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Abstract

Background: Evolutionary conservation has been used successfully to help identify cis-acting
DNA regions that are important in regulating tissue-specific gene expression. Motivated by
increasing evidence that some DNA regulatory regions are not evolutionary conserved, we have
developed an approach for cis-regulatory region identification that does not rely upon evolutionary
sequence conservation.

Results: The conservation-independent approach is based on an empirical potential energy
between interacting transcription factors (TFs). In this analysis, the potential energy is defined as a
function of the number of TF interactions in a genomic region and the strength of the interactions.
By identifying sets of interacting TFs, the analysis locates regions enriched with the binding sites of
these interacting TFs. We applied this approach to 30 human tissues and identified 6232 putative
cis-regulatory modules (CRMs) regulating 2130 tissue-specific genes. Interestingly, some genes
appear to be regulated by different CRMs in different tissues. Known regulatory regions are highly
enriched in our predicted CRMs. In addition, DNase | hypersensitive sites, which tend to be
associated with active regulatory regions, significantly overlap with the predicted CRMs, but not
with more conserved regions. We also find that conserved and non-conserved CRMs regulate
distinct gene groups. Conserved CRMs control more essential genes and genes involved in
fundamental cellular activities such as transcription. In contrast, non-conserved CRMs, in general,
regulate more non-essential genes, such as genes related to neural activity.

Conclusion: These results demonstrate that identifying relevant sets of binding motifs can help in
the mapping of DNA regulatory regions, and suggest that non-conserved CRMs play an important
role in gene regulation.

Background mechanisms that regulate gene expression, it is important
Transcriptional regulation is a key component of genereg-  to identify and define the network of cis-acting DNA reg-
ulation, which itself plays a major role in all forms of cel-  ulatory elements, which can be viewed as the regulatory

lular differentiation and function. To understand the  code wired within the genome. The code itself is executed

Page 1 of 13

(page number not for citation purposes)


http://www.biomedcentral.com/1471-2105/8/437
http://creativecommons.org/licenses/by/2.0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17996093
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

BMC Bioinformatics 2007, 8:437

through transcription factors (TFs), which determine
which set of genes will be expressed. Because the cis-regu-
latory elements are usually short and degenerate, distin-
guishing regions of regulatory importance from other
non-coding regions is often a great challenge.

One important method for cis-regulatory element detec-
tion is based on the concept of the cis-regulatory module
(CRM). The hypothesis behind this approach is that TFs
co-operate as a functional complex in regulating gene
expression. A corollary of this hypothesis is that a region
with multiple putative TF binding sites (TFBSs) is more
likely to be functional than a region with only a solitary
site. These studies were carried out by counting TFBS hits
in sliding windows along genomic sequence, and then
predicting that the regions with the highest density of
TFBSs represent CRMs. This CRM concept has been
applied to several biological systems [1-9]. Methods based
on Hidden Markov Models have been developed to use
this CRM concept to improve motif identification [10,11].
A limit that has prevented this approach from being
applied on a large scale is the a priori requirement of a set
of biologically relevant TFs. Definition of the set of rele-
vant TFs generally requires extensive experimental work,
and for most cases such data is not available.

Evolutionary conservation (phylogenetic footprinting
approach) can help to improve the cis-regulatory ele-
ments identification when used in combination with
other methods. This approach is based on the hypothesis
that evolutionarily conserved sequences within non-cod-
ing regions are the result of selective pressure, and are
likely to be enriched for functional regulatory elements.
This type of approach has been successfully applied to a
variety of systems [12-18]. However, by the nature of the
approach, it is not effective for the discovery of species-
specific regulatory elements. This limitation is becoming
increasingly important because a growing body of evi-
dence suggests the biological importance of non-con-
served sequences. Recent comparative genomics studies
have identified important RET elements in human and
zebrafish that are not conserved evolutionarily [19]. On a
genome-wide scale, comparisons between Drosophila spe-
cies show only slight difference in conservation between
known regulatory regions and other non-coding regions,
again suggesting the regulatory importance of non-con-
served sequences [20]. A large scale analysis from the
ENCODE project found that only 55% of regulatory factor
binding sites overlap the high-confidence evolutionarily
constrained sequences, suggesting the possibility of large
number of neutral regulatory elements which are biologi-
cally functional but are not under selective pressure [21].

To study tissue-specific gene regulation, we have been
working to develop approaches to identify and analyze
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regulatory regions that contribute to tissue specificity. We
suggest that species differences in regulatory regions may
be particularly important in specialized functions such as
the determination of tissue specificity. Therefore, it is
important to identify tissue-specific cis-regulatory ele-
ments in an unbiased way in terms of evolutionary con-
servation. In the work described here, the goals were to (1)
develop a computational method for identification of cis-
regulatory elements that works with both conserved and
non-conserved regions, (2) discover regions that are
responsible for tissue specificity, and (3) functionally
compare conserved and non-conserved regions with the
hope of providing a glimpse into the evolution of gene
regulation.

Our algorithm, called CRM-PI (cis-regulatory module
identification based on protein interaction), searches for
DNA regions with dense TFBSs whose binding TFs are
known or predicted to be important to tissue specificity.
The approach is similar to the above-described methods
for mapping CRMs in genomes [1-9], but it has been
adapted to deal with situations in which experimental
data defining biologically relevant sets of interacting fac-
tors is lacking. Sets of putative interacting TFs are first
computationally predicted based on the positional rela-
tionship and co-occurrences of their binding sites in the
conserved regions of the promoters of tissue-specific
genes [22]. Based upon these predictions on the trans-act-
ing factors, efforts are made to construct cis-acting DNA
regions (i.e. CRMs) in the promoter of each tissue-specific
gene, including conserved and non-conserved regions.
Since our predicted CRMs do not rely on evolutionary
conservation, we are able to investigate the contribution
of both conserved and non-conserved CRMs to tissue spe-
cific gene regulation, and to study the associated charac-
teristics in the context of the evolution of gene regulation.

Results

Detection of CRMs based on tissue-specific TF interactions
We utilized computationally predicted tissue-specific TF
interactions to identify CRMs. In our previous work we
identified 9060 putative tissue-specific TF interactions
[22]. Two TFs were predicted as interacting if the relative
positions and co-occurrence of their binding sites in pro-
moters differed significantly from random expectation
(Figure 1; Additional files 1 and 2). Since identifying the
CRMs harboring these interactions in each individual pro-
moter is not trivial, we developed an algorithm, CRM-P],
to detect CRMs by calculating an empirical "potential
energy" between interacting TFBSs along the genomic
sequence. A promoter region containing many interacting
TFBSs will have low "potential energy" (see Methods).
CRM-PI obtains an energy landscape along the regulatory
regions and searches for regions with low "potential
energy". For those locations at which the energy is below
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Schematic of module detection method based on TF interactions. Based on gene expression profiles across different tissues,
we identified groups of genes that are preferentially expressed in tissues (e.g. gene C and D in the schematic). For each group
of genes, we searched the binding sites of known TFs in promoter regions and determined the TF pairs whose binding sites
tend to co-occur in close proximity. A tissue-specific TF interaction network was obtained from the analysis. We then scanned
the genomic regions and identified cis-regulatory regions (CRMs). The CRMs are defined as regions enriched with TF interac-
tions. Note the first steps were implemented in our previous work [22] while this paper focuses on the last step.

a given threshold, the region around the minimum is  As one example of the use of CRM-PI, Figure 2A shows the
defined as a CRM. promoter region around the gene Aldolase A (ALDOA,
NM_000034), which is found to be preferentially
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Figure 2

Two examples of predicted CRMs. (A) upstream 5 k to translational start site for gene ALDOA. (B) same for gene CNGB3.
Upper panels are the "potential energy" based on TF interactions. Middle panels show the density of all known TFBSs (total
306 TFBSs) in a sliding window along the region. Bottom panels depict the conservation scores of the regions. The dashed lines
are the thresholds used in our prediction. The positions with lower energy than the threshold are predicted as CRMs (indi-
cated by vertical bars). The red dots in (A) indicate the positions of known regulatory sites.

expressed in the larynx. The energy landscape (Ecrm)
based on larynx-specific TF interactions is shown in the
bottom panel of the figure. An energy minimum around -
200 bp is lower than the threshold (dashed line) and thus
predicts the presence of a CRM (highlighted by vertical
bar). Five known cis-regulatory elements are also located
around this position (red dots). Interestingly, the region is
not evolutionarily conserved (upper panel). Furthermore,

if we simply count hits of all TFBSs instead of only the rel-
evant (interacting) ones, the TFBS density at this region is
just around the average value.

CRM-PI detected novel as well as known CRMs. For exam-
ple, we identified three putative CRMs for cyclic nucle-
otide gated channel beta 3 (CNGB3, NM_019098), a gene
that is preferentially expressed in the retina. Two CRMs are
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within upstream 400 bp, while the other one is located
around upstream 3200 bp (vertical bars in Figure 2B). The
CRM closest to the transcription start site (TSS, 0 on the x-
axis) is conserved (average conservation score: 0.92).
However, the TFBS density is not high around this region.
For the CRM spanning from -200 bp to -340 bp, the
region is also relatively conserved. The one at -3200 bp,
however, is not conserved, and there is only a minimal
increase in TFBS density in this region. These examples
demonstrate that our approach can identify CRMs in both
conserved and non-conserved regions.

We applied our method to 7261 genes that are preferen-
tially expressed in various human tissues [22]. For each of
the 7261 tissue-specific genes, we calculated the energy
landscape based on the TF interactions specific to the
respective tissues. The investigated regions included
sequences upstream of the translation start sites, introns,
and sequences downstream of the transcription end sites
(see Methods). Among the tissue-specific genes, 2130 of
them were found to contain a total of 6232 CRMs, with an
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average length of 90 bp. The summary statistics for each
tissue is shown in Table 1. Detailed information of the
predictions can be found in Additional file 3.

Evaluation using known regulatory elements and DNase |
hypersensitive sites

In an effort to evaluate CRM-PI, we first explored its
behavior with known cis-regulatory elements. We col-
lected the elements from the TRANSFAC database [23],
and chose those in the investigated regions of the tissue-
specific genes as the positive controls. In total, we identi-
fied 548 regions as positive controls.

Sensitivity and specificity are widely used criteria in eval-
uation of a prediction. Here, because only a very small
fraction of cis-regulatory elements are determined, we cal-
culated enrichment instead of specificity. Sensitivity is
defined as the ratio of the recovered positive control
regions (in unit of nucleotides) to total length of the pos-
itive control regions. The enrichment is defined as the
ratio of the probabilities of predicting a nucleotide site in

Table I: Summary statistics of the predictions for the 30 tissues examined.

Tissue No. of CRMs No. of target genes Important TFs
Bladder 58 35 SREBP-1, NRF-I, NF-Y, ETF, MAX
Blood 319 150 FOX]J2, ELF-1, ETF, CDP, PEA3
bone 4 4 OCT-I, RFXI, EF-C, FOXJ2, NKX3A
bone marrow 138 73 SREBP-1, NRF-I, STATI, HLF, TEF
brain 757 149 FREAC-7, OCT-1, SOX-9, FREAC-3, NKX6-2
cervix 174 90 ETF, NRF-1, SPI, AP-2, C-MYC/MAX
colon 225 68 CDP, AFPI, HNF-1, OCT-1, ALX-4
eye 242 78 FOX]J2, POU3F2, OCT-1, CHX10, CRX
heart 192 62 MEF-2, POU3F2, GATA-6, AP-I, IRFI
kidney 180 83 HNF-I, COUP-TF/HNF-4, CRX, OCT-1
larynx 225 99 ETF, SP1, NRF-I, AP-2, WHN
liver 300 110 HNF-1, ALX-4, HNF-3alpha, C/EBPgamma
lung 64 28 ETF, MTF-1, C-MYC/MAX, LHX3, NRF-1
lymph node 194 111 ICSBP, PU.1, ETF, ELK-1, NRF-I
mammary gland 180 69 RSRFC4, CDP, MEF-2, FACI, LHX3
muscle 169 69 MEF-2, RSRFC4, SRF, MYOD, CDP_CR3
ovary 121 47 VDR, MAZ, MZFI, SP1, CREB
pancreas 110 48 MYOD, ATF, SPI1, E47, AREBé6
PNS 260 55 POU3F2, OCT-I, NKX6-2, HNF-6, HFH-3
placenta 121 57 LHX3, AFPI, CHXI10, NKXé-2, CDP
prostate 212 64 LHX3, POU3F2, CDC5, C/EBPgamma, CART-|
skin 50 28 AREB6, LMO2_COMPLEX, ALX-4, ARP-|
small intestine 435 68 POU3F2, LHX3, NKX6-2, HNF-I, FOXD3
soft tissue 217 70 FOXO4, C/EBPgamma, FOXOI, SRY, RSRFC4
spleen 94 44 RSRFC4, LBP-1, CDP, MEF-2, NF-KAPPAB
stomach 131 76 ETF, SPI, AP-2gamma, AREB6, SRY
testis 579 296 NRF-1, ETF, SPI, AP-2, C-MYC/MAX
thymus 155 47 POU3F2, NKXé6-2, E4BP4, TAX/CREB, ETF
tongue 183 104 ETF, SPI, NRF-1, HIF-1, CREB
uterus 143 28 POU3F2, OCT-I, E4BP4, POUIFI, NKX6-|
Total 6232 2310

Important TFs of a tissue are the top 5 TFs which contribute most to the potential energies of the CRMs.
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Enrichment and sensitivity of predictions. We evaluated the
performance of predictions using sensitivity and enrichment.
Two types of predictions were compared: one is the TF
interaction based method and the other is the solely conser-
vation based method. (A) Using known regulatory elements
as positive controls. (B) Using DNase | hypersensitive sites as
positive controls.

positive control region as part of CRM versus a site in ran-
dom sequence as CRM. If a method does not have any pre-
diction power, the resulted prediction will have
enrichment close to 1.

We obtained a series of predictions using different thresh-
olds to assess the performance of our approach in terms of
sensitivity and enrichment. As expected, if more stringent
cutoffs are used, the number of known regulatory regions
recovered decreases (Figure 3). At the same time, the
enrichment of known regulatory regions in the prediction
increases with more stringent cutoffs, indicating that the
known regions are not randomly distributed in the predic-
tion set and tend to have more significant "potential
energy" from our prediction. This result justifies the usage
of "potential energy" as a measure of the relative probabil-
ity that a region is in a CRM. In our prediction, we chose

http://www.biomedcentral.com/1471-2105/8/437

athreshold of E,,, = 1 (see Methods). At this threshold, we
have sensitivity of 12% and enrichment of 10. In other
words, these CRMs constitute only 1.2% of the regulatory
sequences, while 12% of known regulatory regions are
found in these CRMs.

To obtain a relative sense of the performance of our
approach, we compared our results with an approach that
predicts CRMs based purely on conservation. In this sim-
plified comparison, we used conservation scores as the
cutoff, and the non-coding regions with conservation
scores higher than the cutoff were predicted as CRMs [24].
We found that the performance of our approach was sim-
ilar to that of this conservation-based method (Figure 3).
However, comparison of the approaches revealed that
there are significant areas of non-overlap between the sets
of identified CRMs, suggesting that the different
approaches can complement each other (see Discussion).

We also used DNase I hypersensitive sites (DHSs) as an
indirect assessment of our predictions. DHSs represent
chromatin regions that show increased sensitivity to
digestion by the enzyme DNase I. The increased DNase I
sensitivity is thought to reflect areas of DNA where there
is increased accessibility to TFs and other DNA binding
proteins. DHSs are generally enriched with regulatory ele-
ments. We analyzed the 84 DHSs that are associated with
tissue-specific genes [25]. Figure 3B shows the sensitivity-
enrichment plots for our approach. Our approach can pre-
dict DHSs with a reasonable performance. However, an
approach based solely on conservation does not effec-
tively distinguish DHSs from the overall genomic
sequence (enrichment of DHSs in the prediction is close
to 1).

Some features of predicted CRM:s for tissue-specific genes
The analysis revealed that CRMs are not homogenously
distributed across regulatory regions. We calculated the
probability for each position to be in a CRM (Figure 4).
There is a significant peak showing high regulatory activity
around transcription start sites (TSSs). The peak is located
at ~ -60 bp upstream to the TSS. The regulatory activity
decays rapidly with increasing distance from the TSS in
both directions. The decreases are symmetric for upstream
and downstream to TSSs, an observation consistent with
the ENCODE analysis [21]. We also noticed that there is a
moderate peak at the start position of the first intron. As a
comparison, we calculated the same probability for ran-
dom sequences as the background (pink line in left
panel). The random sequences were generated according
to the nucleic acid compositions and 1sr/2nd/6th order
transition probabilities of all promoter sequences in the
human genome. The averaged probabilities for a base pair
to be in CRM are 0.0005, 0.00056, and 0.0014 for ran-
dom sequences of orders 1st, 2nd and 6th, respectively.
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Dependence of regulatory activity on positions relative to
gene structure. We calculated the probability for each posi-
tion containing a CRM. The reference positions (origins in
the x-axis) are transcription start sites, the respective start
sites of introns and transcription end sites in three regions,
respectively. The pink curve in the left panel is from random
sequences which were generated with the same nucleic acids
compositions and [storder transition probabilities, respec-
tively, as those of the all promoter sequences in the human
genome.

For clarity, only the results of the 1st-order random
sequences are presented in Figure 4. All regions investi-
gated have significantly higher regulatory activity (>0.01)
than the random sequences. This finding is consistent
with the results from several large scale ChIP-chip experi-
ments showing that regulatory elements are not restricted
to upstream sequences [21,26-28].

We then examined the number of CRMs associated with
each gene and found that the CRM numbers display a
power-law-like distribution. In other words, most of the
genes have only a few associated CRMs and a few genes
have many CRMs. More than half of the genes (65%) are
associated with only one or two CRMs. On the other
hand, only 5 genes (MTTP, MAP2, FSTL5, SLC26A3, and
CD36) are regulated by more than 20 CRMs. Of course,
these multiple CRMs are not necessary simultaneously
active in cells. Different sets of CRMs may be used in dif-
ferent tissues, indicating distinct regulatory mechanisms.
For example, CD36 is preferentially expressed in blood,
bone marrow, heart, and soft tissue. The numbers of
CRMs specific to these tissues are 1, 4, 8, and 9, respec-
tively.

Another example of this phenomenon is provided by
PITX2, which encodes a paired-like homeodomain tran-
scription factor. PITX?2 is preferentially expressed in both
placenta and eye based on our EST analysis. We calculated
the potential energy landscapes using the interaction sets
specific to placenta and eye, respectively. Figure 5 shows
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The energy landscapes for PITX2. The landscape in the upper
panel was calculated based on placenta-specific interactions
between TFs. The one in bottom panel was based on eye-
specific TF interactions.

the energy landscape around the TSS of PITX2. The land-
scape in the upper panel was based on placenta-specific TF
interactions. The placenta-specific interactions yield a
CRM around 1800 bp in the first intron (the intron spans
from 573 bp to 4343 bp). The most important TFs bind-
ing to the CRM are LHX3, CHX10 and ATBF1. Similarly,
we calculated the energy landscape based on eye-specific
interaction for the same gene (bottom panel in Figure 5).
Two CRMs were found based on eye-specific TF interac-
tions. One is located around -3600 bp upstream and the
other around 1400 bp in the first intron. The TF binding
to the CRM in the upstream region is FOXJ2. Three FOX]2
binding sites occur in the region of the CRM, suggesting
several homotypic interactions between FOX]J2. The TFs
found in the CRM in intron include FOXJ2, CHX10,
POU3F2 and CRX. This example demonstrates that differ-
ent sets of TFs bind to their respective CRMs and can reg-
ulate the same gene in different tissues.

Conserved and non-conserved CRMs regulate distinct
classes of genes

Since our approach to CRM prediction does not rely on
evolutionary conservation, one would expect to obtain
both conserved and non-conserved CRMs. As expected,
the identified CRMs occurred in both conserved and non-
conserved regions. Among all predicted CRMs, 55% of
them have an average conservation score less than 0.2.

We explored whether there might be differences between
the conserved and non-conserved classes of CRMs in
terms of the activity and/or properties of their target
genes. We first investigated the functional classes enriched
for the respective gene groups regulated by conserved
CRMs (cCRMs) and non-conserved CRMs (ncCRMs) (see
Methods for definitions). We counted the numbers of
genes in various functional classes based on gene ontol-
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Table 2: Enriched functional categories in cCRMs and ncCRMs.
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GO ID GO Description Obs. Exp. -log,o(P)
CCRMs GO:0003700 transcription factor activity 53 26.3 6.0
GO:0004840 ubiquitin conjugating enzyme activity 7 1.3 38
GO:0006470 protein amino acid dephosphorylation 12 3.6 38
GO:0016363 nuclear matrix 4 0.4 37
NcCRMs GO:0045211 postsynaptic membrane 12 32 5.3
GO:0007172 signal complex formation 6 I.1 4.5
GO:0005521 lamin binding 6 1.1 4.5
GO:0007268 synaptic transmission 31 15.3 4.4

ogy (GO) annotation [29] and calculated the P values for
each class (see Methods). Table 2 lists the most signifi-
cantly enriched functional classes in the gene groups tar-
geted by cCRMs and ncCRMs, respectively. We can see
that genes involved in gene expression and protein modi-
fication (e.g. transcription, protein amino acid dephos-
phorylation) tend to be targeted by cCRMs. In contrast,
the genes related to nervous system function (e.g. synaptic
transmission) tend to be regulated by ncCRMs. The obser-
vations on the different enriched functional classes for
cCRMs and ncCRMs could be rationalized by the fact that
transcription and translation activities are among the
most fundamental processes in cells, while neural activity
is more specific to species. To exclude possible effects
brought about by the conservation of their target genes,
we performed the same analysis on the conserved gene
groups (of average conservation scores not less than 0.5).
One can see that most of the results are consistent with the
above (Additional file 4).

We then linked CRM conservation with the essentiality of
their target genes. Essential genes are defined as those that
render the cell, or organism, non-viable if knocked out.
The essential and viable genes were obtained through
mouse knockout experiments [30], and the gene lists
themselves were obtained from the Human Protein Refer-
ence Database [31]. From the database, we identified 153
viable and 83 essential genes that were tissue-specific and
had at least one CRM in their regulatory regions. The frac-
tions of essential genes in the gene group regulated by
cCRMs and ncCRMs are 0.48 (45 out 93) and 0.27 (38 out
of 143), respectively, suggesting that the classification
cCRM/ncCRM is significantly correlated with the classifi-
cation viable/essential genes (chi square test, p < 0.01).
Our result demonstrates that the regulatory elements for
essential genes tend to evolve slower than those regulating
non-essential genes. Since it has been found that more
dispensable genes tend to have a higher evolutionary rate
[32], this result indicates a possible co-evolution between
coding sequences and their regulatory elements.

A recent study on interspecies variation in gene expression
revealed that genes containing a TATA box in their pro-
moters tend to have increased gene expression variation
across species, indicating that the TATA box could be a
genetic signature for gene expression variation [33]. We
examined the relationship between the conservation of
the CRMs and the likelihood of containing a TATA-box in
the promoters. Twelve percent (9 out of 74) of genes reg-
ulated by cCRMs contain a TATA-box. In contrast, 23%
(39 out of 169) of genes regulated by ncCRMs contain a
TATA-box (chi square test, p < 0.05). Hypogeometric test-
ing also indicates that the cCRM group significantly over-
laps with the non-TATA group (p ~ 0.003) and the ncCRM
group with the TATA group (p ~ 0.03). This observation
and the above results demonstrate that the genes control-
led by cCRMs and ncCMRs are distinctive in terms of func-
tional classification, gene essentiality and the likelihood
of being associated with a TATA-box containing promoter.

Computational complexity and software availability

The computation of a gene's energy landscape takes less
than 1 second for a typical 5-10 kbp promoter sequence,
and ~42 minutes for ~6000 random sequences in a linux
system operating on a DELL PRECISION 690. The pro-
gram CRM-PI is available upon request.

Discussion

Gene regulation is not a static process. It is not only about
"which TF regulates which genes", but also about "when,
where and how the TF regulates the gene". In this context,
CRMs are best thought of not just as static segments of
DNA sequences located around genes, but rather as
dynamic entities that are a function of both time and
space. There are many attributes associated with the
CRMs, and these attributes are also dynamic. In our anal-
ysis, we predicted tissue-specific CRMs, i.e. CRMs associ-
ated with gene regulation specific to individual cells or
tissues. In different tissues, the CRMs regulating the same
gene can be dramatically different (see example in Figure
5). In addition, distinct sets of regulatory elements may
regulate the same gene at different developmental stages.
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As more information becomes available, it should be pos-
sible to more fully relate regulatory elements with tempo-
ral (e.g. development) and spatial (e.g. cell types)
attributes. The additional temporal and spatial informa-
tion will likely be helpful in describing regulatory ele-
ments in their larger biological context.

Sensitivity

Our approach achieved a reasonable sensitivity of 0.12 for
identification of tissue-specific cis-regulatory regions. This
performance is similar to other currently available tools.
Gupta and Liu tested the CRM predictions of 7 available
methods on conserved human-mouse alignment regions
of 5 k upstream sequence, and their sensitivities ranged
from 0.10 to 0.31 [10]. PreMod is a new promising
approach of CRM detection based on conservation, and
its sensitivity is 0.15~0.30 for TRANSFAC binding sites.

The modest sensitivity of CRM-PI can be attributed to
many factors. First, our approach used 306 TFs with
known binding sites, which is just a fraction of the total of
~1500 human TFs [34]. As a result, many CRMs bound by
the factors not included this study will be missing from
our prediction. Second, our positive controls from
TRANSFAC are not necessarily tissue-specific, while our
predicted CRMs are only those that contribute to tissue
specificity. Third, we expect that if we could include more
information for TF interactions, such as binding site ori-
entation and distances, our approach would be more sen-
sitive to detect true CRMs.

Comparison with other CRM methods

One significant difference between our approach and
other CRM methods is that we proposed that only rele-
vant TFBSs contribute to a functional CRM. Therefore,
CRM-PI counts the number of interactions instead of the
total number of TFBSs in a sliding window for CRM detec-
tion. One interesting observation is that we obtained sim-
ilar densities of TFBSs in promoter sequences and 6t
order Markov random sequences (0.152 vs 0.148 hit per
bp). In other words, we would have similar numbers of
CRMs for real promoters and random sequences if we
simply counted the TFBSs. However, the numbers of
CRMs (i.e regulatory activities) between the promoter and
random sequences are significantly different (> 0.01 vs.
0.0014), suggesting the importance of including only rel-
evant TFs for CRM detection.

Comparison with conserved-based approach

To enrich for true interactions between TFs, we utilized
evolutionary conservation as a constraint [22]. After
obtaining the TF interactions, we searched the cis-regula-
tory regions for each promoter regardless of the degree of
evolutionary conservation. As a result, we have found a
substantial fraction of CRMs in non-conserved regions,
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indicating that our approach and conservation-based
methods detect different sets of the CRMs. For example,
using TFBS regions of TRANSFAC database as positive
control, we correctly predicted 66 TFBS regions. Among
these 66 sites, only 19 were predicted by PReMod, a
genome-wide conservation-based approach [12]. There-
fore, our method can complement the widely used conser-
vation-based methods.

Evolution of regulatory mechanisms

From the perspective of molecular evolution, identifica-
tion of both conserved and non-conserved regulatory ele-
ments can provide insight into the evolution of gene
regulation. It has been hypothesized that variation in gene
regulation can be as important as coding region changes
in contributing to the differences between species [35].
Supporting this viewpoint, human and chimpanzee share
99% sequence identity in coding sequences, yet they still
demonstrate major difference in morphology and behav-
ior [36]. Therefore, how genes are regulated might, in
some ways, be as critical as evolutionary variation
between genes themselves, suggesting that the evolution
of regulatory elements might be as important as that of
coding sequences in the explanation of divergence among
species.

Despite this, there have been few comprehensive studies
on the evolution of regulatory elements. In one study,
Gasch et al analyzed the conservation and evolution of
cis-regulatory systems in fungi [37]. Many cis-regulatory
elements in S. cerevisiae were found to be conserved in
other fungi, but they also found some novel cis-regulatory
elements specific to individual species.

One problem limiting comprehensive study of regulatory
variation is the lack of sufficient known cis-regulatory ele-
ments, especially in mammalian systems. Current studies
of the evolution of gene regulation often compare gene
expression across species instead of regulatory elements
directly [38-40]. It is worth emphasizing that it is not
identical to study evolution in terms of gene expression
and cis-regulatory elements. For example, a recent study
based upon comparison of the messenger RNA levels in
liver tissues within and between human, chimpanzee,
orangutan and rhesus macaque found that TFs tend to
evolve more rapidly than other genes [40]. In contrast, our
study on promoter sequences indicates that TFs tend to be
regulated by conserved CRMs. Our findings may reflect
the evolutionary discrepancy between the gene expression
and regulatory elements. The study of regulatory elements
therefore requires unbiased (conserved vs. non-con-
served) identification of these elements. We suggest that
our method will be helpful in the identification of both
conserved and non-conserved regulatory elements, which
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in turn will provide insights into the evolution of regula-
tory mechanisms.

Limitations and future directions

In this study, we limited the promoter sequences to 5 kb
upstream of the transcription start site (TSS), and thus
excluded many enhancers and other regulatory elements
that are far from the TSSs. However, extension of our anal-
ysis to the entire genomic would likely introduce signifi-
cant noise, a reflection of the trade-off problem between
sensitivity and specificity.

Another area of compromise involved whether or not to
include evolutionary conservation. We decided to ignore
use of the evolutionary conservation constraint so as to be
able to detect both conserved and non-conserved CRMs.
A limitation of excluding evolutionary conservation, how-
ever, is that we loose its power for helping to identify cer-
tain cis-regulatory regions. One possible compromise
approach that could take advantage of both approaches
would be to include only mammalian genomes to define
conservation. In this way, we would have the power of the
conservation constraint, and in the meantime, we can
hopefully retain most of species-specific cis-regulatory ele-
ments.

Our approach to CRM identification can be extended to
treat cell-type- or development-stage-specific gene groups.
The real challenge of our strategy is how to find well-
defined gene groups whose members share similar mech-
anisms of gene regulation. Secondly, choosing a more
non-redundant and comprehensive motif set, such as a
refined combination of Jaspar [41] and TRANSFAC, may
improve the current performance of our approach. Other
developments, such as improvements in motif finding
algorithms, may further help improve the global perform-
ance of our approach.

Conclusion

We have presented a study of cis-regulatory systems that
regulate tissue-specific gene expression. In contrast to
popular phylogenetic footprinting approaches, our pro-
posed method utilizes information based on TF interac-
tions to identify cis-regulatory modules (CRMs), an
approach that is unbiased in terms of evolutionary conser-
vation. The results suggest that non-conserved CRMs con-
tribute significantly to tissue-specific gene regulation.
With more data available, it should be possible to put the
CRMs in a fuller biological context and better understand
the roles they play in cellular differentiation and function.

Methods

Sequences in the genome

We obtained sequences and gene structures based on Ref-
Seq gene annotation (hg17). The regulatory regions we
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studied include (i) upstream 5 kb to translation start site
(ii) introns (iii) 3'UTR (iv) downstream relative to tran-
scription end site (TES) to its 3' adjacent gene. If the
region is longer than 5 kb, we cut it to 5 kb from TES.

Position weight matrices and genome-wide search

Similar as previous work [22], we collected 306 human
position weight matrices (PWMs) from TRANSFAC data-
base and literatures. The match scores between a matrix
and a sequence were calculated for all possible positions
along the promoters defined in previous work [22]. The
score threshold for the top 0.015% matches in all promot-
ers was utilized as the cutoff. This cutoff is somewhat arbi-
trary and may cause some false positive hits. The study of
CRMs based on TF interactions is expected to increase the
specificity of these hits.

Identification of cis-regulatory modules (CRMs)

The basic hypothesis of our method is that the TF com-
plex, rather than individual TFs, is the functional unit of
gene regulation. Based on this hypothesis, we perform our
analysis by searching for clusters of transcription factor
binding sites (TFBSs), which are denoted as cis-regulatory
modules (CRMs). These clusters are more likely to be
functional than solitary TFBSs. A key step in our method
is to identify sets of relevant TFs. We argue that only the
clusters of relevant (interacting) TFs are biologically
meaningful. Relevant TFs are defined here as the TFs that
may interact to co-regulate tissue-specific genes. We iden-
tified cis-regulatory modules based on TF interactions. If a
region has sufficient TFBSs whose binding TFs interact
with each other, we predict the region as CRMs.

In our previous work, we predicted tissue-specific TF inter-
actions [22]. Briefly, we first identified tissue-specific
genes based on gene expression profile across various tis-
sues. We then derived TF pairs that are likely to regulate
the tissue-specific genes. We scanned known TFBSs (i.e.
the binding matrix from TRANSFAC) in the promoters of
the tissue-specific genes. If the co-occurrence of two TFBSs
is over-represented and/or the distances between the two
TFBSs in the promoters are significantly deviating from a
random expectation, we predicted the two TFs interact
with each other in the tissue (Figure 1). The interaction
strength between two motifs is defined as

§ = -log(P) = -log(Py.La), (1)

where P, describes whether the co-occurrence (g) of the
TFBS pair is enriched in the tissue-specific promoters (n)
compared to the total co-occurrence (G) in all N promot-
ers.
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The contribution from distances between two TFBSs, P, is
obtained from comparison of the observed TFBS-pair dis-
tance distribution with that of two random sites using a
Kolmogorov-Smirnov (KS) test.

In this work, we then predicted cis-regulatory modules
(CRMs) based on the obtained TF interactions. We devel-
oped an algorithm, CRM-PI, to calculate an empirical
"potential energy" between interacting TFBSs along the
genomic sequence. In this context, two TFBSs are consid-
ered as interacting if their respective TFs are interacting.
Previous methods for identification of CRMs often
counted the number of TFBSs in a sliding window along
the genomic sequences. Our method is equivalent to
count the number of interactions in the regions. Note that
multiple TFBS matches for the same TF are considered sep-
arately. More precisely, we calculated an empirical "poten-
tial energy" for each TFBS site,

E; = —ZS,-]- exp(—dij /D) (3)
j

Here §;; is the interaction strength between two TFBSs (see
equation 1); d; is the distance between sites i and j; D is
the decaying constant, which is equivalent to the window
size from other CRM methods. In our calculations of TF
interactions, we found that the average genomic length
between two interacting TFBSs is roughly 200 bp, which
we choose as the value of D. Changing this value in a cer-
tain range does affect our results. If the two interacting
sites are far away, their contribution to the energy would
be small. For each TFBS, we summed up the "potential
energy" due to the interactions with all other TFBSs.

In some cases, multiple TFBSs overlap at site i, and we
choose the TFBS hit whose E; value is the lowest. This E;
values still contain the contributions from other over-
lapped TFBSs. We utilized a simpler approach, compared
to previous methods such as AHAB [8] and ClusterDraw
[9]. For all sites in the studied sequence, we sort them
according to their E; values from low to high, and delete
the overlapped hits for each of the ordered sites sequen-
tially. We then update the E; values for the non-over-
lapped hits. Although this greedy algorithm may not
guarantee in obtaining the optimal solution, its efficiency
in CPU time makes it a practical choice for a genome-wide
calculation.

The E; values for the sites generally fluctuate greatly along
the sequence. The lengths of CRMs based on the E; values
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are often around the length of a TF binding site. To
smooth the energy landscape and define a continuous
CRM, the contributions from the vicinity of the studied
site with a window size W were summed up to be as the
CRM energy E,,,, of this site. We chose a window size of W
=400 bp. Furthermore, to make the calculations in differ-
ent tissues comparable, we performed a simulation on
random sequences to determine the cutoff for E_,,. The
random sequences have the same transition probabilities
as the sequences (-5000 bp to translation start site) of all
RefSeq genes (~23000). For each tissue, we calculated E,,,,
on 10000 random sequences and recorded the lowest E_,,,
value for each random sequence. We chose the cutoff as
the E_,, which is ranked on 5% lowest values (i.e. the
value at the lowest 500) in the random simulation. The
E,.,, was normalized by this value, thus the cutoffs for all
tissues are E,,, = 1.

Conservation of sequences and CRMs

We utilized conservation scores, which were calculated
based on multiple sequence alignment of eight vertebrate
species using the phylogenetic hidden Markov model
(phastCons) [42], to evaluate the conservation of
sequences and CRMs. The eight species compared were
human, chimp, mouse, rat, dog, chicken, fugu, and
zebrafish. The conservation score obtained from this com-
parison reflects the general conservation level within the
vertebrates and allows for a metric to determine conserva-
tion of larger stretches of genomic sequence. Since CRMs
often span several hundred base pairs, the average value of
conservation scores of all base pairs in a CRM is an appro-
priate measurement for the general conservation trend of
this CRM.

To determine whether there might be differences between
the conserved and non-conserved classes of CRMs in
terms of the activity and/or properties of their target
genes, we compared the gene groups regulated by con-
served CRMs (cCRMs) and non-conserved CRMs
(ncCRMs). The cCRM group was defined as those with
conservation score > 0.5, and the ncCRM group defined as
those with conservation score < 0.2. For those genes con-
trolled by more than one CRM, we used the average con-
servation score of the associated CRMs. By this definition,
455 and 877 genes were regulated by cCRMs and ncCRMs,
respectively. (It should be noted that variation in the cut-
offs chosen for the definition of cCRMs and ncCRMs was
tested and such variation did not significantly affect the
results presented in the result section.)

Functional enrichment for cCRMs and ncCRMs

We first counted the number of genes associated with
cCRMs (or ncCRMs) in each functional class and then
compared the observed number with that which would be
expected if genes were randomly assigned to the func-
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tional class. P-values were calculated using the binomial
distribution. We did the multiple testing over the func-
tional classes by performing random simulation to deter-
mine the cutoff for significant P-values. In each
simulation we selected a group of genes with the same size

of the genes controlled by cCRMs (or ncCRMs) and calcu-
lated the P-values for their occurrences in different func-
tional classes. We obtained the most significant P-value
from each simulation and determined the P-value at top
5% of the P-value distribution from the simulation as the
cutoff for significance. For cCRM and ncCRM, the cutoffs

for the P-values are 10-3-°¢ and 10-3%, respectively.
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