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Abstract
Background: Knowing the subcellular location of proteins provides clues to their function as well
as the interconnectivity of biological processes. Dozens of tools are available for predicting protein
location in the eukaryotic cell. Each tool performs well on certain data sets, but their predictions
often disagree for a given protein. Since the individual tools each have particular strengths, we set
out to integrate them in a way that optimally exploits their potential. The method we present here
is applicable to various subcellular locations, but tailored for predicting whether or not a protein
is localized in mitochondria. Knowledge of the mitochondrial proteome is relevant to
understanding the role of this organelle in global cellular processes.

Results: In order to develop a method for enhanced prediction of subcellular localization, we
integrated the outputs of available localization prediction tools by several strategies, and tested the
performance of each strategy with known mitochondrial proteins. The accuracy obtained (up to
92%) surpasses by far the individual tools. The method of integration proved crucial to the
performance. For the prediction of mitochondrion-located proteins, integration via a two-layer
decision tree clearly outperforms simpler methods, as it allows emphasis of biologically relevant
features such as the mitochondrial targeting peptide and transmembrane domains.

Conclusion: We developed an approach that enhances the prediction accuracy of mitochondrial
proteins by uniting the strength of specialized tools. The combination of machine-learning based
integration with biological expert knowledge leads to improved performance. This approach also
alleviates the conundrum of how to choose between conflicting predictions. Our approach is easy
to implement, and applicable to predicting subcellular locations other than mitochondria, as well as
other biological features. For a trial of our approach, we provide a webservice for mitochondrial
protein prediction (named YimLOC), which can be accessed through the AnaBench suite at http:/
/anabench.bcm.umontreal.ca/anabench/. The source code is provided in the Additional File 2.

Background
The eukaryotic cell is highly organized: various biological
processes are associated with specialized subcellular struc-
tures (such as protein export across the cell membrane),

or confined to particular compartments (e.g., respiration
in mitochondria). Subcellular location provides impor-
tant clues about a protein's function and this knowledge
is therefore used to assist in the annotation of newly dis-
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covered or sequence-inferred proteins. On the other hand,
the location of proteins with known function unravels
where the corresponding biological processes take place
and how they are connected amongst each other. Pro-
teomics and microscopic detection of tagged or labelled
proteins are powerful experimental approaches for deter-
mining protein localization. However, for most species,
these approaches are costly in time and expense, and so
there is a need for in silico prediction. A plethora of bioin-
formatic prediction methods have been developed in the
past [1-21], and a dozen or so computational tools are
publicly available (for a review see [22]). Most of these
tools employ machine learning methods, i.e., they learn
location-specific sequence features from known exam-
ples, and then extrapolate the learned rules to make pre-
dictions for proteins of unknown locations.

The targeting peptide, a conserved sequence motif usually
located at the N-terminus of proteins, is a widely used
sequence feature to identify a protein's location within the
cell. This signal interacts with the import machineries of
organelles such as mitochondria, chloroplasts and the
endoplasmic reticulum. A number of tools use this signal
for identifying proteins imported into organelles, notably
MitoProt [23], TargetP [24], iPSORT [25], Protein
Prowler [26], Signal-CF [27], and Predotar [28]. How-
ever, some organelle-imported proteins lack a N-terminal
targeting peptide (e.g., the ADP/ATP carrier that is embed-
ded in the inner mitochondrial membrane [29]) and
therefore remain undetected by the tools above. In addi-
tion, application of these tools for genome-sequence-
inferred proteins is limited, because the N-terminus of
hypothetical proteins is often uncertain.

Another approach to identifying protein localization is
based on sequence similarity with proteins of known loca-
tion. For instance, a protein which shares a high similarity
with a mitochondrial NADH:ubiquinone oxidoreductase
subunit is very likely located in mitochondria. Sequence
similarity combined with text annotation is used, for
example, by the web-server 'Proteome Analyst Specialized
Subcellular Localization Server' (PASUB) [30]. PSLT [31]
predicts protein localization by searching for particular
protein motifs and membrane domains. The underlying
assumption is that proteins belonging to the same com-
partment share common domains. Both sequence-simi-
larity-based and domain-based predictions have the
limitation of depending on the existence of known
homologs or known domains.

Several prediction tools do not rely on sequence similarity
to known proteins or domains, but instead exploit a pro-
tein's amino acid composition and biochemical proper-
ties. Subloc [32], for instance, classifies proteins

according to amino acid frequency, while CELLO [33]
uses ungapped and gapped amino acid pair composition.

Certain tools combine several inherent sequence features
and some also include textual information. For example,
ESLpred [34] uses n-peptide composition and physico-
chemical properties, together with PSI-BLAST results.
pTARGET [35] calculates scores based on the occurrence
pattern of Pfam domains [36] and amino acid composi-
tion. SherLoc [37] exploits amino acid composition, tar-
geting peptides, and motifs, as well as annotation and text
description drawn from the literature or SwissProt entries.

It has been shown before that combining various predic-
tion methods often yields better accuracy than the indi-
vidual methods [38]. In fact, several of the above
mentioned tools integrate different classifiers. CELLO
[33], for instance, employs a two-level support vector
machine (SVM) classification system. The first level builds
individual SVM classifiers, one each for n-peptide compo-
sition, gapped-dipeptide composition, and so on. Each of
these classifiers generates a probability distribution,
which is then processed by a second-level SVM to calcu-
late the final probability for a protein to belong in a cer-
tain subcellular location. The second-level SVM achieves a
notably higher accuracy than the individual first-level
classifiers. Similarly, SherLoc [37] uses the output vectors
of different sequence-based classifiers and a text-based
classifier as input for the final SVM classifier. An alterna-
tive approach builds Bayesian classifiers based on Markov
chains, and constructs a hierarchical ensemble of these
classifiers [39].

Each of the available localization prediction tools (subse-
quently referred to as LOC-tools) has different strength,
and no tool is clearly and globally optimal. Any given
LOC-tool performs well on certain data but poorly on
others, and often predictions by different tools disagree
(see examples in Table 1). This is not surprising, because
LOC-tools employ different machine learning algorithms,
sequence features, and training data.

This report introduces a comprehensive and simple sys-
tem for protein location prediction. Following the maxim
'unite and conquer', our approach combines the comple-
mentary strengths of existing prediction methods. Using
the example of mitochondrial location, we integrated het-
erogeneous localization predictors by different strategies,
tested performance with known data and selected the
most efficient way of integration. The presented method-
ology is readily applicable to proteins from subcellular
locations other than mitochondria, and even to the pre-
diction of other biological features for which multiple,
heterogeneous tools exist.
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Results
As described in the Method section, we collected ~1,000
yeast proteins, ~1,000 Arabidopsis proteins, and ~3,000
human proteins of known subcellular location. Figure 1
shows the performance of nine individual LOC-tools on
these data sets: TargetP, Subloc, SherLoc, pTARGET, Pre-
dotar, PProwler, PASUB, MitoProt, and CELLO. In the
subsequent step, the predictions of these heterogeneous
tools were integrated by different strategies. We employed
the same procedure for all three datasets. Here, we show
the results for yeast; those for Arabidopsis and human are
given in Additional File 1.

Integration of LOC-tool predictions by grouping and 
majority-win voting
We formed 502 different groups ("voting groups") from
nine individual LOC-tools. The predictions of the tools
within each group are integrated by majority-win voting
(see Methods section). Figure 1 (dots) shows that the per-
formance on mitochondrial proteins varies greatly among
the groups (see also Additional File 1: Figures S1 – S2).
While the False Positive Rate (FPR) is generally low (<
0.05), the True Positive Rate (TPR) varies from 0.26 to
0.75. The best result is produced by the voting group
pTARGET+PASUB+CELLO (TPR: 0.75, FPR: 0.02), but
PASUB alone performs nearly as well (TPR: 0.74, FPR:
0.05). Thus, the gain of integration by majority-win vot-
ing is only moderate.

Integration of LOC-tool predictions by decision tree
For integration by decision trees, we took the predictions
of the LOC-tools as input to construct classifiers by the
C4.5 algorithm [40]. A total of six different decision trees
were built as summarized in Table 2. First, outputs of all
LOC-tools were employed as equivalent attributes. The
resulting decision tree (referred to as LOC-DT, Figure 2a)
recognizes mitochondrial proteins with an average TPR of
0.86 and FPR of 0.07, as evaluated by the ten-fold cross
validation test (Figure 1, open symbols; Additional File 1:
Figures S1 – S2). Note that the decision tree classifiers did
not retain all the LOC-tools provided in the training proc-
ess. The elimination of a given tool is due either to redun-

dancy or to low accuracy such that its inclusion would
cause performance to deteriorate.

Second, we introduced biological expert knowledge into
the construction of decision trees. The mitochondrial tar-
geting peptide (MTP) is a feature exclusive to mitochon-
drial proteins, and four LOC-tools rely on it to make
predictions. In order to better exploit this feature, we
implemented a decision tree integrating four MTP-based
tools used in this study, notably TargetP, MitoProt, Predo-
tar and PProwler. The output of this decision tree (referred
to as MTP-DT) was then combined with the other five
tools by constructing a stacked decision tree (STACK-DT;
Figure 2b). As expected, stacking results in a major per-
formance increase with a TPR of 0.9 and FPR of 0.04.

Effect of including transmembrane domain prediction 
tools
We realized that LOC-tools recognize membrane proteins
less efficiently than matrix proteins (Figure 3). To alleviate
this shortcoming, we integrated the LOC-tools with four
additional tools that predict transmembrane domains
(MEM-tools), i.e., Phobius [41], TMHMM [42],
HMMTOP [43], and SOSUI [44]. The decision trees incor-
porating MEM-tools and LOC-tools are termed LOC-
mem-DT, MTP-mem-DT and STACK-mem-DT (see Table
2).

Figure 3 shows that the integration of MEM-tools with
LOC-tools clearly improves the recognition of mitochon-
drial membrane proteins. It should be noted that such
improvement is not directly reflected in the overall per-
formance, because mitochondrial membrane proteins
account for only ~10% of our dataset.

Out of the six decision trees described above, STACK-
mem-DT displays by far the best performance. Compared
with the best individual LOC-tool and the best voting
group (see above), STACK-mem-DT excels particularly in
its high TPR (Table 3). This result was obtained from a
dataset clustered at a cutoff of 80% sequence identity
(data_C80). We repeated these experiments with datasets
clustered more stringently at a 25% sequence identity cut-

Table 1: Examples of conflicting results from individual prediction tools

Sequence ID1 Experimentally verified location Predictions of mitochondrial location by individual LOC-tools2,3

TargetP Subloc pTARGET SherLoc Predotar MitoProt CELLO PProwler PASUB

YOR297C Mitochondria mit mit mit non non mit non non mit
YDR378C Nucleus mit mit non non non mit mit non non

1 The example sequences are retrieved from the yeast genome database [52]
2 For references see text
3 "mit", predicted as mitochondrial protein; "non", predicted as non-mitochondrial protein
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Prediction performance of individual and integrated tools on yeast mitochondrial proteinsFigure 1
Prediction performance of individual and integrated tools on yeast mitochondrial proteins. Filled symbols: indi-
vidual LOC-tools; Dots: voting groups (tools integrated by majority-win voting); Open symbols: decision trees. The desired 
results are located in the top left of the plot area, representing high true positive rate and low false positive rate. a, the result 
shown at full scale. b, the zoom-in of the region with false positive rate 0~0.25, and true positive rate 0.3~0.95.
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off (data_C25, Additional File 1: Table S2). The outcome
was essentically the same as with data_C80 (Additional
File 1: Table S3), which means that the good performance
of STACK-mem-DT is not a result of data redundancy.

We were concerned that this superior performance was
caused by a 20~50% overlap of our yeast data and the
training data of individual LOC-tools. Therefore, we con-
structed a data subset, excluding proteins present in, or
similar to, the training data of any LOC-tool, to build new
decision trees. The result shows that the superior perform-
ance of STACK-mem-DT over both individual LOC-tools
and majority-win voting is retained with this subset
(Additional File 1: Figure S3).

To dissect how STACK-mem-DT makes its predictions, we
followed the specific decision paths of the mitochondrial
and nuclear proteins listed in Table 1, proteins that indi-

vidual tools predict conflictingly. The mitochondrial pro-
tein follows a path down to SherLoc with all three
predictions being wrong (Figure 4a). But in the end, the
decision tree recognizes the mitochondrial location due to
the two correct predictions made by pTARGET and
PASUB. Similarly, the nuclear protein is first wrongly clas-
sified by CELLO, but the subsequent steps of the path
identify its true location.

Finally, we inspected the paths of three other proteins,
constituents of the mitochondrial outer membrane, the
plasma membrane and the nucleus, respectively. All of
these proteins cannot be distinguished by the individual
LOC-tools (Table 4), nor by trees without MEM-tools.
STACK-mem-DT correctly classifies all three proteins due
to the final two steps in the tree that employ MEM-tools
(Figure 4a, coloured line).

Implementation
STACK-mem-DT was implemented as a webservice, Yim-
LOC, accessible via the public bioinformatics workbench
AnaBench [45]. The current version takes the prediction
results from individual tools as input, and outputs the
prediction for a protein to be mitochondrion-localized or
not. For thorough analyses, we recommend that users
build the decision tree on their local computer, with their
own training data and choice of individual LOC-tools.
The source code is available under the GNU licence.

Discussion
The purpose of this study was to enhance prediction accu-
racy by integrating the available subcellular localization
prediction tools. Successful integration of specialized
tools takes advantage of their complementary strengths,
which are drawn from three sources: the different
sequence features the tools exploit, the different computa-
tional algorithms they employ, and the different training
sets they are built from.

Integration of heterogeneous prediction tools by decision treesFigure 2
Integration of heterogeneous prediction tools by 
decision trees. a, The LOC-DT was built with outputs 
from nine LOC-tools. b, The MTP-DT was built with outputs 
from four tools whose prediction is based on the mitochon-
drial targeting peptide. The output of MTP-DT, together with 
the outputs of five other LOC-tools, was used to construct 
the STACK-DT.

TargetPMitoProtPredotarPProwler

MTP-DT SublocpTARGETPASUBCELLOSherLoc

STACK-DT

MitoProt Predotar

PProwler TargetP SublocpTARGETPASUBCELLOSherLoc

LOC-DT

a

b

Table 2: Decision trees built in this study and the individual tools employed to construct each treea

Decision trees LOC-tools MEM-tools

TargetP Predotar MitoProt PProwler CELLO Subloc pTARGET SherLoc PASUB Phobius TMHMM HMMTOP SOSUI

LOC-DT X X X X X X X X X
MTP-DT X X X X

STACK-DT MTP-DT X X X X X
LOC-mem-DT X X X X X X X X X X X X X
MTP-mem-DT X X X X X X X X

STACK-mem-DT MTP-DT X X X X X X X X X

a "X", if the tool is included in the decision tree listed in the leftmost column (for the references see text)
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Integration by decision tree outperforms group voting
The best performance obtained from majority-win voting
of LOC-tool groups shows almost the same TPR as the
best individual LOC-tool (PASUB in this case), with a
slightly lower FPR. Some of the voting groups yield even
lower TPRs than individual LOC-tools. In contrast, deci-
sion tree classifiers built from the ensemble of LOC-tools
all outperform the individual tools as well as any of the
majority-win voting combinations (see Figure 1. Note that
MTP-DT and MTP-mem-DT are special cases as they were
given only a subset of LOC-tools for training.). The most
effective of the presented integrative predictors is STACK-
mem-DT, which exceeds by far the performance of the

best LOC-tool (TPR of 0.92 compared to 0.75, with the
same FPR of 0.05; Table 3). Yet, for fairness, it should be
stressed that many of the tools have been developed with
the aim of predicting multiple locations, while we opti-
mize here mitochondrial location.

A fair and rigorous comparison of YimLOC with all other
prediction methods should use the same test data, as we
did for the comparison of YimLOC with nine LOC-tools
shown in Figure 1, and in Additional File 1: Figures S1 –
S2. Unfortunately, this is not feasible for some prediction
methods because of several reasons: the training data are
not provided; there are no webservices or software distri-
butions available; the webservices are available but not
tuned for large-scale predictions.

Among the various machine leaning methods, we chose
here decision trees for integration because they have the
advantage that they allow tracing back how the predic-
tions are made, and thus may provide a biological mean-
ingful interpretation of the predictions. Note that for the
more complex problem of predicting proteins targeted to
multiple subcellular locations [4-6], neural network or
Naïve Bayes would be more appropriate than decision
trees, because they allow handling of prediction probabil-
ities in a flexible manner.

Trade-off between sensitivity and specificity
For any given prediction method, an increase of the TPR is
usually accompanied by an increase of the FPR. How to
balance the two rates depends on the purpose of the pre-
diction. If biologists wish to identify all mitochondrial
proteins from a whole genome sequence, they should
choose a prediction method with highest TPR (in this
study the STACK-mem-DT). On the other hand, if the pur-
pose is to determine the subcellular localization of a few
candidate proteins of interest, a prediction method with
lowest FPR should be favoured (in this study the combi-
nation of pTARGET+PASUB+CELLO).

Prediction performance of individual and integrated tools on yeast mitochondrial membrane and matrix proteinsFigure 3
Prediction performance of individual and integrated 
tools on yeast mitochondrial membrane and matrix 
proteins. Loc-tools recognize mitochondrial membrane 
proteins less efficiently than matrix proteins. The effective-
ness of PASUB is due to the fact that it exploits annotations 
and that the portion of annotated mitochondrial membrane 
proteins is higher compared to matrix proteins.

Table 3: Performance1 of the best predictors for the three different prediction schemes

Classes2 Individual tool (PASUB) Combination of tools by voting3 Decision tree classifier 
(STACK-mem-DT)

TPR FPR ACC TPR FPR ACC TPR FPR ACC

Yeast Mit 0.74 0.05 0.69 0.75 0.02 0.84 0.92 0.05 0.95
Non 0.65 0.06 0.99 0.20 0.97 0.05

Arabidopsis Mit 0.75 0.09 0.81 0.67 0.07 0.88 0.87 0.12 0.94
Non 0.83 0.05 0.95 0.09 0.96 0.04

Human Mit 0.87 0.09 0.68 0.88 0.01 0.97 0.90 0.02 0.99
Non 0.65 0.02 0.98 0.02 0.99 0.01

1 TPR: true positive rate; FPR: false positive rate; ACC: accuracy (all correctly predicted instances/all instances)
2 Mit: mitochondrial proteins; Non: proteins of other subcellular locations
3 The best combination of tools is pTARGET+PASUB+CELLO for yeast data, PASUB+MitoPort+CELLO for Arabidopsis data, and pTARGET 
+SherLoc+ PASUB for human data
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Making use of prior biological knowledge
During decision tree construction, LOC-tools are retained
if they have a good overall performance on the training
data. In this process, all tools (and therefore the sequence
features exploited) are considered of equal importance. To
further enhance performance, we put more emphasis on
certain tools based on domain-specific knowledge. In par-
ticular, the mitochondrial targeting peptide (MTP) is spe-
cific to proteins imported into mitochondria, but not all
mitochondrial proteins possess one. Therefore, a tool that
recognizes mitochondrial proteins based on the presence
of MTP has high specificity (a protein with MTP is reliably

targeted to mitochondria), but low sensitivity (mitochon-
drial proteins without MTP cannot be recognized). We
employed four MTP-based tools in this study. Yet, LOC-
DT retained only one of them, although the other three
tools may be complementary in recognizing the various
instances.

Since the targeting peptide is known to be an important
determinant of protein localization, but not necessarily
rewarded by decision trees, we modified the training proc-
ess to make use of this external knowledge. This was
achieved by a two-layer decision tree (STACK-DT, see Fig-
ure 2b). Indeed, STACK-DT performes significantly better
than LOC-DT (see Figure 1, "+"), testifying to the value of
incorporating expert knowledge in decision tree construc-
tion.

Inclusion of transmembrane domain prediction
We observed that LOC-tools often misclassified mito-
chondrial membrane proteins (Figure 3). This may be due
to several reasons: (i) the training sets of some tools do
not include mitochondrial membrane proteins (e.g., Sub-
loc); (ii) mitochondrial membrane proteins typically lack
a targeting peptide, while MTP-based tools rely on the
presence of this signal [46]; and (iii) tools based on amino
acid composition and physicochemical properties may
confuse mitochondrial membrane proteins with mem-
brane proteins from other subcellular compartments. We
have addressed these limitations by building decision tree
classifiers that integrate predictions of both subcellular
localization and transmembrane domains. In fact, infor-
mation on the number of such domains boosts recogni-
tion of mitochondrial membrane proteins from 81% to
89% (Figure 3).

Conclusion
This study devises a simple, practical and highly effective
approach to exploiting complementary bioinformatics
tools by integration through machine learning. Using
mitochondrial location as a test case, we observe that tool
integration with decision trees significantly improves pre-
diction accuracy compared to individual tools or their
simple combination. Inclusion of biological expert
knowledge in machine learning further enhances the per-
formance. Particularly improved is prediction of mem-
brane proteins, which is notoriously difficult. Further, our
approach alleviates the conundrum of how to choose
between conflicting predictions from different LOC-tools.
The methodology is easy to implement and applicable to
the prediction of other biological feature for which multi-
ple, heterogeneous tools exist.

Decision tree topology for the prediction of mitochondrial proteinsFigure 4
Decision tree topology for the prediction of mito-
chondrial proteins. a, STACK-mem-DT; b, MTP-DT. The 
trees were built by C4.5 (see Methods). Each oval represents 
a prediction tool. Filled ovals represent transmembrane 
domain predictors. Rectangle represents a decision: "mit" 
for mitochondrial proteins and "non" for proteins of other 
subcellular locations. If a tool predicts the query protein as a 
mitochondrial protein, the branch (edge) is labeled "mit"; 
otherwise "non". If PASUB makes no prediction, the branch 
is labeled "N". Several decision-making paths are highlighted, 
as follows: Dotted line: for non-mitochondrial protein 
YDR378C. Grey line: for mitochondrial protein YOR297C. 
Blue arrow: the common path for three differently localized 
proteins: mitochondrial (YIL065C), plasma membrane 
(YBR069C) and nuclear (YLL022C). Orange arrow: for 
mitochondrial protein YIL065C. Red arrow: for non-mito-
chondrial protein YBR069C. Green arrow: for non-mito-
chondrial protein YLL022C.
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Table 4: Example proteins used for decision tracing

Sequence ID1 Experimentally 
verified location

Predictions of mitochondrial location by individual LOC-tools2,3 Predicted number of transmembrane domains2,3

TargetP Subloc pTARGET SherLoc Predotar MitoProt CELLO PProwler PASUB Phobius TMHMM HMMTOP SOSUI

YIL065C Mitochondrial outer membrane non non non non non non non non mit 1 1 1 1

YBR069C Plasma membrane non non non non non non non non mit 12 12 12 12

YLL022C Nucleus non non non non non non non non mit 0 0 0 0

1 The sequences are retrieved from the yeast genome database [52]
2 For references see text
3 "mit", predicted as mitochondrial protein; "non", predicted as non-mitochondrial protein
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Methods
Data set
Protein sequences from yeast in Swiss-Prot release 50.3
were selected by the following criteria: 1) they are
encoded in the nucleus; 2) their subcellular location is
experimentally verified; and 3) the localization annota-
tion is not ambiguous (i.e., terms like "probable" or "pos-
sible" are absent from their annotation of subcellular
localization). In addition, we retrieved 522 yeast mito-
chondrial protein sequences from MITOP2 [47], a manu-
ally curated database of nucleus-encoded mitochondrial
proteins with experimental evidence. Sequences having
identities over 80% were clustered by Cd-hit [48] to
reduce data redundancy. The final yeast dataset contains
503 mitochondrial and 872 non-mitochondrial proteins.

In a similar way, Arabidopsis and human protein
sequences from Swiss-Prot were collected. The Arabidopsis
dataset was enriched by sequences from AMPDB [49], a
database for Arabidopsis mitochondrial proteins. After
being clustered with 80% sequence identity, 193 mito-
chondrial and 608 non-mitochondrial proteins constitute
the Arabidopsis dataset. The human dataset contains 353
mitochondrial and 2,679 non-mitochondrial proteins.

In addition, we further clustered the three datasets (yeast,
Arabidopsis, and human) with the threshold of 25%
sequence identity to build more stringent datasets (Addi-
tional File 1: Table S2).

To compile a dataset which does not overlap with the
training data of the LOC-tools employed (see Table 2), we
searched our yeast dataset against the training data of the
nine LOC-tools with BLAST. A protein was removed from
the yeast data if it had >80% identity to a protein in the
training set of any LOC-tool. The remaining proteins con-
stitute a non-overlapping subset of yeast data, which con-
tains 190 mitochondrial and 344 non-mitochondrial
proteins.

Integration of heterogeneous tools
a Prediction by individual tools
We selected nine prediction tools for subcellular localiza-
tion: TargetP [24], Subloc [32], SherLoc [37], pTARGET
[35], Predotar [28], Protein Prowler (PProwler) [26],
PASUB [30], MitoProt [23], and CELLO [33]. The selec-
tion was based on the diversity of the algorithms and the
sequence features they employ. These tools were used as
base-level classifiers, whose prediction results were com-
bined to build new classifiers. Prediction results from
most tools were obtained via web services. The only excep-
tion is MitoProt, which has been installed and run locally.

b Consistent representation of the output from heterogeneous LOC-
tools
LOC-tools output a categorical prediction (mitochondria,
cytoplasm, nucleus, etc.) for each query sequence. Predic-
tions were converted to "mit" for mitochondrial location
and "non" otherwise. A special case is PASUB, which
makes no predictions for proteins that lack significant
similarity to known sequences. In these cases, we issued
"N".

Together with the categorical prediction, LOC-tools also
output a positive numerical value indicating the confi-
dence of prediction. The range of numerical values differs
among LOC-tools. Intuitively, numerical encoding seems
advantageous, since it reflects the confidence that LOC-
tools have in their predictions. However, it also may intro-
duce a hidden bias in the integration, because the various
tools evaluate and measure confidence differently (Addi-
tional File 1: Table S1). For example, CELLO outputs a
score (for example 2.064) to show the reliability that a
protein is affiliated with each of 12 subcellular locations.
In contrast, pTARGET distinguishes nine locations, and
outputs the confidence value in the form of percentage
(for example 98%). Since it is not straightforward to con-
solidate the particular confidence factors of the various
LOC-tools, we decided to use categorical encoding.

c Integration of LOC-tools by grouping and voting
For nine LOC-tools, with group size from two to nine,
there were a total of 502 different groups. Within each
group, predictions of individual LOC-tools were com-
bined with a majority-win voting scheme. A given
sequence was regarded as a mitochondrial protein, if
more than half of the combined tools assigned it to mito-
chondria. No prediction was made if there was a tie.

d Integration of LOC-tools by decision tree
For building decision trees, we used J4.8, a program based
on the C4.5 algorithm [40], available in the Weka package
[50]. Default parameters were employed. The individual
LOC-tools and MEM-tools were used as attributes of input
data, and the prediction results of each tool as attribute
values.

The decision trees were evaluated by a ten-fold cross vali-
dation test, where the data set was equally divided into ten
parts. Nine parts were combined to form the training set
for building the decision tree, which was then evaluated
by the remaining part. The process was repeated ten times.
Alternatively, jackknife test can be employed for examin-
ing the power of a prediction method [1-3]. Although
jackknife test is deemed the most rigorous and objective
[51], it is time consuming, particularly for large datasets.
Therefore, 10-fold cross validation is a good and wildly
adopted alternative.
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The performance of each prediction method was meas-
ured as true positive rate and false positive rate, where

true positive rate (TPR) = true positives/(true positives +
false negatives), and

false positive rate (FPR) = false positives/(true positives +
false positives).
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This file contains scripts for the online server YimLOC. Please note that 
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Additional file 1
This file contains figures and tables depicting the performance of different 
integration methods on Arabidopsis data, human data, a non-overlap-
ping subset of yeast data, and three more stringent datasets. The results 
were obtained in the same way as for the yeast data. This file also contains 
a table showing the range of numerical predictions from individual LOC-
tools. Figure S1 – Prediction performance of individual and integrated 
tools on Arabidopsis mitochondrial proteins. Filled symbols: individ-
ual LOC-tools; Dots: voting groups (tools integrated by majority-win vot-
ing); Open symbols: decision trees. The desired results are located in the 
top left of the plot area, representing high true positive rate and low false 
positive rate. Figure S2 – Prediction performance of individual and 
integrated tools on human mitochondrial proteins. Filled symbols: 
individual LOC-tools; Dots: voting groups (tools integrated by majority-
win voting); Open symbols: decision trees. The desired results are located 
in the top left of the plot area, representing high true positive rate and low 
false positive rate. Figure S3 – Prediction performance of individual 
and integrated tools on yeast data which does not overlap with the 
training data of any individual LOC-tool. Filled symbols: individual 
LOC-tools; Dots: voting groups (tools integrated by majority-win voting); 
Open symbols: decision trees. The desired results are located in the top left 
of the plot area, representing high true positive rate and low false positive 
rate.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-8-420-S1.doc]
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