extended partial state sequence
occurring in strictly fewer attractors.

Although these sequences provide a neat hierarchical
breakdown of the system's dynamics, some may be super-
fluous whilst important 'core' sub-dynamics may be
missed. Therefore, we introduce 3 extra constraints when
defining partition sequences.

Definition 5. A partial state sequence

 is a partition sequence if it satisfies

any of the following properties, for some set of attractor

cycles 

A : P is Core to 

The following 3 properties hold for P

1.P occurs in an intersection sequence P', which intersects
at  (P can equal P').

2. If an intersection sequence Q (for a node set M) inter-
sects at  (where ), then there exists an inter-

section sequence Q' (for a node set M' ⊇ M ∪ N) that

occurs in every attractor A ∈ 

3. 1 and 2 are not true for any larger partial state sequence
P" (for a node set N" ⊃ N)

B : P is Exclusive to 

P is the only intersection sequence that intersects at .

C : P is Independently Oscillating

P intersects at  and cycles out of phase with another

intersection sequence Q. i.e. ∃ Q that involves the node set
M and intersects at , for which

C A( )⊆

C

C

C

C
C

C
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Partition sequences in the example Boolean network modelFigure 3
Partition sequences in the example Boolean network model. (A) 10 partition sequences are identified for the example 
model in Fig. 2. Each column in each sequence corresponds to a node in the model, whilst each row corresponds to a partial 
state. White/Black corresponds to the node having state 1/0 in the partial state. Eight of these (P3 – P10) are also intersection 
sequences, whilst the remaining two (P1 and P2, starred) are core sequences that underlie multiple intersection sequences (see 
Tables 1 and 2). (B, C) Examples of hierarchy amongst the sequences in A. In each case, node i corresponds to the partial state 
sequence Pi. In each case, if a link joins a partial state sequence Px (top) to another Py (bottom), Px occurs in Py and is conserved 
across a greater number of attractors. (B) Hierarchy between intersection sequences. (C) Hierarchy between partition 
sequences. Orange nodes correspond to sequences with sub-dynamics that are distinct from those in sequences further up the 
hierarchy. These 6 distinct sub-dynamics are the subsystems (see Table 3). White nodes correspond to sequences that are just 
a combination of sequences further up the hierarchy.
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1. | | ≥ 2

2. N ∪ M = V (the set of all nodes)

The three parts of this definition are used to describe three
ways in which a sub-dynamic (partial state sequence) can
be viewed as fundamental to the make up of the attractors
and/or distinguishable from the remaining sub-dynamics.
For the example in Fig. 2 and Fig. 3, Table 2 shows the par-
tial state sequences that satisfy properties A, B and C
above.

Two partition sequences P1 and P2 are not intersection
sequences, but are core to the dynamics associated with
different sets of attractors. For example, P2 is the core
dynamic spanning attractors A1 and A2, rather than P5 and
P6, which both occur in A1 and A2. This is because P5 and

P6 involve partially overlapping node sets N5 and N6 (i.e.
N5  N6, N6  N5), and so neither corresponds to a sub-
network whose dynamics are core to attractors A1 and A2.
On the other hand P2 acts as a central point from which
these intersections sequences branch off.

Although in this example every intersection sequence is
also a partition sequences, this does not necessarily have
to be the case. One example where this is not the case is
given in Section S3.2 of Additional file 3. In order to iden-
tify every partition sequence, we use the full set of intersec-
tion sequences to identify every partial state sequence
satisfying property A, B or C of Definition 5. These 3 tests
are done independently and the partial state sequences
found in each test are grouped together to give the full set
of partition sequences. In the Methods section of this paper
we give detailed algorithms for these procedures.

Stage 2: Subsystems
The second stage of the method compares the partition
sequences, to identify every partial state sequence that sat-
isfies Definition 6. The partition sequences allow the
attractors to be broken up in a hierarchical manner. How-
ever, these sequences are not subsystems (for a start, all of
the attractors themselves are partition sequences). Of
more interest are the key sub-dynamics that are unique to
a particular partition sequence and that distinguish one
level in the hierarchy from the next. Therefore, we define
subsystems to be those components that are unique to a
partition sequence. i.e.

Definition 6. A partial state sequence S (for a node set N)
is a subsystem if it is unique to a partition sequence. i.e.
there exists a partition sequence P (for a node set M) for
which

1. S occurs in P.

C D∩

Table 2: Partition sequences in the example Boolean network model

Partition sequences Core to ... Exclusive to ... Independently Oscillating with ...

P1 {A1, A2, A3} × ×
P2 {A1, A2} × ×
P3 × {A1, A2, A3} P5
P4 {A3, A4} {A3, A4} ×
P5 × × P3 and P6
P6 × × P5
P7 {A1} {A1} ×
P8 {A2} {A2} ×
P9 {A3} {A3} ×
P10 {A4} {A4} ×

The following table gives all the partition sequences for the simple example model (in Fig. 2 and Fig. 3). The partition sequences (P1 – P10) can be 
seen in Fig. 3, whilst the attractors (A1 – A4) can be seen in Fig. 2. The table also shows which properties they satisfy in Definition 5 (× implies that 
property is not satisfied)

Table 1: Intersection sequences in the example Boolean network 
model

Intersection sequences Intersects at ...

P3
3 = {A1, A2, A3}

P4
4 = {A3, A4}

P5
5 = {A1, A2}

P6
6 = {A1, A2}

P7
7 = {A1}

P8
8 = {A2}

P9
9 = {A3}

P10
10 = {A4}

The following table gives all the intersection sequences for the simple 
example model (in Fig. 2 and Fig. 3). The table shows which partial 
state sequences (from Fig. 3) are intersection sequences, along with 
the attractors they occur in. The attractors (A1 - A4) can be seen in 
Fig. 2.

C
C
C
C
C
C
C
C
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2. If another partition sequence P' (for a node set M' ⊂ M)
occurs in P, then M' ∩ N = ∅.

3. 1 and 2 are not true for any partial state sequence S', for
a larger node set N' ⊃ N.

In the Methods section of this paper we give detailed algo-
rithm for identifying every such subsystem. This essen-
tially involves running through every partition sequence P
(for a node set M) and identifying the nodes (N) that do
not belong to any other partition sequence P', that occurs
in P. The dynamics associated with this node set N are
then a subsystem.

As an example, consider P5 in Fig. 3. Looking at the
remaining partition sequences we see that only P1 and P2
occur within it. Therefore, the nodes and dynamics in P5
that are unique to P5 are the node set N = {n5, n6} and the
subsystem S5 (from Fig. 2D). Obviously, S5 satisfies Prop-
erty 1 of Definition 6 because it occurs in the partition
sequence P5. Property 2 is satisfied since P1 and P2 are the
only partition sequences occurring in P5 and the node sets
do not intersect with N = {n5, n6} ({n2, n3} ∩ {n5, n6} =
∅ and {n1, n2, n3} ∩ {n5, n6} = ∅). Property 3 is satisfied
since any node set N' ⊆ M, N' ⊃ N would fail Property 2.
For the example Boolean network model, all the subsys-
tems can be seen in Fig. 2, whilst Fig. 3C and Table 3 dem-
onstrate which subsystem corresponds to which partition
sequences.

Regulation of subsystems

We say a collection of subsystems x = {S1, ..., Sf} triggers

an individual subsystem Sy in an attractor A, if the co-

occurrence of subsystems S1, ..., Sf ensures the occurrence

of Sy in A.

For Boolean network models (or other discrete-state mod-
els), such interactions can be identified by considering the
Boolean functions (or Logical functions). In the case of
the simple example in Fig. 2, it is possible to look at the
Boolean functions and say that

(a) S2 can trigger the occurrence of S1 in attractors A1 and
A2.

(b) S1 can trigger the occurrence of itself (S1) in attractors
A1, A2 and A3.

This is since

(a) The prolonged activation of node 1 (s1 = 1) is sufficient
to activate nodes 2 and 3 (s2 = 1, s3 = 1).

(b) If nodes 2 and 3 are both on at time t, then this suffi-
cient to maintain their activation for all time steps t' ≥ t.

As can be seen above, different collections may act in dif-
ferent sets of attractors to fully explain the occurrence of a
subsystem Sy.

Definition 7. A set of subsystem collections reg-

ulates an (individual) subsystem Sy if the following are

true

1. For i = 1, ..., g, ∃ an attractor A for which i triggers Sy

in A.

2. If Sy occurs in an attractor A, ∃ i ∈ {1, .., g} for which i

triggers Sy in A.

We call the set { } the regulation set of Sy.

In the Methods section, we describes how a suitable regu-
lation set can be found for each subsystem Sy, by looking
at how each partial state within Sy is triggered/regulated in
each attractor. This approach uses the Boolean functions
from a Boolean network model to identify which partial
states can trigger the occurrence of those in Sy.

For the simple example in Fig. 2, Table 4 shows a regula-
tion set for each of the subsystems. As can be seen in this
example it is often the case that subsystems play a role in
their own regulation, although this does not necessarily
have to be the case.

Even without the Boolean functions, it is possible to iden-
tify relationships between subsystems. On a simple obser-
vational level, a subsystem Sx may be hierarchically linked

S

S S1,..., g

S

S

S S1,..., g

Table 3: Unique components of partition sequences in the 
example Boolean network model

Partition sequence Unique Component

P1 S1
P2 S2
P3 S3
P4 S4
P5 S5
P6 N/a
P7 N/a
P8 N/a
P9 N/a
P10 S6

For the partition sequences in Table 2 and Fig. 3, the following table 
gives components that are unique to each one. These are the 
subsystems shown in Fig. 2.
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to another subsystem Sy, because Sx only occurs in an
attractor in conjunction with the 'higher order' Sy. i.e.

Definition 8. Consider two subsystems Sx and Sy. Sx is hier-
archically linked to Sy if the following are true

- Sx occurs in an attractor A ⇒ Sy occurs in an attractor A

Furthermore, such a link can be viewed as direct if it is
impossible to find a subsystem Sz for which the following
is true

1. Sx is hierarchically linked to Sz

2. Sz is hierarchically linked to Sy

3. There exists attractors A1 and A2 for which

(a) Sy occurs in A1 and A2

(b) Sz occurs in A1 but not A2

(c) Sx occurs in neither A1 nor A2

This terminology can easily be extended to collections of
subsystems.

Robustness of attractors and subsystems

Suppose S is a subsystem that involves a set of nodes N
and occurs in a set of attractors . For any network state

zk = {s1, ..., sv} in any attractor A ∈ , a node nf can have

its state sf perturbed to (sf + 1) (mod 2), to give a new net-

work state  (say). By looking at how often such a net-

work state  converges to an attractor A' ∈ 

containing the same subsystem, it is possible to measure
how robust the subsystem S is to perturbations in the sys-
tem.

Let r(S, L) be the probability that perturbing the state of a

node nf ∈ L in an attractor A ∈  causes the system to con-

verge to an attractor A' ∈ . i.e.

where

Then, using this measure, it is possible to measure Global
Robustness = r(S, V), Internal Robustness = r(S, N), and Exter-
nal Robustness = r(S, M) (where V is the set of all nodes and
M = V\N). This allows one to distinguish the effects of per-
turbing nodes within and outside of the subsystem. The
measure r(S, L) can also be adapted to give the robustness
of an individual attractor A (by letting S = A,  = {A} and
L = V).

Results: Application to the segment polarity 
network
During the development of the fruit fly Drosophila mela-
nogaster, the embryo becomes segmented, with the seg-
ment polarity genes responsible for specifying the
number, spacing and polarity (direction) of these seg-
ments. In order to demonstrate the applicability of our
technique to genetic regulatory systems, we analyse a pre-
viously published Boolean network model of the Dro-
sophila segment polarity network from references [10] and
[11]. This model corresponds to a 4-cell ring, where inter-
cellular interactions are allowed between cells 1 and 4.
This approach was kept here since the segments start off 4
cells wide and the wild type patterns repeat every 4 cells
(before cell proliferation). The Boolean functions for this
model are shown in Table S4.1 of Additional file 4, whilst
the main interactions are summarised in Fig. 4. This 4 cell
model has 10 fixed point attractors. The wild type attrac-
tor A1 is shown in Fig. 5, and is characterised by WG and
EN/HH expression in 1 cell wide stripes either side of the
parasegment boundary (in cell 4 and 1 resp). Two other
attractors, A2 and A3, correspond to experimentally
observed phenotypes and are also shown in Fig. 5. All 10
attractors are shown in Additional file 4 (Fig. S4.1).
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Table 4: Regulation of subsystems in the example Boolean 
network model

Subsystem Regulation set

S1  = {S1}

 = {S2}
S2  = {S2}
S3  = {S1, S3}

 = {S2, S3}
S4  = {S4}
S5  = {S2, S5}
S6  = {S4, S6}

Table showing the collections of subsystems that regulate each 
individual subsystem Sy (for the example Boolean network model and 

subsystems in Fig. 2). Column 2: Each row shows a collection of 
subsystems ( group) that can trigger Sy.

S
S
S
S
S
S
S
S

S
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Applying our method, we identified 19 subsystems that
satisfied Definition 6, which are shown in Fig. 6 and Table
5. SA, which occurs in all 10 attractors, corresponds to the
cellular response to SLP (expressed in cells 3 and 4 only).
Of the remaining subsystems, SB1, SB2, SC1 and SC2
appear to be the most interesting since they capture a large
proportion of the global dynamics. They correspond to
different states and different cells associated with the same
positive feedback loop, involving Wingless (WG),
Engrailed (EN), Hedgehog (HH) and Cubitus interruptus
(CIA). The feedback loop can either be ON (SB1, SC1) or
OFF (SB2, SC2) and either involve inter-cellular interac-
tions between cells 4 and 1 (SB1, SB2) or cells 2 and 3
(SC1, SC2). As mentioned earlier, the wild type attractor
is characterised by WG and EN/HH expression in 1 cell
wide stripes either side of the parasegment boundary (in
cell 4 and 1 respectively). This is captured by SB1.

A previous study has considered the modular design of
this system [12], but there are significant differences in the
component 'modules'. In [12], modules were arbitrarily
chosen to be important intra-cellular pathways involving
(a) SLP, (b) EN/HH and (c) WG/CI. However, here we
have found that the most important subsystems are inter-
cellular combinations of these pathways. Firstly, (a) and
(b) combine to form SA. Secondly, (b) and (c) combine
across cell boundaries to give 2-cell positive feedback
loops SB1, SB2, SC1 and SC2. Moreover, the method in the
paper captures the states of these pathways.

Interactions exist between these 19 subsystems, which
explain how each one is regulated and which of the 10
attractors they occur in. For each of the 19 subsystems,
Table 6 shows the sets of subsystems that regulate them, by
ensuring their occurrence in an attractor (see previous sec-
tion). Of the 19, the five subsystems highlighted in Fig. 6
play the largest role in regulating other subsystems with
SA, SB1, SB2, SC1 and SC2 involved in the regulation of 12, 9,

9, 9 and 9 subsystems (respectively). Using these five
main subsystems as a starting point, it is possible to gen-
erate a hierarchical breakdown of the 10 attractors in the
model (Fig. 7A). The 10 attractors all contain SA, then split

up into 4 main groups depending on the occurrence of
SB1, SB2, SC1 and SC2. In two cases, where 1 = {SB1, SC1}S

Observed attractors for the segment polarity network modelFigure 5
Observed attractors for the segment polarity net-
work model. Attractors for the 4 cell model, where each 
column corresponds to a cell and each row corresponds to a 
gene/protein (node). Each attractor is a fixed state where 
each node has state 1 (= white) or 0 (= black). (A1) Attractor 
corresponding to the wild-type embryo. (A2, A3) Attractors 
corresponding to other experimentally observed pheno-
types.Summary of the segment polarity network modelFigure 4

Summary of the segment polarity network model. 
(A) 1 dimensional representation of embryonic epidermis, 
where each block of 4 cells corresponds to one parasegment 
in the embryo. The only constraint on the state of each node 
is that the pair rule protein SLP is only expressed in cells 3 
and 4 of each parasegment, because of an earlier develop-
mental stage [14]. (B) Diagram representing the main interac-
tions involved in the Drosophila segment polarity network 
model from [10,11]. Lines with red arrows/blue dots corre-
spond to activation/inhibition (respectively). PTC is found on 
the cell surface but can trigger intra-cellular interactions. 
Inter-cellular interactions occur across cell boundaries.
Page 10 of 26
(page number not for citation purposes)



BMC Bioinformatics 2007, 8:413 http://www.biomedcentral.com/1471-2105/8/413

Page 11 of 26
(page number not for citation purposes)

Main subsystems for the segment polarity network modelFigure 6
Main subsystems for the segment polarity network model. Diagrams representing the 5 main subsystems for the 
model (SA, SB1, SB2, SC1, SC2). Each diagram shows the nodes, states (white = 1, black = 0) and cells involved in the subsystem. 
Interactions between the nodes are also shown (red arrow = activation, blue dot = inhibition, dashed line = indirect interac-
tion). All subsystems are fixed states. There are 14 other minor subsystems for this model (SD1 - SJ2), which are shown in Table 
5.
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or 2 = {SB2, SC2} occur, this is sufficient to distinguish

the attractors A2 and A3 (respectively) from the others. In

the remaining two cases, where 3 = {SB1, SC2} and 4 =

{SB2, SC1} occur, two additional levels of specification

determine the individual attractors. Additional file 4 pro-
vides further details of the interactions involved in speci-

fying each individual attractor (and ensuring 

occur in an attractor).

Since only 3 of the 10 attractors from the model corre-
spond to observed phenotypes, it is important to ensure
that the main subsystems aren't an unrealistic artefact of
the model. Re-applying our method of identifying subsys-
tems to the reduced set of observed attractors {A1, A2, A3},
we find that the 5 main subsystems in Fig. 6 are preserved.
The only change is that the new subsystems incorporated
some of the old smaller subsystems. In particular we get
the following 5 main subsystems

-  = SA ∪ SD2 ∪ SE2 ∪ SH2

-  = SB1 ∪ SF2 ∪ SJ2

-  = SB2 ∪ SF1 ∪ SJ1

-  = SC1 ∪ SG2

-  = SC2 ∪ SG1

S

S S

S S1 4,...,

SA
∗

SB1
∗

SB2
∗

SC1
∗

SC2
∗

Table 6: Regulation of subsystems in the segment polarity 
network model

Subsystem Regulation set

SA  = {SA, SB1, SC1}

 = {SA, SB2, SC1}

 = {SA, SB1, SC2}

 = {SA, SB2, SC2}
SB1  = {SA, SB1}
SB2  = {SA, SB2, SE2}

 = {SA, SB2, SC2, SF1, SG1}
SC1  = {SA, SC1}
SC2  = {SA, SC2, SD2}

 = {SA, SB2, SC2, SF1, SG1}
SD1  = {SD1, SH1, SJ2}
SD2  = {SD2}

 = {SB1}

 = {SE1}

 = {SA, SC2, SF1}
SE1  = {SE1, SI1, SJ2}
SE2  = {SE2}

 = {SC1}

 = {SD1}

 = {SA, SB2, SG1}
SF1  = {SB2, SC1}

 = {SA, SC2, SF1}
SF2  = {SF2, SH2}

 = {SB1, SC1}
SG1  = {SB1, SC2}

 = {SA, SB2, SG1}
SG2  = {SG2, SI2}

 = {SB1, SC1}
SH1  = {SB2, SC1}
SH2  = {SB1}

 = {SE1}

 = {SA, SC2, SF1}
SI1  = {SB1, SC2}
SI2  = {SC1}

 = {SD1}

 = {SA, SB2, SG1}
SJ1  = {SA, SB2, SC2, SF1, SG1}
SJ2  = {SB1}

 = {SC1}

 = {SF2, SG2}

Table showing the sets of subsystem collections responsible for 
regulating each individual subsystem Sy. Each row shows a collection 

of subsystems ( ) that can trigger the occurrence of Sy.

S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S

S

Table 5: Other subsystems for the segment polarity network 
model

Subsystem States

SD1 wg1 = 1, WG1 = 1
SD2 wg1 = 0, WG1 = 0
SE1 wg2 = 1, WG2 = 1
SE2 Wg2 = 0, WG2 = 0
SF1 PTC1 = 1
SF2 PTC1 = 0
SG1 PTC2 = 1
SG2 PTC2 = 0
SH1 CIA1 = 1, ptc1 = 1
SH2 CIA1 = 0, ptc1 = 0
SI1 CIA2 = 1, ptc2 = 1
SI2 CIA2 = 0, ptc2 = 0
SJ1 CIR1 = 1, CIR2 = 1
SJ2 CIR1 = 0, CIR2 = 0

Table showing the remaining 14 subsystems for the segment polarity 
network model. For each subsystem, the second column of the table 
shows the nodes, cells (subscript) and states involved. The five main 
subsystems (SA, SB1, SB2, SC1 and SC2) are shown in Fig. 6.
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Moreover, as can be seen in Fig. 7B, the 5 main subsystems
still provide a breakdown of the attractors. Focusing on
subsystems allows us to look at the segment polarity net-
work from a different angle. The first thing that stands out
is that the subsystems exhibit a symmetry across the cell 1/
2 boundary, whereby every subsystem in cell 4/1 has a
symmetric counterpart in cell 3/2 (compare the pairs SA-SA,
SB1-SC1, SB2-SC2, SD1-SE1, SD2-SE2, SF1-SG1, SF2-SG2, SH1-SI1,
SH2-SI2, SJ1-SJ1 and SJ2-SJ2). Moreover, as can be seen in
Table 6, these symmetric counterparts are analogously
regulated. The protein SLP is crucial to setting up this sym-
metry, since it sets off a chain of interactions that nullifies
hh, HH and en in cells 3 and 4 (see SA in Fig. 6). This then
blocks signalling between cells 3 and 4, since (1) HH and
WG are the only proteins involved in cell – cell signalling
(in this model) and (2) en is the only gene (in this model)
that can receive signals from WG. Therefore, it appears
that one of the effects of SLP is to partition the cells in the
embryo into 'isolated' 4 cell wide blocks (at this develop-
mental stage) with the cell 1/2 boundary at the centre of
this block. SLP also imposes restrictions on interactions
within the neighbouring cells 1 and 2. This appears to be
sufficient to partition the 4 cells into two, 2-cell blocks
(cell 4/1 and cell 2/3) that have relatively independent
sub-dynamics. These two, 2-cell blocks are forced to
choose dynamics from SB1, SB2, SC1 and SC2, which in turn
specify the attractor chosen. Important interactions do
occur across the 1/2 cell boundary and sub-dynamics are
conserved across this boundary. However, the driving
force behind the dynamics and specification of the net-
work appear to come from the two, 2-cell wide blocks.
Whether this symmetry is inherent in the system or an

artefact of the model remains to be verified, since only
three attractors have been observed experimentally, and
so more data may be required. In order to gain added
insight into both the subsystems and the attractors, we
calculate the robustness of each attractor and subsystem
(see Tables 7 and 8). The robustness score is between 0
and 1 and measures how often the attractor/subsystem
can survive after a perturbation to any node state. SB1 and
SC1 are maximally robust in that no single node perturba-
tions can destroy them. This also implies that SB1 and SC1
draw in local sub-dynamics that only marginally differ
from them. Therefore, since SB1 and SC1 both occur in A2,
this partially explains why A2 is so dominant in the state
space, with over 98 % of network states converging to it.
On the other hand SB2 and SC2 are vulnerable to perturba-
tions, especially to nodes within the subsystems them-
selves. The wild type attractor is A1, which contains SB1
and SC2. Only a small proportion of the state space (0.01
%) converges to this attractor but it is still relatively robust
(0.67). It appears that this robustness is primarily due to
SB1, the same subsystem responsible for the characteristic
WG and EN/HH expression either side of the parasegment
boundary (in cell 4 and 1 resp).

Discussion and Conclusions
Described in this paper is a framework for identifying sub-
systems ('dynamical modules') from a Boolean network
model. This method of identifying subsystems is applica-
ble for systems with either fixed point attractors, cyclic
attractors or both. The methods are designed to be appli-
cable to genetic regulatory systems. Therefore, we have
applied the method to an existing model of the Drosophila

Breakdown of attractors for the segment polarity network modelFigure 7
Breakdown of attractors for the segment polarity network model. (A) Diagram showing the subsystems involved in 
specifying each of the attractors A1, ..., A10 in the model (attractors shown in Additional file 4). For each path (from top to bot-
tom), that collection of subsystems is unique to the attractor at the bottom of the path. (B) The 5 main subsystems are also 
sufficient to specify the 3 experimentally observed attractors A1, A2 and A3. These 5 subsystems are composed of subsystems 

from the original set.  = SA∪ SD2 ∪ SE2 ∪ SH2;  = SB1 ∪ SF2 ∪ SJ2;  = SB2 ∪ SF1 ∪ SJ1;  = SC1 ∪ SG2;  = SC2 ∪ SG1SA
∗ SB1

∗ SB2
∗ SC1

∗ SC2
∗
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segment polarity network. We identify novel subsystems
acting across cell boundaries, and demonstrate how they
regulate each other to give the attractors. Analysis of the
subsystems also allows us to predict which ones underlie
robustness in the wild type attractor.

Our methods are ideally suited to analysing multi-stable
systems, where different stable states/conditions are cap-
tured within different attractors. For a node set with two
or more different dynamics in multiple attractors, the dif-
ferent dynamics will form part of different intersection
sequences, partition sequences and subsystems. There-
fore, some identified subsystems will capture the key com-
ponents associated with particular stable states (for some
set of nodes). Meanwhile, other subsystems will capture

shared/conserved dynamics. For example, in the Dro-
sophila segment polarity network model, subsystems SB1,
SB2, SC1 and SC2 (Fig. 6) capture different states of 2 posi-
tive feedback loops, which underlie multistationarity in
this particular system. On the other hand, the subsystem
SA captures a conserved sub-state that can co-occur along-
side all of the remaining subsystems.

Once the subsystems have been identified, they can pro-
vide novel insight into aspects of the model. Firstly,
Boolean functions from the model can be used to deter-
mine how each subsystem is regulated. This knowledge
can then be used to provide a more detailed hierarchical
breakdown of the original attractors, allowing the key dif-
ferences and similarities between different attractors to be

Table 8: Robustness of subsystems in the segment polarity network model

Subsystem Robustness 
Global Internal External

SA 1.0 1.0 1.0
SB1 1.0 1.0 1.0
SB2 0.78 0.56 0.85
SC1 1.0 1.0 1.0
SC2 0.78 0.56 0.85
SD1 0.63 0.5 0.63
SD2 0.99 0.88 1.0
SE1 0.63 0.5 0.63
SE2 0.99 0.88 1.0
SF1 0.76 0.71 0.76
SF2 0.97 0.33 0.99
SG1 0.76 0.71 0.76
SG2 0.97 0.33 0.99
SH1 0.73 1.0 0.72
SH2 1.0 1.0 1.0
SI1 0.73 1.0 0.72
SI2 1.0 1.0 1.0
SJ1 1.0 1.0 1.0
SJ2 1.0 1.0 1.0

Robustness of each subsystem, where the score is between 0 and 1 and defined in the Results section.

Table 7: Robustness of attractors in the segment polarity network model

Attractor Basin of attraction Robustness

A1 0.01 % 0.67
A2 98.63 % 1.0
A3 1.27 % 1.0
A4 0.00035 % 0.60
A5 0.00005 % 0.58
A6 0.04 % 0.69
A7 0.0003 % 0.60
A8 0.00015 % 0.58
A9 0.04 % 0.69
A10 0.01 % 0.67

Robustness of each attractor, where the score is between 0 and 1 and defined in the Results section. We also give the percentage of state space 
converging to each attractor (estimated from a sample of 2,000,000 initial network states).
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highlighted. A second advantage of looking at subsystems
is that they can provide a new way of looking at robust-
ness and adaptability. An external perturbation may
switch the system from one attractor to another. However,
despite this, a subsystem may be robust and remain
unchanged. Looking at the effect of external perturbations
on subsystems can highlight which parts of the system are
most robust, or how certain subsystems can adapt/change
without affecting others.

Although we have focussed on Boolean network models
in this paper, the method can be adapted to other discrete-
state, discrete-time models/systems. Moreover, since sub-
systems (in our method) are found directly from the
attractors, a mathematical model or underlying network
topology is not even necessarily required to identify them.
Hierarchical links (see Results) between these subsystem
can also be found without a mathematical model. These
links allow dependencies between the subsystems to be
discovered, providing insight into potential functional
links. However, to gain a full understanding of how the
subsystems interact, and the nature of these links, details
of interactions between nodes (genes/proteins) are cur-
rently required. Importantly, our method can be applied
directly to data on the attractors of a system when these
data are incomplete. This can result either from only a
subset of the full set of attractors being known, or from
information being available for only a subset of nodes. In
these cases, the method will still break up the attractors
and identify relevant sub-dynamics. However, the more
attractors there are, the more detailed and informative the
eventual subsystems will be.

For many systems, data may be incomplete and/or noisy,
leading to models that are also incomplete and/or unreli-
able. Even in the case of the extensively studied Drosophila
segment polarity network, components may be missing
and not fully understood. The most important factor
affecting the quality of the results from our method (i.e.
whether we find useful subsystems) is the reliability of the
data/attractors. Even if there are some inaccuracies in a
model or network topology, we can still make some relia-
ble assertions, by focussing on the reliable data/attractors.
In the case of the Drosophila segment polarity network
model studied in this paper, 3 of the 10 attractors corre-
spond to observed phenotypes. As we have already
shown, applying the method directly to these 3 attractors

gives us 5 'primary' subsystems ( , see

Fig. 7B). Then, once extra attractors from any model are
taken into account, these 'primary' subsystems are split up
so that each new subsystem only comes from a single 'pri-
mary' subsystem (e.g. in the existing model, the subsys-

tem  splits into SA, SD2, SE2, SH2). Therefore, for any

future model of this system (with extra components or
interactions), the subsystems obtained from our method
should also relate back to these 5 primary subsystems

. Therefore, modules extracted from

the currently available data/models are still informative,
and those that only rely on observed data can be viewed
as reliable (even if they are larger/less detailed than the
'true' subsystems). New data and improved models will
just increase the precision of the results/subsystems.
Another way in which we can assess subsystems (from a
current model) is by looking at how robust they are. As
well as looking at how robust each subsystem is to pertur-
bations in node states, we can assess how robust each sub-
system is to changes in the model itself (such as changes
in Boolean functions or the addition of new compo-
nents). We envisage that this method can be extended in
a number of ways. Firstly, the method can be applied to
signal transduction pathways by having 'n' attractors rep-
resenting the state of the pathway(s) under 'n' different
environmental/cellular conditions. These attractors can
then be analysed with the new method to identify subsys-
tems within pathway(s). Additionally, there is no need to
restrict ourselves to studying cellular systems and we
envisage that the method will be applicable in other
fields.

The main method we have introduced could be applied
directly to large scale datasets, to extract novel functional
information. For an individual experiment, data on the
state of a set of nodes (genes/proteins) are taken from a
particular tissue, developmental stage and environmental
condition (e.g. normal, high/low temperature, light/
dark). Moreover, expression data are typically taken at dis-
crete time points and are often converted to binary (e.g. 1
= 'expressed', 0 = 'not expressed'). Therefore, the results of
each individual experiment would correspond to an indi-
vidual discrete-state discrete-time attractor. Although we
have not applied our method to a large datasets in this
paper, we believe that following methodology could be
used as a starting point

1. Carry out multiple experiments in different environ-
mental conditions/tissues/developmental stages, to give a
range of discrete-state attractors,

2. Apply the method described in this paper, directly to
this set of attractors (without using any model).

Then, identified subsystems would then be subsets of pro-
teins, whose collective dynamics are conserved across data

S S S S SA B B C C
∗ ∗ ∗ ∗ ∗, , , ,1 2 1 2

SA
∗

S S S S SA B B C C
∗ ∗ ∗ ∗ ∗, , , ,1 2 1 2
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sets. In principle, this method could be applied to either
time series data or fixed point data. However, since it is
more difficult to obtain accurate data on time courses
rather than steady states, we believe that the approach
would be most likely to yield valuable information for
fixed point/steady state data. We note here, that data from
mutants are not necessary for such an approach. In fact,
mutant data may not be as suitable, since each mutant
would correspond to a different system. This type of anal-
ysis would be complementary to clustering, which prima-
rily looks for groups of genes whose expression levels
change in unison.

Reliability of data will be a major issue if trying to apply
this method directly to experimental data. Expression data
are very noisy and the less reliable the data, the less certain
we will be about any identified subsystems. However, if
can still be the case that novel groupings of genes/proteins
could be found. Moreover, in the future, we envisage that
these methods can be adapted so that we estimate the
'probability' of certain partial state sequences occurring in
attractors, and then use this data to identify likely subsys-
tems.

One limitation of this method is that it may have difficul-
ties with systems with lots of cyclic attractors, each one
containing a similar (but not identical) sub-dynamic. This
is because we will get lots of similar intersection
sequences (Definition 4). Since this definition provides
the hierarchical backbone of the method, the method
could struggle to identify informative partition sequences
(Definition 5) or subsystems (Definition 6).

The method works best when (1) every attractor is a fixed
point or (2) different cyclic sub-dynamics interact hierar-
chically or independently. This implies that the dynamics
are partitioned in a strict hierarchical manner and there is
no ambiguity when selecting subsystems. In case (1), an
additional advantage is that all the fixed point attractors
still occur when any asynchronous/stochastic updating
scheme is used in a Boolean network model (once the
model reaches a fixed point attractor, no update can cause
the system to leave that attractor). Therefore, since subsys-
tems are found directly from the attractors, the subsystems
would also be the same. The situation of having all fixed
point attractors is often relevant when considering cell
type specification in developmental systems, where a cell
must settle on one of a number of fixed states.

Methods
Boolean network models
For the purposes of this paper, a Boolean network model
is a discrete time, deterministic, synchronous process act-
ing on a directed network of v nodes V = {n1, ..., nv}. At
each discrete time step t ≥ 0, each node ni ∈ V has a

Boolean state si(t) ∈ {0, 1} and these collectively form a
network state x = x(t) = (s1(t), ..., sv(t)). The model
progresses, from one time step to the next, by synchro-
nously updating these Boolean states according to a set of
Boolean functions f = (f1, ..., fv), as follows

- x(t + 1) = f(x(t)) = (f1(x(t)), ..., fv(x(t))).

As time progresses, x(t) eventually gets trapped in an
attractor A = {z0, ..., zp-1}. i.e. there is a time point t' for
which

- For all t ≥ t', x(t) = zk (where k = t - t' (mod p)).

Here, each zi ∈ A is called an attractor state

For a given model, there are typically multiple attractors
and these correspond to the stable dynamics of the sys-

tem. For the purposes of this paper  = {A1, ..., Ar} is the

set of all attractors. A method to identify every attractor in
a given Boolean network model is given in [13]. An exam-
ple of a Boolean network model, along with a sample of
its attractors, can be seen in Fig. 2.

It is possible to have models where nodes are updated in
an asynchronous fashion. The method of identifying sub-
systems (below) can still be applied to such models as
long as you focus on a specific set of attractors associated
with such an updating scheme. The case where node
updates are chosen stochastically is not explicitly consid-
ered here.

Algorithms
Below, we describe the main algorithms used in our new
method. As can be seen in Fig. 1, there are multiple proce-
dures/steps in our method, and so we describe each of
these steps separately; namely

- Identify every intersection sequence (satisfying Definition
4),

- Identify every partition sequence (satisfying Definition 5),

- Identify every subsystem (satisfying Definition 6).

Finally, if a suitable mathematical model is available, we
show how regulation sets can be found for each subsystem
(satisfying Definition 7). Formal proofs for all of the pro-
cedures can be found in Additional file 1 (Main Method)
and Additional file 2 (Regulation of Subsystems).

However, before describing the main procedure, we need
to be able to identify the partial state sequences that occur
in each attractor, given a node set N. Therefore, we first

A
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describe some procedures relating to partial state
sequences.

Algorithms: Partial state sequences

Given a node set N and an attractor A = {z0, z1, ..., zp-1},

the following procedure identifies a partial state sequence

 that occurs in A (i.e. the 3 properties of

Definition 3 are satisfied)

Procedure 1.

Initially let k = 0, b0 = 0 and  = {si ∈ z0 : ni ∈ N}. The

enter the following loop

Step 1: If k = p - 1, let q* = bp-1 + 1 and go to step 6

Step 2: Let j = k and increment k by 1 (let k = k + 1)

Step 3: If  = {si ∈ zk : ni ∈ N}, then let bk = bj and go to

step 1 (otherwise go to step 4)

Step 4: Let bk = bj + 1

Step 5: Let  = {si ∈ zk : ni ∈ N} and go to step 1

Step 6: If and q* > 1, reduce q* by 1 (let q* =

q* - 1)

Step 7: Let q be the smallest integer for which both

(a) q|q* (this can be q = q*)

(b) , whenever f ≤ bp-1, g ≤ bp-1 and f (mod q) = g

(mod q)

Step 8: For k = 0, ..., p - 1, let bk = bk (mod q)

end of procedure

A formal proof for this procedure can be be found in Addi-
tional file 1 (see Theorem S1.4 in section S1.1.1). How-
ever, here, we give a brief justification.

At the end of this procedure  occurs in A

and the 3 properties of Definition 3 are satisfied. Steps 2–
5 ensure that properties 1 and 2 are satisfied and the par-
tial states in P cycle within the attractor A in the correct

order (as the attractor progresses over time). Steps 3, 6, 7
and 8 ensures property 3, so that P is the smallest possible
set of partial states that cycles within A. In particular

(a) Steps 3 and 6 ensures no two adjacent partial states in
P are identical

(b) Step 7 ensures that if a sequence of states cycles many
times within an attractor, only one copy is kept.

This leaves a partial state sequence that just describes the
'order' in which the node states change in A (for nodes in
N).

This procedure can be easily modified to look at a partial

state sequence  (for a node set N)

occurring in another partial state sequence

 (where M ⊇ N).

Given a node set N and a set of attractors , we need to
be able to find a set of partial state sequences P1, ..., Pk that

are all distinguishable from one another and optimally

partition  into smaller sets .

One such way is to apply the following procedure (Proce-
dure 2). This will identify partial state sequences P1, ..., Pk

and sets of attractors  that satisfy properties A- F

below

A: For i = 1, ..., k, Pi involves the node set N (i.e.

)

B: For i = 1, ..., k, Pi occurs in every attractor A ∈ i

C: For i = 1, ..., k, Pi does not occur in any attractor A ∉ i

D: For any i, j (1 ≤ i <j ≤ k), 

E: 

F: Given the node set N, there are no other partial state

sequences P' ∉ {P1, ..., Pk} that occur in any attractor A ∈

 (unless P' and some Pi contain the same partial states

in the same order, within a rotation)

Procedure 2.

P N
q
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Begin with the node set N and set of attractors  and then
carry out the following steps

Step 1: For every attractor Aj ∈ , apply Procedure 1 to N

and Aj, to get a partial state sequence Qj that occurs in Aj.

Step 2: Put the Qj's into groups i = 1, ..., k, whereby two

partial state sequences ,  go in the same group ⇔

 is equivalent to  (i.e.  contains the same partial

states in the same order, within a rotation). Here, k is the
minimum number of groups required to hold every Qj.

Step 3: For each group, i, let

i) Pi = any Qj in the group i

ii) i = {Aj : Qj is part of the group i}

end of procedure

A formal proof for this procedure can be be found in Addi-
tional file 1 (see Theorem S1.10 in section S1.1.3). How-
ever, here, we give a brief justification of why properties A
– F are satisfied at the end. If a partial state sequence

 occurs in an attractor A then so will

q - 1 other equivalent partial state sequences that contain
the same partial states in the same order (within a rota-

tion). e.g.  Moreover, if P occurs in

an attractor A then no other partial state sequences for the
same node set N can (other than the equivalent ones).
Then, because

- Each partial state sequence Qj (from Step 1) occurs in the
attractor Aj and involves a node set N,

- Partial state sequences found in Step 1 are only grouped
together (in Step 2) if they are equivalent,

- Attractors are only grouped together in Step 3, if equiva-
lent partial state sequences occur in them,

properties A, B, C and F must be satisfied. Properties D
and E are satisfied because each attractor is put into
exactly one set in Step 3.

Algorithms: Intersection sequences (Stage 1)

Identifying every intersection sequence is equivalent to
finding every partial state sequence that satisfies the 3

properties of Definition 4 (for some set of attractors ,
say).

The method for identifying every intersection sequence
can be visualised by considering the tree in Fig. 8. Search-
ing through a tree analogous to this one (for a network
with nodes V = {n1, ..., nv}), means that every node set N

can be visited at some point. Then, using Procedure 2, we
can identify the partial state sequences that occur in each
attractor (for each node set N). Then, after the tree has
been fully examined, we can pick out the partial state
sequences (P) and sets of attractors  that satisfy the 3
properties of Definition 4. In reality, many branches of
the tree can be ignored, leading to improvements in effi-
ciency (discussed below).

We first give the procedure for identifying every intersec-
tion sequence, then give an example and finally discuss
ways to make the process more efficient.

C

C

′Qx ′Qy

′Qx ′Qy ′Qx

C

P N N
q
N= −{ , ,..., }x x x0 1 1

′ = −P N
q
N N{ ,..., , }x x x1 1 0

C

C

Identifying Intersection sequencesFigure 8
Identifying Intersection sequences. Every path from left 
to right (starting at '-') in this tree represents a different node 
set N ⊆ V = {n1, n2, n3, n4, n5}. It is possible to search this tree 
and visit every node set N ⊆ V (exactly once). For example, 
follow the path {n1} → {n1, n2} → {n1, n2, n3} → {n1, n2, n3, n4} 
→ {n1, n2, n3, n4, n5} → {n1, n2, n3, n5} → {n1, n2, n4} → {n1, n2, 
n4, n5} → {n1, n2, n5} → {n1, n3} → {n1, n3, n4} → {n1, n3, n4, n5} 
→ {n1, n3, n5} → {n1, n4} → {n1, n4, n5} → {n1, n5} → {n2} → 
{n2, n3} → {n2, n3, n4} → {n2, n3, n4, n5} → {n2, n3, n5} → {n2, 
n4} → {n2, n4, n5} → {n2, n5} → {n3} → {n3, n4} → {n3, n4, n5} 
→ {n3, n5} → {n4} → {n4, n5} → {n5}
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Procedure 3
First, consider the tree in Fig. 8 and note that for every
node set N, there exists a path from left to right (starting
at '-') that corresponds to it. Therefore, searching through
a tree analogous to the one in Fig. 8 (for a network with
nodes V = {n1, ..., nv}), every node set N can be visited at
some point.

The procedure searches through the tree (as in Fig. 8) and
carries out the following steps for each node set N. At the
end of the procedure the set S contains every intersection
sequence

Step 0 (Initialisation): Let S = ∅ and let N = ∅ (-)

Step 1: Move onto the next node set N in the tree (as in
Fig. 8).

Step 2: For the node set N, apply Procedure 2 to identify
partial state sequences P1, ..., Pk and sets of attractors

 satisfying

A: For i = 1, ..., k, Pi involves the node set N (i.e.

)

B: For i = 1, ..., k, Pi occurs in every attractor A ∈ i

C: For i = 1, ..., k, Pi does not occur in any attractor A ∉ i

D: For any i, j (1 ≤ i <j ≤ k), 

E:  (the set of all attractors)

F: Given the node set N, there are no other partial state

sequences P' ∉ {P1, ..., Pk} that occur in any attractor A ∈

Step 3: For i = 1, ..., k, add the pair {Pi, i} to the set S

Step 4: For i = 1, ..., k, check S to see if there is any pair

{ } for which either of the following

are true

(a) M ⊂ N and 

(b) M ⊃ N and 

If (a) is true, remove {Q, } from S. If (b) is true, remove
{Pi, i} from S

Step 5: If the tree has been completely searched, end pro-
cedure. Otherwise, return to step 1.

end of procedure

A formal proof for this procedure can be be found in Addi-
tional file 1 (see Theorem S1.14 in section S1.2.1). How-
ever, here, we give a brief justification.

At the end of the procedure, S gives a complete set of inter-
section sequences (satisfying the 3 properties of Defini-
tion 4). Step 2 ensures every partial state sequence that
satisfies properties 1 and 2 are identified for each node set
N. Step 4 then ensures that only those satisfying property
3 remain in S.

As an example of how the procedure finds intersection
sequences, consider the model in Fig. 2 and the intersec-
tion sequence P3 (from Fig. 3). When the node set N = {n2,
n3, n4} is analysed in Step 2 of the algorithm (using Pro-
cedure 2) we find two distinct partial state sequences that
satisfy properties 1 and 2 of Definition 4, namely

- P3 that intersects at 3 = {A1, A2, A3}

- Px = {s2 = 0, s3 = 0, s4 = 0} that intersects at x = {A4}

The remainder of the algorithm involves deciphering
whether of these partial state sequences satisfy the final
property (Property 3 of Definition 4). This can be done by
looking at the way the attractors are split for different
node sets. For the node set N = {n2, n3, n4} (above) we
split the attractors as follows - {A1, A2, A3} + {A4}. For
larger nodes sets M ⊃ N

M1 = {n1, n2, n3, n4} splits the attractors as follows - {A1,
A2} + {A3} + {A4}

M5 = {n2, n3, n4, n5} splits the attractors as follows - {A1}
+ {A2} + {A3} + {A4}

M6 = {n2, n3, n4, n6} splits the attractors as follows - {A1}
+ {A2} + {A3} + {A4}

etc

Therefore, when P3 and 3 = {A1, A2, A3} are considered

in Step 4, it can never be removed from the set S. This is

because when a larger node set M ⊃ N is considered, we

will never have a set of attractors  (or ).
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Therefore, P3 satisfies the property 3 and is an intersection

sequence. However, Px is not an intersection sequence

since the corresponding set of attractors ({A4}) is still

associated with a larger node set M ⊃ N. Therefore it will
be removed from the set S in Step 4 (either when N or M
is analysed in the procedure).

We now explain how the procedure can be made more
efficient

Improving efficiency(1)

Consider node sets N ⊂ M and two partial state sequences

 and  that both occur

in some attractor A. Then, P' must contain P and hence
only occur in an attractor whenever P does (proved in
Lemma S1.12 of Additional file 1).

Therefore, if N ⊂ M ⊂ V, and P only occurs in a single
attractor A*, neither P nor P' can be intersection
sequences. This is since the attractor A* is itself a partial
state sequence (for a larger node set V) that occurs in
exactly the same set of attractors (i.e. just A*), and so
property 3 of Definition 4 fails.

Therefore, if Step 2 of Procedure 3 identifies a partial state

sequence  that only occurs in a single

attractor i = {A*}, we know that re-analysing this attrac-

tor {A*} for any node set M ⊃ N is pointless.

We show one way in which this knowledge can improve

efficiency in Procedure 3. Suppose, attractors 

were returned as single attractors in Step 2, when analys-

ing an earlier node set P ⊆ N (including P = N). Then,
when a path is extended to the right in the tree (Fig. 8)

from a node set N to a node set M ⊃ N, Procedure 2 in Step
2 need only be applied to the smaller set of attractors

Moreover, if every attractor is returned as a single attractor
in Step 2, when analysing an earlier node set P ⊆ N
(including P = N), there is no need to extend the path to
look at node sets M ⊃ N. In Fig. 8, this is equivalent to
ignoring all longer paths that include extra nodes to the
right. For example, if N = {n1, n3}, there would be no need
to look at longer paths (from left to right) that give node
sets M = {n1, n3, n4}, M = {n1, n3, n5} or M = {n1, n3, n4,
n5}.

However, because all of the attractors are intersection
sequence, the full node set V = {n1, ..., nv} should still be
fully analysed in Steps 2 – 4 (possibly at the very end of
the procedure).

Improving efficiency(2)
As can be seen in Fig. 8, some nodes appear less than oth-
ers, with the least frequent nodes visited earlier in the tree.
Therefore, it is likely to be advantageous to re-index nodes
in the tree during the search. At any stage during the
search, nodes along paths to the right (from a node set N)
can be re-indexed without impairing our ability to search
the tree. For example, once N = {n1, n3} has been reached,
re-indexing nodes {n4, n5} to {n5, n4} still allows us to
reach the same node sets M = {n1, n3, n4}, M = {n1, n3, n5}
and M = {n1, n3, n4, n5}, as before. However, they would
be visited in a different order (M = {n1, n3, n5} then M =
{n1, n3, n4} then M = {n1, n3, n4, n5}).

Once a node set N has been analysed, re-indexing so that
the next node nj to be visited maximises c (below) will
speed up the search

- For the sets of attractors  identified in Step 2

(for the new node set M = N ∪ {nj}), i = {Ai} is a single

attractor for c (≤ k) different values of i

Although this involves carrying out Step 2 multiple times
(to compare different nj's), selecting an nj that gives lots of

single attractor i's will mean less analysis later on (as

discussed above). The quicker we can reach a stage where
every set i in Step 2 is a single attractor, the more of the

tree can be ignored during the rest of the search.

Algorithms: Partition sequences (Stage 1)

In order to identify every partition sequences, we start
with the full set of intersection sequences and all the cor-
responding sets of attractors (obtained from Procedure 3).
i.e. every pair {P, } such that P intersects at . Then,
these intersection sequences are used to identify all the
partial state sequences that satisfy any of properties A, B or
C of Definition 5. Using the complete list of intersection
sequences, properties A, B and C are considered inde-
pendently and partition sequences stored after each test.

Part A: Core components

From Procedure 3, we get a set S that contains the com-
plete set of intersection sequences, along with the set of
attractors each one intersects at (if {P', } S, then P' inter-
sects at ).
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Using this set S as an input, the following procedure iden-
tifies every partial state sequence that is core to some set
of attractors (i.e every partial state sequence P satisfying
Definition 5A)

Procedure 4. A
Initially, let the set T = ∅ (empty set)

Then, for every intersection sequence

, carry out the fol-

lowing steps

Step 1: From the complete set of intersection sequences
(S), identify every Qi (for the node set Mi) for which

(a) Qi intersects at i, where 

(b) There is no intersection sequence Q* (for a larger

node set M* ⊃ Mi) that intersects at 

Step 2: Let k be the number of partial state sequences from
Step 1

Step 3: Let N = M1 ∩ ... ∩ Mk (N ⊆ N' since P' is itself iden-
tified in Step 1)

Step 4: If N ≠ ∅ in Step 3, find a partial state sequence

 that occurs in P' (see Procedure 1).

Step 5: If N ≠ ∅ in Step 3, add the pair {P, } to the set T

end of procedure

At the end of the procedure, T contains every partial state
sequence P that is core to some set of attractors  (i.e
every partial state sequence P satisfying Definition 5A).
Essentially, we take each intersection sequence P' in turn
and then re-run though the set of all intersection
sequences to find those (Qi, for a node set Mi) that satisfy

the following

(a) Qi co-occurs with P' in at least one attractor (Qi can be
P').

(b) Qi isn't contained in a larger intersection sequence
(Q*, say) that co-occurs with P' in the same attractors

Then, the node set N = M1 ∩ ... ∩ Mk is the core set of

nodes underlying P' and the attractors it occurs in ( ).
The partial state sequence P that satisfies property A is

then just partial state sequence (for the node set N) that
occurs in P'

A formal proof for this procedure can be be found in Addi-
tional file 1 (see Theorem S1.17 in section S1.2.2). How-
ever, here, we give a brief justification.

The 3 properties of Definition 5A are satisfied, for all the
identified partial state sequences P. Property 2 is satisfied
because of the following. If an intersection sequence Q
(for a node set M) intersects at a set of attractors  (where

), then there is an intersection sequence Q'
(for a node set M') identified in step 1 for which

- M ⊆ M' ⊆ N (because of Steps 1 and 3)

- Q' occurs in every attractor A ∈  (because of Step
1)

and so

- M ∪ N ⊇ M'

- Q' occurs in every attractor A ∈ 

Property 1 is satisfied because of Step 4. Property 3 is sat-
isfied because of the way N is chosen in Step 3. We note
that every partial state sequence satisfying Definition 5A is
identified because (a) Property 1 implies that such a
sequence must occur in an intersection sequence and (b)
every intersection sequence is analysed independently.

Part B: Exclusive (Procedure 4B)
This is simply done by searching through all intersection
sequences (in S) and identifying those that satisfy Defini-
tion 5B.

Part C: Independently Oscillating (Procedure 4C)
This is simply done by searching through every pair of
intersection sequences (in S) to see which pairs satisfy
Definition 5C. Where such a pair is found, both of them
are partition sequences.

Algorithms: Subsystems (Stage 2)
In order to identify every subsystem, we start with the full
set of partition sequences from Stage 1. i.e. every partial
state sequence satisfying properties either A, B and C of
Definition 5, The following procedure identifies every
subsystem (satisfying Definition 6)

Procedure 5.

Initially, let the set U = ∅ (empty set)
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Then, for every partition sequence 

(identified in A, B or C of the previous section), carry out
the following steps

Step 1: From the complete set of partition sequences,
identify every partition sequence Pi (for a node set Mi) for
which

(a) Mi ⊂ M

(b) Pi and P both co-occur in some attractor A

(This also implies that Pi occurs in P)

Step 2: Let k be the number of partition sequences from
Step 1

Step 3: Let N = M\(M1 ∪ ... ∪ Mk)

Step 4: If N ≠ ∅, identify  that

occurs in P (see Procedure 1)

Step 5: If N ≠ ∅, add S (identified in Step 4) to the set U

end of procedure

For each partition sequence P (for a node set M, say), we

look to see which other partition sequences  (for

node sets ) occurs within it. Then the node set

N, which is unique to P, can be calculated as N = M\(M1

∪ ... ∪ Mk). If N ≠ ∅, the partial state sequence S (for the

node set N) that occurs in P, is stored as a subsystem.

A formal proof for this procedure can be be found in Addi-
tional file 1 (see Theorem S1.19 in section S1.3). How-
ever, here, we give a brief justification.

At the end of the procedure, U contains every subsystem P
satisfying the 3 properties of Definition 6. Essentially,
property 1 is satisfied because of Step 4. Property 2 is sat-
isfied because of Step 1 and the choice of N in step 3.
Property 3 is satisfied because N is the largest set for which
Mi ∩ N = ∅ for all i = 1, ..., k. We note that every partial
state sequence satisfying Definition 6 is identified because
(a) Property 1 implies that such a sequence must occur in
an partition sequence and (b) every partition sequence is
analysed independently.

Algorithms: Regulation of subsystems
In order to show how regulation sets can be identified for
each subsystem, we first focus on how partial states are
regulated in Boolean network models (although all the

methods are applicable to other discrete-state discrete-
time logical models).

It may be that a partial state xN controls some Boolean
functions {fi : ni ∈ M} and ensure the occurrence of yM in
the following time step. i.e xN is a predecessor of yM (or xN

triggers the occurrence of yM). For example, in Fig. 2, by fol-
lowing the Boolean functions it is possible to say that

- The occurrence of  = {s2 = 1, s3 = 1} can be triggered

by the occurrence of  = {s1 = 1, s2 = 1}.

- The occurrence of  = {s1 = 1, s2 = 1} can be triggered

by the occurrence of  = {s1 = 1}.

or  = {s1 = 1} triggers the occurrence of  = {s2 = 1, s3

= 1} after two time steps.

This notion of predecessors can be extended to look for
predecessors within attractors and subsystems. Going
backwards around an attractor it is possible to identify
which partial states are responsible for triggering the
occurrence of other partial states in the same attractor
state at a later point in time. Returning to the example in
Fig. 2, and looking at attractor A1, it is possible to go back-
wards around the attractor via two different routes to say

Route 1:

The occurrence of {s2 = 1, s3 = 1} in z0 can be triggered by
the occurrence of {s1 = 1, s2 = 1} in z3

The occurrence of {s1 = 1, s2 = 1} in z1 can be triggered by
the occurrence of {s1 = 1} in z2

The occurrence of {s1 = 1} in z2 can be triggered by the
occurrence of {s1 = 1} in z1

The occurrence of {s1 = 1} in z3 can be triggered by the
occurrence of {s1 = 1} in z0

Route 2:

The occurrence of {s2 = 1, s3 = 1} in z0 can be triggered by
the occurrence of {s2 = 1, s3 = 1} in z3

The occurrence of {s2 = 1, s3 = 1} in z1 can be triggered by
the occurrence of {s2 = 1, s3 = 1} in z2

The occurrence of {s2 = 1, s3 = 1} in z2 can be triggered by
the occurrence of {s2 = 1, s3 = 1} in z1

P M M
r
M= −{ , ,..., }y y y0 1 1

S N N
q
N= −{ , ,..., }x x x0 1 1

′ ′P Pk1,...,

′ ′M Mk1,...,

x3
N

x2
N

x2
N

x1
N

x1
N x3

N

Page 22 of 26
(page number not for citation purposes)



BMC Bioinformatics 2007, 8:413 http://www.biomedcentral.com/1471-2105/8/413
The occurrence of {s2 = 1, s3 = 1} in z3 can be triggered by
the occurrence of {s2 = 1, s3 = 1} in z0

and so we have

1. {s1 = 1} triggers the occurrence of {s2 = 1, s3 = 1} in the
attractor state z0

2. {s2 = 1, s3 = 1} triggers the occurrence of {s2 = 1, s3 = 1} in
the attractor state z0

(Note: Similar conclusions could also be made for z1, z1
and z3)

So, more generally, given a partial state yM that occurs in

an attractor state z ∈ A, we want to be able to find a suita-

ble collection of predecessors  (that trigger the

occurrence of yM in z).

Procedure 6. Given a partial state yM that occurs in an

attractor state z ∈ A, this procedure identifies partial states

 that trigger the occurrence of yM in z.

Starting from the partial state yM in z, this procedure
involves going backwards around the attractor A (as in the
above example) and identifying new predecessors at each
step (using a method adapted from [13]). The procedure

ends when no more new predecessors  (that trigger

the occurrence of yM in z) can be found.

Since much of this method involves adapting a previously
published algorithm (from [13]), we do not give full
details here. More details of this procedure can be found
in section S2.1 of Additional file 2 (in particular, Proce-
dures S2.8 and S2.11)

end of procedure

We now want to apply these procedures to subsystems. In
particular, we want to find collections of subsystems

 whose co-occurrence in an attractor trig-

gers chain of interactions that results in the occurrence of
Sy.

Returning to the above example (from Fig. 2), we carry out
Procedure 6 on S1 = {s2 = 1, s3 = 1} in all of the attractor
states in A1, A2 and A3 (which contain S1), which gives the
following results.

A1 and A2: S1 = {s2 = 1, s3 = 1} can trigger the occurrence of
S1 = {s2 = 1, s3 = 1} in the attractor states z0, z1, z2 and z3

A1 and A2: S2 = {s1 = 1} can trigger the occurrence of S1 =
{s2 = 1, s3 = 1} in the attractor states z0, z1, z2 and z3

A3: S1 = {s2 = 1, s3 = 1} can trigger the occurrence of S1 =
{s2 = 1, s3 = 1} in the attractor states z0 and z1

Therefore, by looking at all of the attractor states (individ-
ually) in each attractor, we can say that

(a) S2 can trigger the occurrence of S1 in attractors A1 and
A2.

(b) S1 can trigger the occurrence of itself (S1) in attractors
A1, A2 and A3.

This is then sufficient to give a regulation set for S1;

namely 1 = {S1} and 2 = {S2}. In this very simple

example, the same subsystems/partial states are involved
in every attractor state within an attractor. However, it
may be case that different subsystems are involved in trig-
gering different partial states (from a subsystem Sy) in dif-

ferent attractor states, and so it is necessary to consider
each attractor state individually.

Procedure 7 (below) demonstrates a method of identify-

ing a regulation set for a subsystem .

This is done by looking at every attractor state in every
attractor (containing Sy) to see how what triggers the

occurrence of each relevant partial state .

However, since partial states within subsystems could be
subject to different time lags in different attractors (see
Definition 3), we first note that we need to consider the
precise dynamics (the instances) of subsystems in attrac-
tors. i.e.

Definition 9. Consider a collection of subsystems  =

{S1, ..., Sf} where every  involves a

node set Ni and occurs in the attractor A = {z0, ..., zp-1}

The instance of  in A is the partial state sequence

, where

1. M = N1 ∪ ... ∪ Nf

x x1
1N

k
Nk,...,

x x1
1N

k
Nk,...,

x j
Nj

Sx x xS S
y

= { ,..., }
1

S S

Sy
M

p
M= −{ ,..., }y y0 1

yi
M

S

Si i
N

i
Ni

qi

i= ∈{ ,..., }x x
0

S

S

z z0 1
M

p
M,..., −
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2. For k = 0, ..., p - 1,  = {sx ∈ zk : nx ∈ M}.

We can then use this terminology to describe whether a
collection of subsystems  = {S1, ..., Sf} triggers an indi-

vidual subsystem Sy in an attractor A. i.e If the co-occur-

rence of subsystems S1, ..., Sf ensures the occurrence of Sy

in A.

Definition 10. Suppose we have

1. An attractor A = {z0, ..., zp-1}

2. A collection of subsystems  where

(a)  all occur in A

(b)  is the instance of x in A

3. An individual subsystem Sy where

(a) Sy occurs in A

(b)  is the instance of Sy in A

Then x triggers the occurrence of Sy in A if the following

holds for every i ∈ {0, ..., p - 1}

-  triggers the occurrence of  in the attractor state zi

∈ A.

We now give the procedure for identifying a regulation set
of a subsystem Sy (Procedure 7). At the start of the proce-

dure, we take a subsystem Sy (involving a node set My) and

a set of attractors y, where

(a) Sy occurs in every attractor A ∈ y

(b) Sy does not occur in any attractor A ∉ y

Moreover, we assume we know every subsystem

, along with the node set involved (N)

and a list of attractors it occurs in. Each subsystem and
node set N is a by-product of the method of identifying
subsystems (described previously in this Methods section).
A list of attractors can be found by applying Procedure 2

to the node set N (and the full set of attractors). This infor-
mation is used in Step 2 of the procedure (below).

Procedure 7.

Initially, let the set R = ∅ (empty set)

For every Ai = {z0, ..., zp-1} ∈ y carry out the following

steps.

Step 1: Let the set Ri = ∅. Let the sets U0, ..., Up-1 = ∅

Step 2: Identify every subsystem T1, ...., Th that occurs in
Ai. Moreover, let M1, ..., Mh be the node sets involved in T1,
...., Th (resp)

Step 3: Identify the instance of Sy in Ai. i.e. .

(The procedure for this is obvious from Definition 9,
given the node set My and attractor Ai)

Step 4: For j = 0, ..., p - 1, carry out Procedure 6 to identify

predecessors of  in zj ∈ Ai (i.e. the partial states that

trigger the occurrence of  in zj). The resulting prede-

cessors are added to the set Uj

Step 5: For every possible combination of partial states

 satisfying

-  ∈ Uj (for j = 0, ..., p - 1)

carry out the following

(a) Let N = N0 ∪ ... ∪ Np-1

(b) Let  = {Ta : Ma ∩ N ≠ ∅}

(c) Add  to the set Ri

Step 6: Remove all subsystem collections  from Ri that

contain other subsystem collections ' ∈ Ri. (i.e. )

Step 7: Add the subsystem collections in Ri to the set R

end of procedure

zk
M

S

Sx x xS S
y

= { ,..., }
1

S Sx xf1
,...,

x x0 1
N

p
N,..., − S

y y0 1
M

p
M,..., −

S

xi
N yi

M

C

C

C

S N
q
N= −{ ,..., }x x0 1
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y y0 1
M

p
My y,..., −

y j
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y j
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x x0 1
0 1N
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−
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At the end of this procedure, every subsystem collection 

∈ Ri triggers the occurrence of Sy in the attractor Ai (i.e.

Definition 10 is satisfied). For every attractor state zj ∈ Ai,

we identify the partial state  ∈ Sy that occurs in zj (Step

3). Then, starting from the partial state  in the attrac-

tor state zj, we go backwards around the attractor, identi-

fying suitable predecessors at each time step (this
backwards process can go multiple times around the
attractor). This will then give us a list of partial states that

can trigger the occurrence of  in zj (added to Uj Step

4). Having done this for every attractor state zj ∈ Ai, Step 5

then pulls the results together to find collections of sub-
systems  = {S1, ..., Sf} that triggers the occurrence of Sy in

A (i.e. those collections that satisfy Definition 10). In par-
ticular, finding collections for which the following is true.

For every attractor state zj ∈ Ai, there exists a partial state

 that satisfies

(a)  triggers the occurrence of  in zj

(b)  only involves nodes and states from the subsys-

tems {S1, ..., Sf}

Step 6 just ensures that only the most informative collec-
tions are kept and there is no redundancy. Finally, since
these collections of subsystems are added to the set R in
Step 7, for every attractor (which contains Sy), R =

{ } is a regulation set and satisfies the properties

of Definition 7.

A formal proof for this procedure can be be found in Addi-
tional file 2 (see Theorem S2.20 in section S2.2.2). How-
ever, this procedure shows just one way of a regulation set,
for a subsystem Sy. There may be more than one possible
regulation set for a subsystem and some may be more
descriptive than others. In Section S2.2.1 and S2.2.2 of
Additional file 2, we give some some extra constraints
(and corresponding procedures) that can be applied when
looking for regulation sets.
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