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Abstract
Background: Glycosylation is one of the most complex post-translational modifications (PTMs)
of proteins in eukaryotic cells. Glycosylation plays an important role in biological processes ranging
from protein folding and subcellular localization, to ligand recognition and cell-cell interactions.
Experimental identification of glycosylation sites is expensive and laborious. Hence, there is
significant interest in the development of computational methods for reliable prediction of
glycosylation sites from amino acid sequences.

Results: We explore machine learning methods for training classifiers to predict the amino acid
residues that are likely to be glycosylated using information derived from the target amino acid
residue and its sequence neighbors. We compare the performance of Support Vector Machine
classifiers and ensembles of Support Vector Machine classifiers trained on a dataset
of experimentally determined N-linked, O-linked, and C-linked glycosylation sites extracted from
O-GlycBase version 6.00, a database of 242 proteins from several different species. The results of
our experiments show that the ensembles of Support Vector Machine classifiers outperform single
Support Vector Machine classifiers on the problem of predicting glycosylation sites in terms of a
range of standard measures for comparing the performance of classifiers. The resulting methods
have been implemented in EnsembleGly, a web server for glycosylation site prediction.

Conclusion: Ensembles of Support Vector Machine classifiers offer an accurate and reliable approach
to automated identification of putative glycosylation sites in glycoprotein sequences.

Background
Glycosylation is one of the most complex and ubiquitous
post-translational modifications (PTMs) of proteins in
eukaryotic cells. It is a dynamic enzymatic process in
which saccharides are attached to proteins or lipoproteins,
usually on serine (S), threonine (T), asparagine (N), and

tryptophan (W) residues. Glycosylation, like phosphor-
ylation, is clinically important because of its role in a wide
variety of cellular, developmental and immunological
processes, including protein folding, protein trafficking
and localization, cell-cell interactions, and epitope
recognition [1-8].
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Glycosylation can be classified into four types based on
the nature of chemical linkage between specific acceptor
residues in the protein and sugar: N-linked and O-linked
glycosylation, C-mannosylation, and GPI (glycosylphos-
phatidylinositol) anchors. The acceptor residues represent
the glycosylation sites.

In N-linked glycosylation, the oligosaccharide chain (a.k.a.
glycan) is attached to the amide nitrogen of asparagine
(Asp, N), which is part of characteristic sequence motifs
N-X-T (very often), N-X-S (often) or N-X-C (very rare),
where X can be any residue except proline [9].
These sequence motifs are necessary, but not sufficient
for an Asp residue to serve as an acceptor site
for glycan attachment. A variety of different glycans (e.g.,
N-acetylglucosamine, N-acetylgalactosamine, fucose) can
be attached to Asp.

In O-linked glycosylation, the glycan is attached to
the hydroxyl oxygen of serine (Ser, S) or threonine (Thr, T).
No specific sequence motifs have been defined for O-
linked glycosylation. However, it has been reported that
most O-linked glycosylation occurs on Ser or Thr residues
in close proximity to a proline residue [10,11]. Examples of
the O-glycans include: O-N-acetylgalactosamine (O-Gal-
NAc) (a.k.a. mucin type), O-N-acetylglucosamine (O-Glc-
NAc), O-Fucose, O-Glucose, O-Mannose, O-Hexose, O-
Xylose. It is important to note that O-GlcNAc glycans are
often added to Ser/Thr residues that would otherwise be
phosphorylated, one illustration of the complex interplay
among eukaryotic post-translational modification systems.

In C-mannosylation, the glycan is attached to the carbon of
a tryptophan (Trp, W) residue rather than to the amide
nitrogen of Asp, or hydroxyl oxygen of Ser or Thr,
making it an unusual modification. The attachment
occurs within the sequence motifs W-X-X-W on the first
Trp (W), W-X-X-C or W-X-X-F [12,13]. We will refer to this
type of glycosylation as C-linked glycosylation.

In GPI anchors (glycosylphosphatidylinositol or "lipid"
anchor), a hydrophobic phosphatidylinositol group is
linked to a residue at or near the C-terminus of a protein
through a carbohydrate-containing linker. GPI anchor
addition is both structurally and functionally related to
another important post-translational modification,
prenylation, in which hydrophobic farnesyl or geranyl-
geranyl moieties are added to C-terminal cysteine (Cys, C)
residues of target proteins. GPI anchors target and
"anchor" proteins to the cell membrane [14].

Experimental determination of glycosylation sites in pro-
teins is an expensive and laborious process [15]. Hence,
there is significant interest in computational approaches
to reliably predicting the glycosylation sites from an

amino acid sequence. Machine learning methods
currently offer one of the most cost-effective approaches
to construction of predictive models in applications
where representative training data are available.
Fortunately, O-GlycBase [16] provides such a dataset for
training classifiers for predicting glycosylation sites.

From a machine learning point of view, the problem of
glycosylation site prediction can be formulated as a binary
classification problem: Given a protein sequence S of
length N, S = s1 s2 Φ sN over the alphabet Σ of amino acids,
|Σ| = 20, si ∈ Σ, i = 1, Φ, N and S ∈ Σ*, the task is to predict
whether or not a site is a glycosylation site. Machine learn-
ing algorithms can then be used to train such classifiers.
We train Support Vector Machines and ensembles of Support
Vector Machine classifiers [17,18] to predict glycosylation
versus non-glycosylation sites for N-, O-, and C-linked
glycosylation types. O-GlycBase dataset does not contain
information about GPI anchors.

Several approaches to predicting glycosylation sites have
been reported in the literature. Blom et al. [19] provide a
review of available prediction methods, databases and serv-
ers for glycosylation. Elhammer et al. [20] use information
derived from the frequency of amino acids in the neighbor-
hood of a glycosylation site to identify putative glycosyla-
tion sites. This method uses only information derived from
the sequence neighbors of glycosylated sites, while ignoring
the information available from non-glycosylated sites,
which might be useful in extracting sequence features that
help distinguish glycosylation sites from non-glycosylation
sites. Hansen et al. [21] use Artificial Neural Networks
trained on information derived from both glycosylation
and non-glycosylation sites. Their server, netOglyc, makes
predictions for mucin type O-linked glycosylation on
mammalian proteins. Li et al. [22] train Support
Vector Machine classifiers based on physicochemical prop-
erties of amino acids and a 0/1 system to classify mucin
type O-linked glycosylation on mammalian proteins.

Although work on predicting glycosylation sites exists in
the literature, there is significant room for improvement
of current approaches.

One particular challenge in training classifiers using
standard machine learning algorithms comes from
the fact that the available dataset is highly unbalanced
[23]: the fraction of glycosylation sites is relatively small
compared to the fraction of non-glycosylation sites.
Classifiers that are trained to optimize accuracy generally
perform rather poorly on the minority class. Hence, if
accurate classification of sites from the minority class is
important (or equivalently, the false positives and false
negatives have unequal costs or risks associated with
them), a common approach is to change the distribution
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of glycosylation and non-glycosylation sites during train-
ing by randomly selecting a subset of the training data for
the majority class. However, this makes it difficult to reli-
ably identify the majority of the glycosylation sites with-
out falsely predicting non-glycosylation sites as
glycosylation sites. In addition, this approach fails to uti-
lize all of the information available in the training data
extracted from the original sequence dataset.

Against this background, we explore an ensemble of Support
Vector Machine classifiers [17,18], trained on the "natural"
distribution of the data extracted from the original
sequence data, for predicting glycosylation sites and we
compare it with single Support Vector Machine classifiers.

Results
The main result of our study is that the ensembles of Sup-
port Vector Machine classifiers described here outperform
single Support Vector Machine classifiers on the problem
of predicting glycosylation sites.

An ensemble of Support Vector Machines outperforms a 
single Support Vector Machine trained on unbalanced 
data on the glycosylation site prediction task
For each glycosylation type considered in this study, N-,
O-, and C-linked glycosylation, we trained ensembles of
Support Vector Machine (SVM) classifiers to predict
whether or not a site in a protein sequence is a glycosyla-
tion site. An ensemble of SVMs [17,18] is simply a collec-
tion of SVM classifiers, each trained on a balanced
subsample of the training data. The prediction of the
ensemble of SVMs is computed from the predictions of
the individual SVM classifiers (see Methods section for
further details).

We compared the performance of the ensemble of SVM
classifiers with that of a single SVM classifier trained on
the original distribution of the glycosylation data (unbal-
anced data). Note that the ensemble of SVMs is trained on
the original distribution of the glycosylation data. With
any classifier, it is possible to tradeoff the rate of true posi-
tive predictions (sensitivity) against the rate of false posi-
tive predictions. Hence, it is much more informative to
compare the Receiver Operating Characteristic (ROC)
curves which show the tradeoff between true positive and
false positive predictions over their entire range of possi-
ble values than to compare the performance of the classi-
fiers for a particular choice of the tradeoff (which
corresponds to a specific point θ on the ROC curve) [24].

Thus, we compared the ROC curves for both ensemble of
SVMs and single SVM trained on unbalanced data using
local sequence information (the amino acid identity) with
0/1 String Kernel, for N-, O-, and C-linked glycosylation
prediction tasks. The ROC curves of ensembles of SVM

classifiers for N-linked, O-linked, and C-linked glycosyla-
tion sites dominate the ROC curves for their single SVM
counterparts (Figures 1, 2, and 3 respectively). That is, for
any choice of false positive rate, the ensemble of SVMs
offers a higher true positive rate than the single SVM for the
same task.

For N-, O-, and C-linked glycosylation prediction tasks,
the Area Under the ROC Curve (AUC) [25] is larger for the
ensemble of SVMs than for the corresponding single SVM
(Note that the best classifier has an AUC of 1).

The estimated numbers of true positives (TP), false
negatives (FN), false positives (FP), and true negatives
(TN) depend on how the classification threshold θ on the
ROC curve is selected (see Methods section for further
details). The information obtained from these numbers
can be summarized by several commonly used
performance measures (e.g., accuracy, sensitivity,
specificity, AUC, etc.) that seek to evaluate the quality of
the predictions [24].

In the case of classifiers trained to predict N-linked
glycosylation sites which occur in relatively "conserved"
motifs, at a false positive rate of 0.1, the corresponding
true positive rate of the single SVM is 0.94 whereas that of 

Comparison of ensemble of SVMs and single SVM from unbalanced data for N-linked glycosylation using local sequence identityFigure 1
Comparison of ensemble of SVMs and single SVM 
from unbalanced data for N-linked glycosylation 
using local sequence identity. ROC curves for ensemble 
of SVMs and single SVM trained on the "natural" distribution 
of the data extracted from the original glycoprotein 
sequence dataset for N-linked glycosylation using local 
sequence identity with 0/1 String Kernel.
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the ensemble of SVMs is 0.99, i.e., 5% greater sensitivity
(Figure 1). For a specific point θ = 0.5 on the ROC curves,
the estimated numbers TP, FN, FP, and TN of the single
SVM are 210, 41, 53, 1377 respectively, whereas those of
the ensemble of SVMs are 245, 6, 72, 1358. Hence,
the single SVM achieves 0.94 accuracy, 0.78 Matthews
correlation coefficient, 0.84 sensitivity, 0.80 specificity,
0.82 F-Measure, and 0.94 AUC, and the ensemble of
SVMs achieves 0.95 accuracy, 0.84 Matthews
correlation coefficient, 0.98 sensitivity, 0.77 specificity,
0.86 F-Measure, and 0.98 AUC (Table 1).

In the case of classifiers trained to predict O-linked glyco-
sylation sites for which no obvious local sequence motifs
exist, at a false positive rate of 0.15, the ensemble of SVMs
has 6% greater sensitivity than the single SVM (the true
positive rate of the single SVM is 0.78 whereas that of the
ensemble of SVMs is 0.84) (Figure 2). For θ = 0.5, the esti-
mated numbers TP, FN, FP, and TN of the single SVM
are 1160, 937, 560, 10320 respectively, whereas those of
the ensemble of SVMs are 1421, 676, 811, 10069. Thus,
the single SVM achieves 0.88 accuracy, 0.55 Matthews cor-
relation coefficient, 0.55 sensitivity, 0.67 specificity, 0.61
F-Measure, and 0.88 AUC, and the ensemble of SVMs
achieves 0.89 accuracy, 0.59 Matthews correlation coeffi-
cient, 0.68 sensitivity, 0.64 specificity, 0.66 F-Measure,
and 0.91 AUC (Table 2).

In the case of classifiers trained to predict C-linked glyco-
sylation sites (Figure 3) at a false positive rate of 0.2, the
ensemble of SVMs has 17% greater sensitivity than the
single SVM. For θ = 0.5, the estimated numbers TP, FN, FP,
and TN of the single SVM are 35, 12, 9, 64 respectively,
whereas those of the ensemble of SVMs are 37, 10, 11, 62.
The single SVM achieves 0.83 accuracy, 0.63 Matthews
correlation coefficient, 0.74 sensitivity, 0.80 specificity,
0.77 F-Measure, and 0.88 AUC, and the ensemble of SVMs
achieves 0.83 accuracy, 0.63 Matthews correlation coeffi-
cient, 0.79 sensitivity, 0.77 specificity, 0.78 F-Measure,
and 0.91 AUC (Table 3).

Comparison of ensemble of SVMs and single SVM from unbalanced data for C-linked glycosylation using local sequence identityFigure 3
Comparison of ensemble of SVMs and single SVM 
from unbalanced data for C-linked glycosylation 
using local sequence identity. ROC curves for ensemble 
of SVMs and single SVM trained on the "natural" distribution 
of the data extracted from the original glycoprotein 
sequence dataset for C-linked glycosylation using local 
sequence identity with 0/1 String Kernel.
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Comparison of ensemble of SVMs and single SVM from unbalanced data for O-linked glycosylation using local sequence identityFigure 2
Comparison of ensemble of SVMs and single SVM 
from unbalanced data for O-linked glycosylation 
using local sequence identity. ROC curves for ensemble 
of SVMs and single SVM trained on the "natural" distribution 
of the data extracted from the original glycoprotein 
sequence dataset for O-linked glycosylation using local 
sequence identity with 0/1 String Kernel.
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Table 1: Performance of classifiers trained to predict N-linked 
glycosylation sites’

Performance 
Measure

SingleSVM EnsembleSVM BalancedSVM

Accuracy 0.94 0.95 0.94
MCC 0.78 0.84 0.77
Sensitivity 0.84 0.98 0.82
Specificity 0.80 0.77 0.79
F-Measure 0.82 0.86 0.81
AUC 0.94 0.98 0.97

Results obtained for N-linked glycosylation using single SVM from 
unbalanced data (singleSVM), ensemble of SVMs (EnsembleSVM), and 
single SVM from balanced data (BalancedSVM) for the classification 
threshold θ = 0.5 on the output probability of the classifier. The 
classifiers are trained on information derived from the target amino 
acid residue and its sequence neighbors.
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An ensemble of Support Vector Machines outperforms a 
single Support Vector Machine trained on balanced data 
on the glycosylation site prediction task
For each glycosylation type considered in this study, N-,
O-, and C-linked glycosylation, we also compared the per-
formance of the ensemble of SVM classifiers with that of a
single SVM classifier trained on a balanced training set
(obtained by sampling a number of non-glycosylation
sites equal to the number of glycosylation sites) and eval-
uated on a test set (where the distribution of glycosylation
and non-glycosylation sites corresponds to the original
distribution). Note that it is important to evaluate the
classifier on a dataset that reflects the distribution of glyc-
osylation and non-glycosylation sites in the original data-
set and not a dataset with an altered distribution.

We compared the ROC curves for both ensemble of SVMs
and single SVM trained on balanced data using local
sequence information (the amino acid identity) with 0/1
String Kernel, for N-, O-, and C-linked glycosylation pre-
diction tasks (Note that the ensemble of SVMs is trained
on the original distribution of the glycosylation data). The

ROC curves of ensembles of SVM classifiers for N-linked,
O-linked, and C-linked glycosylation sites dominate the
ROC curves for their single SVM counterparts for
reasonably high values of sensitivity (Figures 4, 5, and 6
respectively).

For N-, O-, and C-linked glycosylation prediction tasks,
the AUC of the ensemble of SVMs is larger than that of
the corresponding single SVM (Tables 1, 2, and 3
respectively).

The results of this experiment show that simply balancing
the training data used to train a single SVM classifier does
not yield a classifier that performs as well as an ensemble
of SVM classifiers. For example, in the case of single SVM
trained on balanced data to predict O-linked glycosyla-
tion sites, the measured TP, FN, FP, and TN for the thresh-
old θ = 0.5 are 1668, 429, 1477, and 9403 respectively.
Thus, a single SVM trained on balanced data correctly
identifies a larger fraction of glycosylation sites than the
ensemble of SVMs, but does so at the cost of falsely
predicting a greater fraction of non-glycosylation sites as
glycosylation sites (the rate of false positive predictions
for single SVM trained on balanced data is 0.14 as
compared to 0.07 for an ensemble of SVMs).

Discussion
Performance of ensembles of Support Vector Machines on 
the task of predicting glycosylation sites
In this study, we explored ensembles of SVM classifiers
trained on the "natural" distribution of the data extracted
from the original glycoprotein sequence dataset to
accurately discriminate between glycosylation and non-
glycosylation sites in a protein sequence, for N-, O-, and
C-linked glycosylation prediction tasks, using local
sequence information (the amino acid identity) with 0/1
String Kernel.

An ensemble of SVMs is a collection of SVM classifiers, each
trained on a balanced subsample of the training data. The
prediction of the ensemble is computed from the
predictions of the individual SVM classifiers. We performed
sequence-based k-fold cross-validation [26,27] to estimate
the generalization accuracy of the predictive models (i.e. the
accuracy of the predictive models on the test set).

We found that ensembles of SVMs outperform both single
SVM trained on unbalanced data and single SVM trained
on balanced data.

In Figures 1, 2 and 3, we compared the Receiver Operating
Characteristic (ROC) curves for ensemble of SVMs
and single SVM trained on unbalanced data for N-, O-,
and C-linked glycosylation prediction tasks respectively.
The single SVM as well as the ensemble of SVMs are

Table 2: Performance of classifiers trained to predict O-linked 
glycosylation sites’

Performance 
Measure

SingleSVM EnsembleSVM BalancedSVM

Accuracy 0.88 0.89 0.85
MCC 0.55 0.59 0.57
Sensitivity 0.55 0.68 0.80
Specificity 0.67 0.64 0.53
F-Measure 0.61 0.66 0.64
AUC 0.88 0.91 0.90

Results obtained for O-linked glycosylation using single SVM from 
unbalanced data (singleSVM), ensemble of SVMs (EnsembleSVM), and 
single SVM from balanced data (BalancedSVM) for the classification 
threshold θ = 0.5 on the output probability of the classifier. The 
classifiers are trained on information derived from the target amino 
acid residue and its sequence neighbors.

Table 3: Performance of classifiers trained to predict C-linked 
glycosylation sites’

Performance 
Measure

SingleSVM EnsembleSVM BalancedSVM

Accuracy 0.83 0.83 0.83
MCC 0.63 0.63 0.63
Sensitivity 0.74 0.79 0.77
Specificity 0.80 0.77 0.78
F-Measure 0.77 0.78 0.77
AUC 0.88 0.91 0.89

Results obtained for C-linked glycosylation using single SVM from 
unbalanced data (singleSVM), ensemble of SVMs (EnsembleSVM), and 
single SVM from balanced data (BalancedSVM) for the classification 
threshold θ = 0.5 on the output probability of the classifier. The 
classifiers are trained on information derived from the target amino 
acid residue and its sequence neighbors.
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trained on the "natural" distribution of the data extracted
from the original glycoprotein sequence dataset. As
illustrated in the figures, the ROC curves of the ensembles

of SVMs dominate the ROC curves of their single SVM
counterparts.

In Figures 4, 5 and 6, we compared the ROC curves for
ensemble of SVMs and single SVM trained on balanced
data for N-, O-, and C-linked glycosylation prediction
tasks respectively. The single SVM is trained on the
"altered" distribution of the data obtained by randomly
selecting a subset of non-glycosylation sites equal in size
with the set of glycosylation sites, whereas the ensemble
of SVMs is trained on the "natural" distribution of the gly-
cosylation data. Again, the ROC curves of the ensembles
of SVMs dominate the ROC curves of their single SVM
counterparts for reasonably high values of sensitivity.

We also explored ensembles of SVMs using local sequence
identity with Substitution Matrix String Kernel [28-30] for
N-, O-, and C-linked glycosylation prediction tasks. We
found that ensembles of SVMs using local sequence iden-
tity with Substitution Matrix String Kernel do not yield
improvement over ensembles of SVMs using local
sequence identity with 0/1 String Kernel.

We compared the performance of SVM (single and ensem-
ble) classifiers using evolutionary information with Poly-
nomial Kernel [31]. The feature vector representation was
computed based on multiple sequence alignment profiles
produced by PSI-BLAST, a tool that searches a large

Comparison of ensemble of SVMs and single SVM from bal-anced data for N-linked glycosylation using local sequence identityFigure 4
Comparison of ensemble of SVMs and single SVM 
from balanced data for N-linked glycosylation using 
local sequence identity. ROC curves for ensemble of 
SVMs and single SVM trained on the "altered" distribution of 
the data obtained by randomly selecting a subset of non-glyc-
osylation sites equal in size with the set of glycosylation sites 
for N-linked glycosylation using local sequence identity with 
0/1 String Kernel.
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Comparison of ensemble of SVMs and single SVM from bal-anced data for O-linked glycosylation using local sequence identityFigure 5
Comparison of ensemble of SVMs and single SVM 
from balanced data for O-linked glycosylation using 
local sequence identity. ROC curves for ensemble of 
SVMs and single SVM trained on the "altered" distribution of 
the data obtained by randomly selecting a subset of non-glyc-
osylation sites equal in size with the set of glycosylation sites 
for O-linked glycosylation using local sequence identity with 
0/1 String Kernel.
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Comparison of ensemble of SVMs and single SVM from bal-anced data for C-linked glycosylation using local sequence identityFigure 6
Comparison of ensemble of SVMs and single SVM 
from balanced data for C-linked glycosylation using 
local sequence identity. ROC curves for ensemble of 
SVMs and single SVM trained on the "altered" distribution of 
the data obtained by randomly selecting a subset of non-glyc-
osylation sites equal in size with the set of glycosylation sites 
for C-linked glycosylation using local sequence identity with 
0/1 String Kernel.
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sequence database for sequence similarities [32]. The
ROC curves for ensemble of SVMs dominate the ROC
curves of single SVM for N-, O-, and C-linked
glycosylation. Interestingly, ensembles of SVM classifiers
trained using evolutionary information do not perform
better than those trained using local sequence identity
(Additional file 1).

Performance of ensembles of Naive Bayes classifiers on the 
task of predicting glycosylation sites
In addition to ensembles of SVMs and single SVM classifi-
ers, we trained ensembles of Naive Bayes and single Naive
Bayes classifiers [33] on the original distribution of the data
to identify putative glycosylation sites in a glycoprotein
sequence. Naive Bayes classifiers offer a computationally
efficient approach to training classifiers that are easier to
understand than SVM or ensembles of SVMs for a variety of
classification problems. We found that the performance of
single Naive Bayes is similar to that of the ensemble of
Naive Bayes classifiers as well as to that of the single SVM
trained on unbalanced data (Additional file 2).

Performance of ensembles of Support Vector Machines on 
the task of predicting glycosylation sites for a user-
specified classification threshold
The ROC curves show the tradeoff between the rate of true
positive predictions and the rate of false positive predic-
tions for any user-specified classification threshold θ ∈ [0,
1]. Hence, the estimated numbers of true positives, false
negatives, false positives, and true negatives depend on
how this classification threshold θ on the ROC curve is
chosen. The threshold θ can be chosen to optimize a given
performance measure (e.g. F-Measure, Matthews correla-
tion coefficient) on the training data (see Methods section
for further details). When θ was chosen to optimize the F-
Measure, the results obtained with it are moderately better
than the results obtained with the default value of θ = 0.5.

Ensembles of Support Vector Machine classifiers -an 
approach to dealing with the unbalanced and large 
glycoprotein dataset
The glycoprotein dataset is highly unbalanced, i.e., the
number of negative instances (S, T, N or W sites that are
not known to be glycosylation sites) is much larger com-
pared to the number of positive instances (S, T, N or W
sites experimentally validated to be glycosylation sites).
Unbalanced datasets present a challenge for Support Vec-
tor Machine classifiers that are trained to optimize the
generalization accuracy.  They generally perform rather
poorly on the minority class. Hence, if accurate classifica-
tion of instances from the minority class is important, a
common approach is to change the distribution of posi-
tive and negative instances during training by randomly
selecting a subset of the training data for the majority class
[22]. However, this makes it difficult to reliably identify

the majority of the glycosylation sites without falsely pre-
dicting non-glycosylation sites as glycosylation sites. In
addition, this approach fails to utilize all of the informa-
tion available in the training data extracted from the orig-
inal glycoprotein sequence dataset.

Results presented here demonstrate that a better approach
is to construct an ensemble of SVM classifiers [17,18],
each classifier being trained on a balanced subsample of
the training data. The SVM classifiers in the ensemble are
thus trained on different subsets of the training data. A
sample instance is misclassified by the ensemble if a
majority of the SVM classifiers in the ensemble misclassify
it. When the errors made by the individual classifiers are
uncorrelated, the predictions of the ensemble of classifiers
are often more reliable.

The glycoprotein dataset is also very large i.e., it contains
a large number of instances (Table 4). Large datasets
present a computational challenge for machine learning
algorithms such as SVM which solves a dual quadratic
optimization problem to find the decision function. The
use of an ensemble of SVM classifiers, each trained on a
small subset of the training data significantly reduces the
overall training time of a single SVM classifier trained on
the entire training data. Construction of ensembles of
classifiers makes SVM applicable to large datasets that
would otherwise be considered "impractical" for training
a single SVM classifier.

Comparison with previous work
In comparing the ensemble of SVM classifiers with the
previous work on the glycosylation prediction task, we
focused on the SVM approach presented in Li et al. [22].
The authors in [22] developed a system using SVM classi-
fiers in order to predict O-linked glycosylation sites. There
are four key differences between their approach and ours:
in the datasets used, in the selection of negative examples,
in the evaluation procedures, and in the methods used.
We describe the differences in more detail in what follows.

Table 4: Number of positive and negative sites used in our 
experiments for each of the three types of glycosylation 
considered’

Glycosylation 
Type

Number of 
Positive Sites

Number of 
Negative Sites

Total Number 
of Sites

N-linked(N) 251 1430 1681
O-linked(S/T) 2097 10880 12977
C-linked(W) 47 73 120
Total 2395 12383 14778

The exact number of positive and negative instances for each of the 
three types of glycosylation considered for a window size of 21 (e.g., 
the actual number of positive and negative N sites for N-linked 
glycosylation, S/T sites for O-linked glycosylation, and W sites for 
C-linked glycosylation used in experiments).
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First, the glycoprotein dataset used in [22] is extracted
from SWISS-PROT/UniProt6.1 [34] and contains only
mammalian glycoprotein sequences that have "mucin-
type" O-linked glycosylation annotations. We use a glyco-
protein dataset extracted from O-GlycBase v6.00 [35], a
resource containing experimentally verified glycosylation
sites compiled from protein databases and literature. Our
dataset contains glycoprotein sequences from diverse
eukaryotic organisms, (e.g., mammalian, insect, fungal),
with three types of glycosylation annotations: N-linked,
O-linked, and C-linked glycosylation annotations with a
large variety of glycans (not just mucin-type).

A second difference between our approach and that of
[22] has to do with the selection of negative examples
(non-glycosylation sites) in the dataset. The negative
examples in the dataset of [22] correspond to S/T sites
sampled from mammalian protein sequences that lack
annotation of glycosylation sites. In contrast, the negative
examples in our dataset correspond to S/T sites for which
no experimental evidence of glycosylation exists and are
extracted from protein sequences that contain at least one
experimentally verified glycosylation site. The underlying
rationale for this choice is that the resulting negative
examples are more likely to be non-glycosylation sites
than the randomly extracted S/T sites from protein
sequences with no experimentally verified glycosylation
sites: total absence of experimentally verified glycosyla-
tion sites could simply mean that the sequence may not
have been experimentally analyzed.

A third difference between our approach and that of Li et
al. [22] has to do with the procedure used for performance
evaluation. The positive and negative instances in the
dataset used in [22] (sequence windows of length 41 with
the target residue in the middle and 20 neighboring resi-
dues on each side) are filtered such that no two windows
share sequence identity greater than 40%. "Leave-one-
out" window-based cross-validation is performed to evalu-
ate their classifiers. The instances in our dataset are
sequence windows of length 21 with the target residue in
the middle and 10 neighboring residues on each side. We
have used instead, sequence-based 5-fold cross-validation
to evaluate our classifiers. As noted in [36], window-based
cross-validation is likely to yield overly optimistic esti-
mates of commonly used performance measures, such as
Accuracy and Matthews Correlation Coefficient, relative
to the estimates obtained using sequence-based cross-val-
idation. Because classifiers trained on labeled sequence
data have to predict the labels for residues in a novel glyc-
oprotein sequence, the estimates obtained using
sequence-based cross-validation provide more realistic
estimates of the performance of a classifier than those
obtained using window-based cross-validation.

A fourth key difference between the approach of Li et al.
[22] and our approach has to do with the machine
learning methods used. Li et al. used a single SVM. To get
around the bias of SVM towards the negative class due to
highly unbalanced dataset (larger number of negative
instances relative to the number of positive instances),
they experimented with different ratios of positive and
negative instances to train SVM classifiers. That is, the
number of negative instances is 1, 2, 3, 4, or 5 times the
number of positive instances. Instead, we used an ensem-
ble of SVM classifiers, trained on the original distribution of
the data extracted from the original glycoprotein sequence
dataset, with each SVM in the ensemble trained on a bal-
anced subsample of the training data.

Because of the differences between our study and the
study of Li et al. [22] noted above, it is not especially
meaningful to directly compare the results of their study
with ours. However, in the case of O-linked glycosylation
sites, because the SVM based on 0/1 system in [22] is the
same as the single SVM with 0/1 String Kernel from balanced
data in our study, it is worth noting that the ensemble of
SVMs outperforms single SVM in predicting O-linked gly-
cosylation sites. The ROC curve of the ensemble of SVMs
dominates the ROC curve of single SVM for reasonably
high values of sensitivity (Figure 5). Moreover, the
ensemble of SVMs achieves a larger AUC than the single
SVM, and thus a larger overall probability of correct
prediction for O-linked glycosylation sites (Table 2).

Conclusion
Glycosylation plays important roles in protein folding,
protein localization, trafficking, cell-cell interaction,
developmental processes, etc [1-4]. With the rapid
increase in the amount of data (e.g., protein sequences)
there is a growing need for reliable procedures to
accurately identify glycosylation sites.

In this study, we have presented a successful application
of machine learning methods to identification of glyco-
sylation sites from amino acid sequence of proteins. Spe-
cifically, we systematically evaluated single Support
Vector Machines, as well as ensembles of Support Vector
Machines in a sequence-based k-fold cross-validation
setup [26,27,36]. The results of our experiments demon-
strate that ensembles of SVMs outperform single SVMs in
terms of a range of standard measures for comparing the
performance of classifiers. The reliability with which N-,
O-, and C-linked glycosylation sites are predicted in this
study suggests that these classifiers, available online [37],
can provide valuable information to guide experimental
investigations. As more data from high-throughput exper-
imental glycomics projects become available, it should be
possible to further improve the reliability of predictions.
Such data are needed to develop models that not only
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predict the sites of glycosylation, but that also capture the
spatial and temporal dynamics of protein glycosylation
that regulate developmental and immunological
processes of clinical importance.

Methods
O-GLYCBASE Dataset
The dataset used in our experiments comes from O-Glyc-
Base, a resource containing experimentally verified glyco-
sylation sites compiled from protein databases and
literature. The dataset is available online [16]. O-GlycBase
v6.00 [35] contains no identical protein sequences, unless
there are conflicts in the glycosylation data. It has 242
glycoproteins from different species: human, mouse,
bovine, rat, insect, worm, horse, etc. A protein was
included in the dataset if it had at least one experimentally
verified O-, or C-linked glycosylation site. An entry in the
database gives information about the glycan involved, the
species, experimentally verified N, S/T, W glycosylation
sites, literature references, protein sequence, http-linked
cross-references to other protein sequence databases (e.g.,
SWISS-PROT, PIR, etc).

Dataset Construction
After processing the O-GlycBase dataset, 216 glycoprotein
entries are left in our dataset (we did not include proteins
without an existent http-linked cross-reference to SWISS-
PROT).

Based on the types of glycosylation considered in this
study, three datasets are constructed from the 216 glycopro-
tein sequences: N-linked, O-linked, and C-linked datasets,
each containing protein sequences that have at least one
experimentally verified N-linked, O-linked, and C-linked
glycosylation sites, respectively. Thus, N-linked dataset con-
tains 86 protein sequences, O-linked dataset contains 205
protein sequences, and C-linked dataset contains 11 pro-
tein sequences.

As mentioned before, glycosylation is a site-specific proc-
ess. It occurs on one of the four residues N, S, T, and W.
However, not all of these residues in a protein sequence are
actually modified by glycosylation. Therefore, we represent
N sites (in N-linked dataset), S, T sites (in O-linked data-
set), and W sites (in C-linked dataset) experimentally veri-
fied to be glycosylation sites as positive instances and N
sites (in N-linked dataset), S, T sites (in O-linked dataset),
and W sites (in C-linked dataset) not shown experimentally
to be either glycosylation or non-glycosylation sites as neg-
ative instances. The resulting datasets contain very many
negative instances, some of them in fact false negatives,
(they may be discovered to be glycosylation sites in the
future). We extract negative instances from sequences that
have at least one experimentally verified glycosylation site
because only a small fraction of N, S, T, and W residues are

glycosylated. The protein sequences with no experimentally
validated glycosylation sites may not have been analysed
yet.

Overall, there are 2483 glycosylation sites composed of 254
N sites, 2180 S/T sites, and 49 W sites and 12935 non-glyc-
osylation sites composed of 1469 N sites, 11388 S/T sites,
and 78 W sites.

In addition to being a site-specific process, glycosylation is
also an enzymatic process. It has been observed [9,10] that
the enzymes involved (the transferases) recognize a glyco-
sylation site based on the residues surrounding the target.
To exploit this observation, we use a local window with
each glycosylation or non-glycosylation site in the middle
and n sequence neighbors on each side to further represent
positive and negative instances, respectively. We denote by
s = s-ns-n+1 Φ s-1s0s1 Φ sn-1sn a local window of length 2n + 1,
with s0 ∈ {N, S, T, W}, si ∈ Σ, for i = -n, Φ, n, i ≠ 0 and s ∈
Σ*, where Σ represents the amino acid alphabet. We
ignored the sites close to N- and C-terminals. Table 4 shows
the exact number of positive and negative instances for
each of the three types of glycosylation considered in this
study for a window length of 21 (n = 10).

Support Vector Machine Classifier
Support Vector Machine (SVM) classifier is one of the
most effective machine learning algorithms for many
complex binary classification problems [31]. SVM is a
supervised learning algorithm that belongs to the class of
discriminative models.

Given a set of labeled inputs (xi, yi)i = 1,Φ,l, xi ∈ Rd and yi ∈
{-1, +1}, learning an SVM classifier is equivalent to learn-
ing a decision function f(x) whose sign represents the class
assigned to input x. This can be achieved by solving a dual
quadratic optimization problem.

In the case of the linear SVM algorithm, when the training
data is separable, it is possible to find linear decision func-
tions f(x) = <x, w> + b, w ∈ Rd and b ∈ R that accurately
discriminate between positive and negative labeled
inputs. Among these functions, SVM selects the one that
minimizes ||w||2/2, which is equivalent to optimizing w
and b such that the "margin" of separation (the distance)
between the two classes is maximized. During classifica-
tion, an unlabeled input xtest is classified based on the sign
of the decision function, sgn(f(xtest)) (e.g., if f (xtest) > 0
then xtest is assigned to the positive class; otherwise xtest is
assigned to the negative class) [38].

When the training data is non-separable, the linear SVM
algorithm does not find a feasible solution. In this case, an
extra cost for errors can be assigned by introducing a set of
positive slack variables ξ i, i = 1,Φ, l in the constraints of
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the optimization problem. The slack variables ξ i measure
the extent to which the constrains are violated. SVM
selects the decision function that minimizes ||w||2/2 +
C(∑iξ i)k, where C is a user parameter. The larger the value
of C, the higher the penalty assigned to errors.

In the case of the nonlinear SVM algorithm, a linear
decision function f(x) in the d-dimensional input space
cannot be learned. The SVM algorithm works by
mapping the labeled inputs into a (possibly) higher-
dimensional feature space through an appropriate feature
map, xi → Φ(xi), i = 1,Φ,l, where a linear decision function
can be found. Rather than explicitly computing the feature
vector for each input xi, the mapping is defined implicitly
via a kernel function K(xi, xj) = < Φ(xi), Φ(xj) >, i, j = 1,Φ,l
that satisfies the Mercer's Condition [31]. The kernel func-
tion is evaluated for each pair of inputs, and specifies a
similarity measure between them.

In this study, the kernel function that we used with SVM
classifiers is 0/1 String Kernel. The input of the classifiers is
local sequence identity (the target amino acid residue and
its sequence neighbors).

In order to obtain probabilistic outputs from SVM, i.e. the
probability that the unlabeled input xtest belongs to a cer-
tain class, P(yi|xtest), we built a logistic model to map the
outputs of the SVM to estimated probabilities [39].

For our experiments, we used the SVM algorithm imple-
mentation available in Weka [40]. The user parameter C
was set to 1.0 (the default value).

0/1 String Kernel
Given two local windows s = s-ns-n+1 Φ s-1s0s1 Φ sn-1sn and t =
t-n+1 Φ t-1t0t1 Φ tn-1tn, the 0/1 String Kernel specifies a simi-
larity measure between them based on their identities.
Formally, this kernel is defined as:

where I[·] is the indicator function; that is, I[si = ti] = 1 if
the amino acids on the ith position of the two local win-
dows are the same, si = ti, and I[si = ti] = 0, otherwise. The
higher the value of the kernel K(s, t), the more similar the
local windows s and t are.

An explicit feature vector representation Φ(s) of a local
window s can be easily computed in the following
way: each amino acid in the local window is mapped to a
20-position binary vector with 1 on the position corre-
sponding to the current amino acid and 0 on all the other

positions, assuming a certain order among the 20 possible

amino acids. That is, for each i = -n, Φ,n and j = 1, Φ, 20,

(Φ(s))ij = 1 if the amino acid si in the local window s is the

same as the jth amino acid in Σ and (Φ(s))ij = 0 otherwise.

Note that , for each i = -n, Φ, n. The explicit

feature vector representation has been widely used in
[22,41].

However, the implicit kernel definition and the explicit
feature vector representation with the Polynomial Kernel
are equivalent. They represent the number of times the
residues in the same position of two local windows are
identical [42].

In our experiments, we used p = 2 for the degree of the
kernel function.

Ensemble of SVM classifiers
An ensemble of SVM classifiers [17,18] is a collection of SVM
classifiers, each trained on a balanced subsample of the
training data (approximately equal number of positive and
negative instances obtained by sampling with replacement
from the entire training data). Note that the ensemble of
SVM classifiers is trained and evaluated on the original dis-
tribution of the glycosylation data. The prediction of the
ensemble of SVMs is computed from the predictions of the
individual SVM classifiers. That is, during classification, for
a new unlabeled input xtest, each individual SVM classifier
in the collection returns a probability Pj(yi|xtest), that xtest
belongs to a particular class yi, where j = 1,Φ, m, and m is the
number of SVM classifiers in the collection. The ensemble
estimated probability, PEns(yi|xtest) is obtained by:

In our experiments, we used m = 40. Each individual SVM
classifier in the collection was trained on approximately

 instances, where l represents the total number of train-

ing instances available to the ensemble. Figure 7 shows
the architecture of the ensemble of SVM classifiers.

Performance Evaluation
To assess the performance of our classifiers we report the
following measures described in [24]: Accuracy, Matthews
Correlation Coefficient (MCC), Sensitivity, and Specificity
(also known as Recall and Precision), True Positive Rate
(TPR) and False Positive Rate (FPR). If we denote true
positives, false negatives, false positives, and true
negatives by TP, FN, FP, and TN respectively, then these
measures can be defined as follows:
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Note that TPR is the same as Sensitivity.

In addition to these measures, we report the F-Measure
[43], which is the harmonic mean of Precision and Recall.

Receiver Operating Characteristic (ROC) Curve
For each classifier we draw the Receiver Operating Charac-
teristic (ROC) curve, which plots the proportion of cor-
rectly classified positive instances, True Positive Rate
(TPR), as a function of the proportion of incorrectly clas-
sified negative instances, False Positive Rate (FPR). Each

Accuracy

MCC

= +
+ + +

= ⋅ − ⋅
+ + +

TP TN
TP FN FP TN

TP TN FP FN
TP FN TP FP TN( )( )( FFP TN FN

TP
TP FN

TP
TP FP

TP
TP

)( )

,

+

=
+

=
+

=

Sensitivity Specificity

TPR
++

=
+FN
FP

FP TN
, FPR

F Measure
Recall Precision

Recall Precision
− = ⋅ ⋅

+
2

Architecture of the ensemble of Support Vector Machine classifiersFigure 7
Architecture of the ensemble of Support Vector Machine classifiers. A collection of m SVM classifiers, each trained 
on a balanced subsample of the training data (approximately equal number of positive and negative instances obtained by sam-
pling with replacement from the entire training data). The ensemble of SVM classifiers is trained and evaluated on the original 
distribution of the glycosylation data. The prediction of the ensemble of SVMs is computed from the predictions of the individ-
ual SVM classifiers.
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point on the ROC curve represents a classification thresh-
old θ ∈ [0, 1] and corresponds to particular values of TPR
and FPR. A site is predicted to be a glycosylation site if the
output probability of a classifier, P(yi = +1|xtest), is greater
than θ, and a non-glycosylation site otherwise. The default
value of θ is 0.5. Varying the threshold θ gives a tradeoff
between TPR and FPR.

Area Under the ROC Curve (AUC)
To evaluate how good a classifier is to discriminate
between the positive and negative instances, we also
report the Area Under the ROC Curve (AUC) on the test
set, which represents the probability of correct classifica-
tion [24,25]. That is, an AUC of 0.5 indicates a random
discrimination between positives and negatives (a ran-
dom classifier), while an AUC of 1 indicates a perfect
discrimination (a very good classifier).

Sequence-Based K-Fold Cross-Validation Procedure
The above performance measures are computed based on
sequence-based k-fold cross-validation procedure [26,27,36].
K-fold cross-validation [33] is an evaluation scheme
considered by many authors to be a good method of esti-
mating the generalization accuracy of a predictive algorithm
(i.e. the accuracy of the predictive model on the test set).

During sequence-based k-fold cross-validation, the original
dataset of glycoprotein sequences is randomly partitioned
into k disjoint subsets of approximately equal size. The
cross-validation is performed k different times. During the
ith run, i = 1,Φ,k, the ith subset (the holdout set) is used for
testing and the remaining k - 1 subsets are used for train-
ing. Each glycoprotein sequence in the dataset is used
exactly once in the test set and k - 1 times in the training
set. The results from the k different runs are then averaged.

For the ensemble of SVMs and single SVM classifiers
trained on unbalanced data, the distribution of both
training and test sets corresponds to the original distribu-
tion of glycosylation data. For single SVM classifiers
trained on balanced data, the distribution of the training
set is altered by sampling a number of negative instances
equal to the number of positive instances, whereas the
distribution of the test set corresponds to the original
distribution of glycosylation data. Note that it is impor-
tant to evaluate the classifier on a dataset that reflects the
distribution of glycosylation and non-glycosylation sites
in the original dataset and not a dataset with an altered
distribution.

Threshold Selection
The glycoprotein dataset is highly unbalanced, i.e. the
number of negative instances is much larger compared to
the number of positive instances. When the dataset is
unbalanced, the measure of accuracy is not a good

indicator of the performance of the classifier because the
classifier will be biased towards the class with the larger
number of instances (negative class in our case). In such a
setting, even a classifier that always labels instances as
negatives would give a reasonably good accuracy, while
performing unacceptably poor on the minority class
(positive class in our case).

To avoid this problem, we select the classification thresh-
old θ on the training set as follows: the training set is ran-
domly partitioned into p disjoint subsets of
approximately equal size. Next, the cross-validation is per-
formed p different times. During the jth run, for j = 1, Φ ,p,
the jth subset is used for testing and the remaining p - 1
subsets are used for training. After all the predictions are
made available, the point on the ROC curve that gives the
best F-Measure value is chosen as the classification thresh-
old θ. Note that during this procedure, the classifier uses
only the training data. A new instance xtest is predicted as
positive if P(yi = +1|xtest) > θ, and negative otherwise.

For our experiments, we used k = p = 5.
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