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Abstract

Background: Remote homology detection is a challenging problem in Bioinformatics. Arguably,
profile Hidden Markov Models (pPHMMs) are one of the most successful approaches in addressing
this important problem. pHMM packages present a relatively small computational cost, and
perform particularly well at recognizing remote homologies. This raises the question of whether
structural alignments could impact the performance of pHMMs trained from proteins in the Twilight
Zone, as structural alignments are often more accurate than sequence alignments at identifying
motifs and functional residues. Next, we assess the impact of using structural alignments in pHMM
performance.

Results: We used the SCOP database to perform our experiments. Structural alignments were
obtained using the 3DCOFFEE and MAMMOTH-mult tools; sequence alignments were obtained
using CLUSTALW, TCOFFEE, MAFFT and PROBCONS. We performed leave-one-family-out
cross-validation over super-families. Performance was evaluated through ROC curves and paired
two tailed t-test.

Conclusion: We observed that pHMMs derived from structural alignments performed
significantly better than pHMMs derived from sequence alignment in low-identity regions, mainly
below 20%. We believe this is because structural alignment tools are better at focusing on the
important patterns that are more often conserved through evolution, resulting in higher quality
pHMMs. On the other hand, sensitivity of these tools is still quite low for these low-identity
regions. Our results suggest a number of possible directions for improvements in this area.

Background molecular biology problems, including gene finding
Hidden Markov models (HMMs) [1] are probabilistic ~ [3,4], multiple sequence alignment [5-7], protein struc-
models utilized in pattern recognition problems. HMMs  ture prediction [8-10], and many others. One particularly
were initially used for speech recognition tasks [2]. Now-  important application of HMMs is in remote homology
adays, HMMs are being applied successfully to several  detection between protein sequences. Remote homology
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detection is the problem of finding homology between
sequences, when the actual sequence identity is low (usu-
ally, lower than 30%). HMMs can be used by first training
an HMM to represent a group of homologue sequences,
and then matching a sequence against this HMM. The
HMMs used to represents groups of homologues
sequences are called profile hidden Markov models
(PHMMs) [11,12]. Several studies have shown pHMMs to
perform better than methods based on sequence similar-
ity only [13,14], such as BLAST [15] and FASTA [16], and
than methods based on position-specific scoring matrices
(PSSMs) [17], such as PSI-BLAST [18].

A pHMM is therefore a probabilistic model built from a
multiple alignment of related sequences. The two major
programs that apply pHMM for remote homology detec-
tion are HMMER [19] and SAM [20]. Both programs are
widely used within the Bioinformatics community.
Namely, HMMER was used to build the PFAM database
[21], and SAM was used to build Super-family [13]. In
these tools, an alignment is represented by creating a
sequence of nodes, usually one node per alignment col-
umn. Each node is composed of three states: match (M),
insert (I) and delete (D). Match states model conserved
regions in the alignment. Insert and delete states model
indel regions.

Profile HMMs have probabilities on two events: a transi-
tion from a state to another state, and the probability that
a specific state will emit a specific character (say, a specific
amino-acid when comparing proteins). Only match and
insert states generate characters. Delete states are quiet.
Therefore, each match and insert state has an emission
probability distribution. In the case of proteins, the distribu-
tion will have 20 entries, one per amino acid.

Transitions define the structure of the pHMM. Systems
such as SAM [20] allow transitions between all types of
states, totaling 3 transitions per state, hence 9 per node.
This is not always the case, the HMMER system relies on
the Plan7 model [19], which disallows I - D and D — I
transitions.

Performance of a pHMM critically depends on the quality
of the estimated emission and transition probabilities.
Emission probabilities are obtained by counting amino-
acid frequencies at each match column. Unfortunately,
the global alignment will usually have too few sequences
to estimate all the parameters with sufficient confidence.
Priors, such as mixtures of Dirichlets components [22],
are used to compensate for the small sample size and
avoid over-fitting. A second major issue when estimating
parameters is the relationship between the sequences
themselves. Clearly, the information that a residue is bet-
ter conserved across a number of very different sequences
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should carry more weight than the information the resi-
due is conserved across a large number of very similar
sequences. Most pHMMs thus include a sequence weight-
ing step, which may be based on sequence trees, as in
HMMER [23], or in entropy, as in SAM [24]. In all cases,
closer sequences carry less weight than more divergent
sequences. Last, notice that the total weight of the
sequences governs how much we trust the sequences ver-
sus the prior. Increasing the total weight of the sequence
counts over the priors reinforces our trust in the sequence
data, but may lead to over-fitting.

To the best of our knowledge, Madera and Gough were
the first ones to systematically compare the performance
of the two systems [25]. Their comparison studied the per-
formance of the two tools over two protein families, glob-
ins and cupredoxins, using the nrdb90 database [26], and
in an all-against-all experiment in the SCOP database
[27]. Several alignment strategies were used, including:
manual alignment on globins and cupredoxins, SAM-T99
[28] seeded from a single protein, WU-BLAST [29] search
from the seed protein followed by CLUSTALW [30]. The
authors show that the initial multiple alignment can sig-
nificantly affect performance, and that the T99 package
generates good quality multiple alignments. Their results
further suggested that SAM had better model quality than
HMMER. Wistrand and Sonnhammer [31] further evalu-
ated the two systems. The experiments relied on SCOP for
a high quality database of labeled hierarchies of protein
domains. The authors explicitly avoided conditioning on
the use of particular programs to perform the initial mul-
tiple alignment. Instead, they used the PFAM alignment
database. The authors concluded that SAM's model esti-
mation is superior, due to a better usage of priors, which
avoids over-fitting. On the other hand, HMMER's model
scoring is more accurate, probably due to a better null
model.

Madera and Gough's work showed the importance of
multiple alignment for HMMER performance. It has been
observed that protein three-dimensional structures are
remarkably stable with respect to amino acids sequences
[32]. This suggests that alignments derived from structural
information should identify motifs and functional resi-
dues accurately. In this direction, Jones and Bateman [33]
assessed the performance of pHMMs derived of structural
alignments versus sequence alignments. The benchmark
was obtained from the PFAM and HOMSTRAD [34] data-
bases. HOMSTRAD is a curated database of structure-
based alignments for homologous protein families and
PFAM is a large collection of multiple sequence align-
ments and hidden Markov models covering many com-
mon protein domains and families. To build up a
mapping of HOMSTRAD and PFAM families, the
sequences of each HOMSTRAD family were searched
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against PFAM using HMMER. Each HOMSTRAD family
was thus made to correspond to a single PFAM family. The-
ses PFAM memberships were considered the true positive
data set. To provide sequence alignments, the sequences
of each HOMSTRAD family were realigned using CLUS-
TALW and TCOFFEE [35]. The authors concluded that the
use of structure information to increase alignment accu-
racy does not aid homologue detection with pHMMs.
However, their experiments considered sequences with
different degrees of identity, from 20% up to the 80%, and
the author did not applied his experiments to proteins in
the Twilight Zone, where identity between amino-acids
sequences is a weaker indicative of the evolutionary rela-
tionship.

This study investigates the contribution of using structural
alignments to build pHMMs for remote homology detec-
tion. Therefore, our experiments consider proteins with
identity below 30%. We performed our studies by analyz-
ing the performance of these tools on SCOP super-families.
Under these conditions, we show that pHMMs derived
from structural alignments perform significantly better
than pHMMs derived from sequence alignments. We
show that accuracy alignment is not directly related to
alignment identity. Although structural alignments often
present smaller identity than sequence alignments, the
best quality alignments based on structural information
are generally considered to derive from structural super-
position. We compare the performance of two HMMs
packages, HMMER and SAM, when the two different kind
of alignments were used. Our results show that HMMER
based on structural alignment to outperform SAM for
such remote homologues.

Methods

We compare sequence-based and structure-based multi-
ple alignment packages on the SCOP Protein Database.
We evaluated experimentally the performance of the
HMMER and SAM packages using alignments from four
sequence and two structural multiple-alignment pack-
ages. All data sets and perl scripts used in this study are
freely available from the web site [36].

Muttiple Alignment Tools

We used CLUSTALW [30], TCOFFEE [35], MAFFT [37],
and PROBCONS [38] packages to provide sequence align-
ments based on primary structure. CLUSTALW is one of
the most widely used tools for multiple sequence align-
ment. TCOFFEE has been reported to achieve significantly
better quality alignments than CLUSTALW [39]. MAFFT is
a series of five progressive alignment programs, we used L-
INS-i, an algorithm based progressive alignment with iter-
ative refinement. We used the 3DCOFFEE [40] and MAM-
MOTH-mult [41] packages to provide structural
alignments. 3DCOFFEE extends TCOFFEE with structural
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alignment information. MAMMOTH-mult is a package
that seems to achieve good performance by focusing on
structural information.

CLUSTALW is a progressive alignment algorithm [42].
First, it derives a guide tree and then uses a greedy search
over aligned clusters of sequences. Although, it perform
faster and uses less memory than other programs, argua-
bly it is less accurate or scalable than modern ones.

T-COFFEE also implements a progressive alignment algo-
rithm. However, it tries to improve the quality of the ini-
tial pair-wise sequence alignment by considering the
alignment between all the pairs as it executes every step in
the progressive alignment algorithm. It presents high
accuracy while sacrifices computation time and memory
usage.

The MAFFT package includes five alignment programs. We
used the recommended option, in this case, L-INS-i, that
uses progressive aligner followed by iterative refinement.

PROBCONS uses a combination of probabilistic mode-
ling and consistency-based alignment techniques. It intro-
duces a novel scoring function, probabilistic consistency,
based on paired hidden Markov models. Alignments are
still performed progressively but a post-processing refine-
ment step may apply.

The 3DCOFFEE aligner is based on TCOFFEE, but it uses
pairwise structure comparison to improve accuracy. Pair-
wise structure comparison is performed by SAP if both
structures are known [43]. If only one structure is known,
3DCOFFEE uses the Fugue threading method [44].

MAMMOTH is a progressive multiple alignment program
that uses a sequence independent heuristic to obtain a
fully structural alignment. It starts from a Ce trace to
obtain an alignment. Second, it finds an alignment of
local structures based on computing a similarity score
from the URMS metrics. Third, it finds similar local struc-
tures with their Ca close in Cartesian space.

Profile-HMMs
We compare two arguably major profile Hidden Markov
Model (pHMM) packages, HMMER and SAM.

The HMMER package was developed at the Sean Eddy's
Lab, University of Washington Saint-Louis. It provides an
open-source environment based on pHMMs for protein
sequence analysis. Besides the PFAM database, HMMER is
also at the heart of other databases, such as TIGRFAMs
[45], and SMART [46]. In this work we used HMMER ver-
sion 2.3.2, updated in 2003. HMMER requires at least two
stages: model building and scoring. A third, recommended
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but optional stage, is model calibration: we have used it in
this study.

In model building, HMMER distinguishes match align-
ment columns and insert alignment columns. HMMER
assigns columns to match or insert states so as to maxi-
mize the posterior probability of the aligned sequences,
given the model. By default, HMMER uses a Dirichlet mix-
ture with 9 components for priors. Scoring was performed
using the Viterbi algorithm. We used hmmbuild procedure
to build HMMER models, and the hmmsearch for score.
In our experiments we used HMMER default parameters.

The SAM package was developed at the University of Cal-
ifornia Santa Cruz; it is not open source but is free to aca-
demic use. One of the major SAM differences with respect
to HMMER is the SAM-T2K script. This is an iterative pro-
cedure to generate multiple alignments and HMMs start-
ing from a single sequence [28]. Moreover, the SAM team
has worked on improving SAM through using informa-
tion on structure protein [47], and prior probabilities
[48]. SAM uses a standard profile HMM architecture with
9 transitions. Each alignment column correspond a node
(match, insert and delete). In other words, SAM does not
distinguish between match and insert columns. SAM uses
a Dirichlet mixture with 20 components for priors and by
default scores using the forward algorithm. We used mod-
elfromalign to build the models and hmmscore to com-
pute. In our experiments we used SAM default parameters.

Experimental Methodology

Our experiments require structure coordinates for protein
sets with low sequence identity. Therefore we used the
SCOP database [27], version 1.67 with 6600 proteins
sequences. SCOP is a manually inspected database of pro-
tein folds, and is particularly interesting for our study
because it describes structural and evolutionary relation-
ships between proteins, including all entries in the Protein
Data Bank [49]. SCOP is thus an excellent data-set for
evaluating the performance of remote homology detec-
tion methods, and it has been widely used for that pur-
pose [31,50-53]. SCOP classifies all protein domains of
known structure into a hierarchy with four levels: class,
fold, super family, and family. In our study, we work at
the super family level, which groups families such that a
common evolutionary origin is not obvious from

Table I: Super-family SCOP-Ids
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sequence identity, but probable from an analysis of struc-
ture and from functional features. We believe that this
level best represents remote homologies.

Throughout, we used cross-validation [54] to compare the
different approaches. First, we divided SCOP database by
super family level. Next, from ASTRAL PDB40, we choose
those super families containing at least two families and
at least 20 sequences. We eventually tested 39 super fami-
lies, as listed in Table 1. This whittled down the number
of sequences we use for model building to 1137. Third, we
implemented leave-one-family-out cross-validation. For
any super family x having n families, we built n profiles,
such that each profile P was built from the sequences in
the remaining n - 1 families. Thus, the n - 1 sequences
form the training set for profile P. The test set for profile P
will be the remaining sequences (test positives) plus all
other database sequences (test negatives).

Note that in our experiments, none of the sequences in a
test set had >30% sequence identity with any protein in
the corresponding training set. Results were graphically
analyzed by building ROC. We experimented with e-val-
ues between 10-39 and 10 to obtain the curves. Finally, we
have used the paired two tailed t-test to assess significance.
We consider a result with p <0.02 (i.e. 98% of confidence)
to be significant.

Results

Alignment Profile

As a first step, we categorize our alignment data set accord-
ing to both the number of sequences, and the average
length of sequences within SCOP super-family. In our
data set, the number of sequences per super-family ranges
from 3 sequences in the smallest super-family up to 44
sequences for the largest super-families. In average, we
worked with 23 sequences per alignment. Comparing
with previous work on aligning families [33], we observe
that super-families give us much more training examples
to construct the pHMMs. Regarding sequence length, the
average sequence length within SCOP super-families is
well distributed in the interval between small sequences
with less than 50 residues to large sequences with up to
400 residues. In average, we worked with sequences of
193 residues.

al.l. a.138.1. a.25.1. 2.26.1.
b.18.1. b.29.1. b.36.1. b.47.1.
b.82.1. c.l.10. c23.1. c26.1.
c67.l. d.108.1. d.14.1. d.144.1.
d.58.7. d92.1. g3.11. g3.6.

a3.l. a.39.1. a4.l. b.121.4.
b.55.1. b.60.1. b.6.1. b71.1.
c.36.1. c.52.1. c.55.1. ¢.55.3.
d.I5.1. d.I153.1. d.169.1. d3.l.
g37. g37.1. g39.1.

SCOP Super-families used in our experiments. We only consider super-families with at least 20 proteins and two or more families.
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Next, we discuss alignment profile as measured by
sequence identity, by alignment length and by percentage
of gaps. Table 2 shows the average gap percentage and
average alignment length in the alignments obtained
from the six alignment tools in our study: CLUSTALW,
TCOFFEE, MAFFT, PROBCONS, 3DCOFFEE, and MAM-
MOTH.

First, we assess average alignment length. CLUSTALW
seems to generate the smallest alignments, with in average
318 residues. MAFFT and MAMMOTH generate longer
alignments, in average around 400 residues. The longest
alignments are generated by PROBCONS followed by
COFFEE family. Notice that 3DCOFFEE generates some-
what longer alignments than TCOFFE. Next, we measure
the percentage of gaps within alignments. CLUSTALW
introduced the smallest gap percentage. MAFFT produced
alignment with less gaps than MAMMOTH. The COFFEE
family and PROBCONS present the longest alignments
and have the highest percentage of gaps.

Next, we compared sequence identity within alignments.
The Figure 1 shows average identity by alignment for the
six alignment tools in our study. The figure shows that
sequence identity is low as expected, most often below
30%. In fact, average identity as recognized by PROB-
CONS is of 16.76%, with 15.4% for TCOFFEE, 13.81%
for MAFFT, 13.01% for 3DCOFFEE, MAMMOTH with
12%, and only 10.9% for CLUSTALW. Figure 1 does show
that the PROBCONS tool generates alignments with
"most identity". Indeed, it can recognize a number of
alignments with more than 30% identity. PROBCONS
also seems to produce alignments well distributed into all
identity ranges. TCOFFEE performs almost as well as
PROBCONS. Most MAFFT alignments are below 12%
identity, but it can recognize alignments with up to 27.5%

180
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Table 2: Alignment Length and Gap Percentage and by
Alignment Tool

Length (residues) Gap%
CLUSTALW 318 4]
TCOFFEE 474 59
MAFFT 382 51
PROBCONS 540 59
3DCOFFEE 495 60
MAMMOTH 413 53

of identity. On the other hand, CLUSTALW seems to per-
form badly on a large number of cases. Most CLUSTALW
alignments recognize between 7.5% and 10% identity
and CLUSTAW further shows the lowest identity average.
As regards the structural alignment tools 3DCOFFEE rec-
ognizes more identity than MAMMOTH, but the less than
the related tool, TCOFFEE. MAMMOTH recognizes less
identity than 3DCOFFE.

Gap introduction is clearly related with alignment length,
and thus with identity. In general, sequence alignment
tools need to introduce gaps to preserve identity across
sequences. As a case in point, PROBCONS achieves the
highest average identity, but 60% of PROBCONS align-
ments were gaps. We observed a similar pattern in TCOF-
FEE alignments. MAFFT achieves less identity but also
introduces few gaps. Analogously, CLUSTALW presented
the lowest identity average, and also introduced the small-
est number of gaps in its alignments. Comparing the
structural alignments, 3DCOFFEE achieved higher aver-
age identity than MAMMOTH, and also introduces more
gaps than MAMMOTH. A Pearson test shows the correla-
tion between alignment percentage and gaps to be indeed
quite high, at 94%.

160

140

120

100

80

60

Number of Alignments

40

20 fz

10 125 15 17.5

225 25 27.5 30 325 35

Average sequence identity%

Clustalw Tcoffee =amz=s= Mafft

Figure |

Probcons e 3dcoffee mimimim Mammoth =ixisie

Multiple Alignments Identity. Average identity across the different alignment tools.
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HMMER Performance

We assessed HMMER performance using multiple align-
ments generated by CLUSTALW, TCOFFEE, MAFFT,
PROBCONS, 3DCOFFEE, and MAMMOTH. For a super-
family with N elements, the results indicate whether mod-
els trained on N - 1 families can predict the sequences in
the remaining family. Please see the Methods section
above for further discussion on the experimental method-

ology.

Figure 2 shows the ROC curves [55] for the whole data-
base. Table 3 further shows t-test results, where we com-
pare aligners against all the others. We observed best
results with 3DCOFFEE-generated alignments, but
HMMER-MAMMOTH also performed well. According to a
paired two tailed t-test [54] over the set of experiments the
results from theses tools are significantly better than for
the other tools, although the difference between HMMER-
MAMMOTH and HMMER-3DCOFEEE is not statistically
significant. The results also show HMMER-MAFFT,
HMMER-TCOFFEE, and HMMER-PROBCONS perform-
ing similarly. Our results do not show significant differ-
ences in the performance of the models generated by these
tools. On the other hand, one should remark that
HMMER-3DCOFFEE significantly outperform HMMER-
TCOFFEE. Last, HMMER-CLUSTALW performs much
worse than the other tools. Again, a t-test showed this
results to be statistically significant.

For better understanding, we further partition our results
according to identity ranges. Given that our best results
were obtained from HMMER-3DCOFFEE, we rely on
3DCOFFEE as our measure of sequence identity.

Figures 3-a to 3-d show ROC curves for sequences inter-
posed in 5% sequence identity intervals (notice that
3DCOFFEE could not find more than 25% identity
throughout). All tools do very badly when identity is
below 10%. HMMER-3DCOFEE and HMMER-MAM-
MOTH dominate the other tools on the range 10-15%.
Sequence based aligners perform similarly, except for
CLUSTALW: models trained with HMMER-CLUSTALW
alignment have very low sensitivity. On the range
15-20% HMMER-3DCOFFEE alignments perform clearly
better than the other tools. The difference is less clear for

Table 3: HMMER Significance Results
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Figure 2

HMMER ROC Curves. HMMER performance for all align-
ment tools, as measured by ROC curves.

HMMER-MAMMOTH, especially for low specificity.
Notice the clear difference between HMMER-3DCOFFEE
and HMMER-TCOFFEE at this range. Models trained from
CLUSTALMW still have lower sensitivity, but the gap is less
clear. Last, above 20% the difference between tools is not
very clear, tools tend to have similar recalls as we lower
specificity. Notice that both HMMER-COFFEE tools now
perform quite similarly and that HMMER-CLUSTALW
also achieves results similar to the other tools.

SAM Performance

We assessed SAM performance using default parameters.
We use the ROC curves in Figure 4 to show overall per-
formance. Table 4 further shows t-test results. A first
observation is that SAM recognizes much less true posi-
tives than HMMER. SAM recognizes around 100 true pos-
itives for 50 false positives, whereas HMMER recognizes
more than 150 true positives at the same number of false
positives.

Best results were achieved with SAM-3DCOFFEE, fol-
lowed by SAM-MAMMOTH. Difference between the two
was not statistically significant. The pHMMs derived from
sequence alignments achieved worse results, but surpris-
ingly SAM-CLUSTALW and SAM-MAFFT actually operate

3DCOFFEE MAMMOTH PROBCONS MAFFT TCOFFEE
CLUSTALW 10-8 10-8 0.015 0.6l 0.0l
TCOFFEE 10-¢ 10-6 0.12 0.02
MAFFT 10-7 10-7 0.02
PROBCONS 10-6 10-6
MAMMOTH 0.54
Paired two-tailed test results when comparing performance of HMMER alignments for all the multiple alignment tools.
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b) HMMER (10 - 15% of identity)
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HMMER ROC Curves by identity range. HMMER Performance for all Alignment Tools, as Measured by ROC Curves.
ROC curves were produced interposed in 5% sequence identity intervals. A —identity bellow of 10%. B — identity between 10%
and 15%. C — identity between 15% and 20%. D — identity between 20% and 25%. E — identity above of 25%.

significantly better than SAM-PROBCONS. The difference
between SAM-TCOFFEE and SAM-PROBCONS is not sig-
nificant. On the other hand, there is a clear difference
between SAM-CLUSTALW, SAM-PROBCONS and SAM-
TCOFFEE.

Figures 5-a to 5-d show ROC curves for sequences inter-
posed in 5% sequence identity intervals. The constructed
models are simply not sensitive under 10% identity. The
range 10-15% shows clear superiority of the structural
aligners SAM-3DCOFFEE and SAM-MAMMOTH. SAM-
CLUSTALW and SAM-PROBCONS do badly: SAM-PROB-
CONS has particularly low specificity. The picture changes
for 15-20% identity: SAM-3DCOFFEE still does well.
Notice that SAM-CLUSTALW actually does quite well at
this range, but that SAM-PROBCONS performs badly.
SAM-MAMMOTH, SAM-MAFT and SAM-TCOFFEE per-
form similarly. Last, we observe that most alignments
have similar performance at above 20% identity. There is

250
200
g
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3 [
o o o
[ e S
2 100 e e e :
= o o e
e I
s /
if D D D
=)
0
0 50 100 150 200 250
False Positive
SAM-CLUSTALW —+— SAM-PROBCONS &
SAM-TCOFFEE <~ SAM-MAMMOTH
SAM-MAFFT ------ SAM-3DCOFFEE ---e--
.
Figure 4

SAM ROC Curves. SAM performance for all align-
ment tools, as measured by ROC curves.
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Table 4: SAM Significance Results
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3DCOFFEE MAMMOTH PROBCONS MAFFT TCOFFEE
CLUSTALW 10-8 10-8 10-3 0.02 10-4
TCOFFEE 10-¢ 10-¢ 0.23 0.08
MAFFT 10-¢ 106 0.03
PROBCONS 10-3 10-5
MAMMOTH 0.28

Paired two-tailed results when comparing performance of SAM alignments for all the multiple alignment tools.

still some difference between SAM-TCOFFEE and SAM-
3DCOFFEE. As for other identity ranges, SAM-PROB-
CON:S performs badly.

HMMER and SAM Performance

Last, we compare the overall performance of the HMMER
and SAM packages using the different alignment tools.
Figure 6 shows that best overall results were obtained by
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Figure 5

HMMER using the structural alignments derived from
MAMMOTH and 3DCOFFEE. These are the only cases
where the tools could recognize more than 200
sequences. The difference from HMMER-MAMMOTH or
HMMER-3DCOFFEE to SAM-MAMMOTH or SAM-
3DCOFFEE is statistically significant, the Table 5 shows t-
test results. Regarding the pHMMs derived from sequence
alignment, HMMER-TCOFFEE performed better than
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HMMER versus SAM
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Figure 6

HMMER-SAM ROC Curves. HMMER and SAM perform-
ance for all alignment tools, as measured by ROC curves.

SAM-TCOFFE. The exception are the alignments gener-
ated by CLUSTALW: SAM-CLUSTALW achieves better
results than HMMER-CLUSTALW. All results involving
HMMER and SAM pHMM performances are statistically
significant.

In order to better understand the difference between mod-
els, Figure 7 shows how the distribution of models sizes
for the pHMMs generated by HMMER and SAM. There is
a very clear difference in model size with HMMER gener-
ating much shorter alignments.

http://www.biomedcentral.com/1471-2105/8/435

Table 5: HMMER-SAM Significance Results

HMMER-CLUSTALW x SAM-CLUSTALW 0.01
HMMER-TCOFFEE x SAM-TCOFFEE 104
HMMER-MAFFT x SAM-MAFFT 10-6
HMMER-PROBCONS x SAM-PROBCONS 10-6
HMMER-3DCOFFEE x SAM-3DCOFFEE 10-5
HMMER-MAMMOTH x SAM-MAMMOTH 10-5

Paired two tailed results when comparing performance of HMMER
and SAM for the all the multiple alignment tools.

Discussion

Detecting remote homologue is an important, but hard,
problem, as there is high divergence between training
sequences. Several approaches have been proposed to
improve pHMMs performance in these conditions [56-
58]. A natural approach is to use protein structural infor-
mation to improve model quality [52,59,60]. In this
work, we investigated whether one can leverage preexist-
ing tools, such as SAM and HMMER, by applying multiple
alignments based on structural information.

The major question we address is therefore whether
pHMMs for remote homology detection will benefit from
structure alignments. Previous work showed negative
results [33] on sequences having identity between
20-80%. To study whether similar results would apply to
the Twilight Zone, we performed experiments comparing
performance across SCOP super-families. We used the
SCOP database, as this is the standard database with struc-
tural information being used in most related studies.
Throughout, we used leave one-family out cross-valida-
tion instead of leave one-sequence out, as we believe this

700
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Figure 7

Models Sizes . Distribution of models sizes for pHMMs derives from HMMER and SAM.
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most closely represents the problem of finding a novel
remote homologue.

Our focus was on how HMMER and SAM can benefit from
structural information. We therefore used the two tools
with external alignments. SAM is often used together with
the T-99 aligner (that can use secondary but not tertiary
information).

Our results show clear benefit from using structural align-
ers. The benefit was noticeable for both SAM and
HMMER. A detailed analysis shows that the improvement
was obtained in the 10-20% identity range in both cases.
Below 10% identity is too low, and the tools do not gen-
erate useful models. Above 20% identity, both for SAM
and for HMMER alignments from the sequence based
tools start performing comparably to the structural align-
ers, a results consistent with the literature.

Studying the difference between TCOFFEE and
3DCOFFEE is particularly enlightening, as the two align-
ers mostly differ on the use of structural information.
There is indeed a significant difference between the two
tools in this study, and the difference applies both to SAM
and HMMER models. Moreover, the difference stems
from lower identity, in the 10-20% identity range, and
disappears as sequences become more conserved.

We found no correlation between alignment size and
model performance. PROBCONS consistently generates
the longest alignments, but it does not outperform the
other tools. MAMMOTH tends to generate relatively short
alignments, and performs well in this study. This would
suggest that the problem is not just finding conserved
regions, but that the aligners might be reporting regions to
be conserved when they are not.

Although our key results are similar for SAM and HMMER,
we did observe a number of interesting differences. First,
our studies indicate better sensitivity of HMMER-based
models than of SAM based models. Second, some aligners
perform quite differently when they are used by SAM and
by HMMER. Namely, PROBCONS generated alignments
performs particularly badly with SAM. In fact, SAM-CLUS-
TALW actually outperforms SAM-PROBCONS.

We believe that the explanation for both phenomena lies
in the way that HMMER and SAM treat their input align-
ments. SAM is designed to be used together with the T99
aligner, and thus each column in the multiple alignment
results in a state on the resulting pHMM. In contrast,
HMMER is designed to be used with external aligners.
Thus, it implements a MAP algorithm to estimate the
actual number of states. Our results do show this MAP

http://www.biomedcentral.com/1471-2105/8/435

algorithm to significantly reduce the number of states for
HMMER.

Conclusion

Finding remote homologue is a hard, but important prob-
lem in molecular biology. We study the performance of
two pHMM based tools, SAM and HMMER, when pro-
vided with structural and sequential alignments. We reach
two main conclusions. First, structural alignments are very
important in low-identity regions, below 20%. Using
structural information can significantly improve perform-
ance in this task. On the other hand, our results indicate
that alignments are low quality, even in the best case. Thus
sensitivity is still quite low: we achieved at most 200 of
about 1000 sequences in our study.

We believe that there is still much open work in achieving
best performance in recognizing remotely related pro-
teins. Our results suggest a number of possible directions
for improvements in this area. The good results obtained
by 3DCOFFEE, which performs quite well both when
compared to a tool such as MAMMOTH-mult, designed
from the beginning to perform structural alignments, and
when compared with the corresponding sequential
aligner, TCOFFEE, suggests that similar improvements
could be considered for other sequence aligners. Our
results also show that structural identity does provide a
good prior on alignment quality. In current approaches,
this prior is only used to generate the alignments. It would
be interesting to go one step further and to integrate this
information with the model construction process itself.

Authors' contributions

JSB carried out the studies. AMRD, GZ and VSC partici-
pated in the design and coordination of the study, and in
the writing of the manuscript. All authors read and
approved the final manuscript.

Acknowledgements

We are grateful to CNPq for financial support. Most of Vitor S Costa's con-
tribution was given while Assistant Professor at UFR). However, he was
partially supported by funds granted to LIACC through the Programa de
Financiamento Plurianual, Fundagdo para a Ciéncia e Tecnologia and Pro-
grama POSC. We thank the referees for their insightful comments that very
much contributed to improve our paper.

References

. Rabiner L: A Tutorial on Hidden Markov Models and Selected
Applications in Speech Recognition. Proceedings of the IEEE
1989, 77:257-286.

2.  Mendel M: A commercial large-vocabulary discrete speech
recognition system: Dragon Dictate. Language Speech 1992,
35:237-246.

3. Majoros W, Pertea M, Salzberg S: Efficient implementation of a
generalized pair hidden Markov model for comparative gene
finding. Bioinformatics 2005, 21:1782-1788.

4, Brejova B, Brown D, Li M, Vinar T: ExonHunter: a comprehen-
sive approach to gene finding. Bioinformatics 2005, 21:57-65.

5. Mamitsuka H: Finding the biologically optimal alignment of
multiple sequences. Artificial Intelligence in Medicine 2005, 35:9-18.

Page 10 of 12

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15691859
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15691859
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15691859
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16051477
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16051477

BMC Bioinformatics 2007, 8:435

20.

21.

22.

23.

24.

25.

26.

27.

28.

Edgar R, Sjolander K: COACH: profile-profile alignment of pro-
tein families using hidden Markov models. Bioinformatics 2004,
20:1309-1318.

Knudsen B, Miyamoto M: Sequence alignments and pair hidden
Markov models using evolutionary history. Journal of Molecular
Biology 2003, 333:453-460.

Bae K, Mallick B, Elsik C: Prediction of protein interdomain
linker regions by a hidden Markov model. Bioinformatics 2005,
21:2264-2270.

Camproux AC, Tufféry P: Hidden Markov model-derived struc-
tural alphabet for proteins: the learning of protein local
shapes captures sequence specificity. Biochim Biophys Acta 2005,
1724(3):394-403.

Lin K, Simossis V, Taylor W, Heringa J: A simple and fast second-
ary structure prediction method using hidden neural net-
works. Bioinformatics 2005, 21:152-159.

Krogh A, Brown M, Mian |, Sjolander K, Haussler D: Hidden
markov models in computational biology applications to
protein modeling. Journal  of Molecular Biology 1994,
235:1501-1531.

Hughey R, Krogh A: Hidden markov models for sequence anal-
ysis: extension and analysis og the basic method. Computer
Applications in the Biosciences 1996, 12:95-107.

Gough J, Karplus K, Hughey R, Chothia C: Assignment of homol-
ogy to genome sequences using a library of hidden Markov
models that represent all proteins ok known structure. Jour-
nal of Molecular Biology 2001, 313:903-919.

Park ], Karplus K, Barrett C, Hughey R, Haussler D, Hubbard T, Cho-
thia C: Sequence comparisons using multiples sequence
detect three times as many remote homologues as pairwise
methods. Journal of Molecular Biology 1998, 284:1201-1210.
Altschul F, Gish W, Miller W, Myers E, Lipman D: A basic local
alignment search tool. Journal of Molecular Biology 1990,
215:403-410.

Pearson WR: Rapid and sensitive sequence comparison with
FASTP and FASTA. Methods Enzymol 1985, 183:63-98.
Gribskov M, McLachlan A, Eisenberg D: Profile analysis: detection
of distantly related proteins. National Academy of Sciences 1987,
84:4355-4358.

Altschul S, Madden T, Schaffer A, Zhang ], Zhang Z, Miller W, Lipman
D: PSI-BLAST searches using hidden markov models of
structural repeats: prediction of an unusual sliding DNA
clamp and of beta-propellers in UV-damaged DNA-binding
protein. Nucleic Acids Research 2000, 28:3570-3580.

Eddy S: Profile hidden Markov models. Bioinformatics 1998,
14:755-763.

Hughey R, Krogh A: Hidden Markov models for sequence anal-
ysis: extension and analysis of the basic method. Computer
Applications in the Biosciences 1996, 12:95-107.

Bateman A, Coin L, Durbin R, Finn R, Hollich V, Griffiths S, Khanna A,
Marshall M, Moxon S, Sonnhammer E, Studholme D, Yeats C, Eddy S:
The Pfam Protein Families Database. Nucleic Acids Research
2004, 32:138-141.

Sjolander K, Karplus K, Brown M, Hughey R, Krogh A, Mian I, Haus-
sler D: Dirichlet mixtures: a method for improving detection
of weak but significant protein sequence homology. Computer
Applications in the Biosciences 1996, 12(4):327-345.

Thompson |, Gibson T: Improved sensitivity of profile searches
through the use of sequence weights and gap excision. Com-
puter Applications in the Biosciences 1994, 10:19-29.

Krogh A, Mitchison G: Maximum entropy weighting of aligned
sequences of proteins or DNA. Proc Int Conf Intell Syst Mol Biol
1995, 3:215-221.

Madera M, Gough J: A comparison of profile hidden Markov
model procedure for remote homology detection. Nucleic
Acids Research 2002, 30:4321-4328.

Holm L, Sander C: Removing near-neighbour redundancy from
large protein sequence collections.  Bioinformatics 1998,
14:423-429.

Andreeva A, Howorth D, Brenner S, Hubbard T, Chothia C, Murzin
A: SCOP database in 2004: refinements integrate structure
and sequence family data. Nucleic Acids Research 2004,
32:226-229.

Karplus K, Barrett C, Hughey R: Hidden Markov models for
detecting remote protein homologies. Bioinformatics 1998,
14:846-856.

29.

30.

31

32.
33.

34.

35.

36.
37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.
51,
52.

53.

54.
55.

http://www.biomedcentral.com/1471-2105/8/435

Wou-blast [http://blast.wustl.edu/]

Thompson D, Higgins DG, Gibson TJ: CLUSTAL W: improving
the sensitivity of progressive multiple sequence alignment
through sequence weighting, position-specific gap penalties
and weight matrix choice. Nucleic Acids Res 1994,
22(22):4673-4680.

Wistrand M, Sonnhammer E: Improved profile HMM perform-
ance by assessment of critical algorithmic in SAM and
HMMER. BMC Bioinformatics 2005, 6:99-109.

Bourne P, Weissig H: Structural Bioinformatics Sinauer Associates;
2003.

Jones S, Bateman A: The use of structure information to
increase alighment accuracy does not aid homologue detec-
tion with profiles HMMs. Bioinformatics 2002, 18:1243-1249.
Mizuguchi K, Deane C, Blundell T, Overington ]: HOMSTRAD: a
database of protein structure alignments for homologous
families. Protein Science 1998, 7:2469-2471.

Notredame C, Higgins D, Heringa J: T-coffee: a novel method for
fast and accurate multiple sequence alignment. Computer
Applications in the Biosciences 2000, 302:205-217.

Hmmer-struct BiowebDB [http://wiki.biowebdb.org/index.php/
Hmmer-struct]

Katoh K: MAFFT version 5: improvement in accuracy of mul-
tiple sequence alignment. Nucleic Acids Research 2005,
33:511-518.

Do C, Mahabhashyam M, Brudno M, Batzoglou S: ProbCons: Prob-
abilistic consistency-based multiple sequence alignment.
Genome Research 2005, 15:330-340.

Nuin P, Wang Z, Tillier E: The accuracy of several multiple
sequence alignment programs for proteins. BMC Bioinformatics
2006, 7:1-18.

Sullivan O, Suhre K, Abergel C, Higgins D, Notredame C: 3DCoffee:
combining protein sequences and structures within multiple
sequence alignments.  Journal of Molecular Biology 2004,
340:385-395.

Attwood T, Bradley P, Flower D, Gaulton A, Maudling N, Mitchell A:
A new progressive-iterative algorithm for multiple structure
alignment. Bioinformatics 2005, 21:3255-3263.

Feng D, Doolittle R: Progressive sequence alignment as a pre-
requisite to correct phylogenetic trees. Journal of molecular evo-
lution 1987, 25:351-360.

Taylor W, Flores T, Orengo A: Multiple protein structure align-
ment. Protein Science 1994, 3:1858-1870.

Shi J, Blundell T, Mizuguchi K: FUGUE: sequence-structure
homology recognition using environment-specific substitu-
tion tables and structure-dependent gap penalties. Journal of
Molecular Biology 2001, 310:243-257.

Haft D, Selengut ], White O: The TIGRFAMs database of protein
families. Nucleic Acids Research 2003, 31:371-373.

Letunic I, Copley R, Schmidt S, Ciccarelli F, Doerks T, Schultz J, Pon-
ting C, Bork P: SMART 4.0: towards genomic data integration.
Nucleic Acids Research 2004, 32:142-144.

Karchin R, Cline M, Gutfreund YM, Karplus K: Hidden Markov
models that use predicted local structure for fold recogni-
tion: alphabets of backbone geometry. Proteins 2003,
51:504-514.

Karplus K, Karchin R, Shackelford G, Hughey R: Calibrating E-val-
ues for hidden Markov models with reverse-sequence null
models. Bioinformatics 2005, 6:305-316.

Helen M, Westbrook |, Feng Z, Gilliland G, Bhat T, Weissig H, Shindy-
alov |, Bourne P: The Protein Data Bank. Nucleic Acids Research
2000, 28:235-242.

Espadaler J: Detecting remote related proteins by their inter-
actions and sequence similarity. PNAS 2005, 102:7151-7156.
Séding J: Protein Homology detection by HMM-HMM com-
parison. Bioinformatics 2005, 21:951-960.

Alexandrov V, Gerstein M: Using 3D Hidden Markov Models
that explicitly represent spatial coordinates to model and
compare protein structures. BMC Bioinformatics 2004, 5:1-10.
Hou Y, Hsu W, Lee M, Bystroff C: Remote homology detection
using local sequence-structure correlations. PROTEINS: Struc-
ture, Function and Bioinformatics 2004, 57:518-530.

Mitchell T: Machine Learning McGraw-Hill; 1997.

Beck JR, Shultz EK: The use of relative operating characteristic
(ROC) curves in test performance evaluation. Arch Pathol Lab
Med 1986, 110(1):13-20.

Page 11 of 12

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14962937
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14962937
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14529629
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14529629
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15746283
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15746283
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16040198
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16040198
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16040198
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15377504
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15377504
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15377504
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8107089
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8107089
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8107089
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8744772
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8744772
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11697912
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11697912
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11697912
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9837738
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9837738
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9837738
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2231712
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2231712
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10982878
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10982878
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10982878
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9918945
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8744772
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8744772
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8902360
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8902360
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8193951
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8193951
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7584440
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7584440
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12364612
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12364612
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9682055
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9682055
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9927713
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9927713
http://blast.wustl.edu/
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7984417
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7984417
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7984417
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15831105
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15831105
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15831105
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12217916
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12217916
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12217916
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9828015
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9828015
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9828015
http://wiki.biowebdb.org/index.php/Hmmer-struct
http://wiki.biowebdb.org/index.php/Hmmer-struct
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15661851
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15661851
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15687296
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15687296
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16393334
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16393334
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15201059
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15201059
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15201059
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15941743
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15941743
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15941743
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3118049
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3118049
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7849601
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7849601
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11419950
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11419950
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11419950
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12520025
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12520025
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12784210
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12784210
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12784210
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16371163
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16371163
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16371163
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10592235
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15883372
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15883372
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15531603
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15531603
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14706121
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14706121
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14706121
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3753562
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3753562

BMC Bioinformatics 2007, 8:435

56.
57.

58.

59.

60.

Qian B, Goldstein R: Performance of an iterated T-HMM for
homology detection. Bioinformatics 2004, 20:2175-2180.

Bystroff C, Baker D: HMMSTR: A hidden Markov model for
local sequence-structure correlation in proteins. Journal of
Molecular Biology 2000, 301:173-190.

Wistrand M, Sonnhammer E: Improving Profile HMM Discrimi-
nation by Adapting Transition Probabilities. Journal of Molecu-
lar Biology 2004, 338:847-854.

Goyon F, Tufféry P: SA-Search: A web tool for protein struc-
ture mining based on structural alphabet. Nucleic Acids
Research 2004, 32:545-548.

Hou Y, Hsu W, Lee M, Bystroff C: Remote homolog detection
using local sequence-structure correlations. Journal of Molecu-
lar Biology 2004, 340:385-395.

http://www.biomedcentral.com/1471-2105/8/435

Publish with BioMed Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for
disseminating the results of biomedical research in our lifetime."
Sir Paul Nurse, Cancer Research UK
Your research papers will be:
« available free of charge to the entire biomedical community
« peer reviewed and publishedimmediately upon acceptance
« cited in PubMed and archived on PubMed Central
« yours — you keep the copyright

Submit your manuscript here: O BioMedcentral
http://www.biomedcentral.com/info/publishing_adv.asp

Page 12 of 12

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15044240
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15044240
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10926500
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10926500
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15099750
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15099750
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15201059
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15201059
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Methods
	Multiple Alignment Tools
	Profile-HMMs
	Experimental Methodology

	Results
	Alignment Profile
	HMMER Performance
	SAM Performance
	HMMER and SAM Performance

	Discussion
	Conclusion
	Authors' contributions
	Acknowledgements
	References

