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Abstract
Background: Gene clustering has been widely used to group genes with similar expression
pattern in microarray data analysis. Subsequent enrichment analysis using predefined gene sets can
provide clues on which functional themes or regulatory sequence motifs are associated with
individual gene clusters. In spite of the potential utility, gene clustering and enrichment analysis have
been used in separate platforms, thus, the development of integrative algorithm linking both
methods is highly challenging.

Results: In this study, we propose an algorithm for discovery of molecular functions and
elucidation of transcriptional logics using two kinds of gene information, functional and regulatory
motif gene sets. The algorithm, termed gene set expression coherence analysis first selects
functional gene sets with significantly high expression coherences. Those candidate gene sets are
further processed into a number of functionally related themes or functional clusters according to
the expression similarities. Each functional cluster is then, investigated for the enrichment of
transcriptional regulatory motifs using modified gene set enrichment analysis and regulatory motif
gene sets. The method was tested for two publicly available expression profiles representing
murine myogenesis and erythropoiesis. For respective profiles, our algorithm identified myocyte-
and erythrocyte-related molecular functions, along with the putative transcriptional regulators for
the corresponding molecular functions.

Conclusion: As an integrative and comprehensive method for the analysis of large-scaled gene
expression profiles, our method is able to generate a set of testable hypotheses: the transcriptional
regulator X regulates function Y under cellular condition Z. GSECA algorithm is implemented into
freely available software package.

Background
Advanced high-throughput microarray technologies have

facilitated the investigation of gene expression in a
genome-wide manner [1,2]. Because of the complex
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nature and large volume of data, whole-genome expres-
sion profiles often require appropriate and comprehen-
sive analytic methods. Gene clustering according to the
expression similarity has been popularly used in this per-
spective, often as the first step of analysis [3]. In addition,
functional enrichment analysis or pathway analysis was
proposed to explain the global gene expression changes in
the context of available knowledge, such as functional
annotation of genes [4]. A classical enrichment analysis
uses functionally annotated gene sets a priori defined from
external gene databases (functional gene sets) and cross-
references them with over- or under-expressed genes [5,6].
The use of enrichment analysis can be extended for differ-
ent kinds of biological insights. For example, co-expressed
genes grouped by clustering algorithm are likely to be reg-
ulated by common transcriptional control [3]. By using
another type of gene set classified by the presence or
absence of known transcription factor binding sites
(TFBS) in promoter regions (regulatory motif gene sets), it
can identify overrepresented TFBS with the corresponding
putative transcriptional regulators [7,8].

In spite of promising utility, the conventional enrichment
analysis dealing with individual gene clusters has several
limitations. First, the size of gene clusters or gene sets is
often so small that the statistical evaluation is prone to
ascertainment bias, i.e. the significance of enrichment for
small gene sets are frequently over- or underestimated.
The advanced type of enrichment analysis, gene set
enrichment analysis (GSEA) overcame this limitation by
dealing with the entire genes represented by array as
ranked gene list ordered by phenotypic correlation [9,10].
However, GSEA is suited for the comparison of two
dichotomous phenotypic classes such as tumor versus
normal, limiting its general use with gene clustering. Sec-
ond, the accumulating biological knowledge on genes
substantially increased the number of available gene sets
to be used in enrichment analysis. Although recently pro-
posed enrichment analysis tools can generate rich descrip-
tions with the help of extended gene sets [11-13], they
often produce unmanageably large lists for candidate gene
sets to be considered especially when dealing with a large
number of clusters. Rigorous statistical evaluation with
the correction for multiple tests adjustment might be
helpful to some extent, however, the development of inte-
grative method is highly challenging to make the results
more comprehensive.

In this study, we propose a method of gene set expression
coherence analysis (GSECA) to provide a more advanced
solution than the mere combining of gene clustering and
enrichment analysis. The algorithm first selects functional
gene sets with significantly high expression coherence as
biologically relevant candidates for the corresponding
expression profiles. Then, gene set clustering further

reduces them into a number of functionally related gene
sets, or functional clusters. On each functional cluster,
putative transcriptional regulators are further identified
using modified GSEA algorithm and regulatory motif
gene sets. To demonstrate the applicability of our algo-
rithm, we used two publicly available time-series gene
expression profiles of the murine myogenesis and erythro-
poiesis. For respective profiles, our algorithm identified a
number of functional themes and putative transcriptional
regulators largely consistent with previous reports. As
comprehensive and integrative method, GSECA algo-
rithm has extended applicability for the analysis of multi-
ple microarray expression datasets.

Results and Discussion
The overview of GSECA
The primary goal of GSECA algorithm is the discovery of
molecular functions along with the elucidation of tran-
scriptional regulatory logics for the interpretation of
microarray datasets. For this purpose, two kinds of gene
information – functional annotations in public gene data-
base and the presence of regulatory motif sequences, or
TFBS in the promoter regions – are used in terms of func-
tional and regulatory motif gene sets, respectively. GSECA
is composed of three major steps: selection of gene sets
with significantly high expression coherence, clustering of
functional gene sets into functional clusters and the iden-
tification of regulatory motifs associated with individual
functional clusters.

First, GSECA determines whether gene members belong-
ing to a predefined functional gene set are correlated with
each other across the gene expression profiles (Fig. 1A). To
do this, GSECA calculates the mean of Pearson correlation
coefficient (PCC) for all pairs of gene members. The aver-
age PCC measure is used as the expression coherence of
the corresponding gene set and it indicates how closely
gene members are correlated with each other. The signifi-
cance level for expression coherence level is then deter-
mined by gene permutation tests with adjustment for
multiple tests. The functional gene sets with significantly
high expression coherence are selected and the identified
functional annotations are assumed to indicate the puta-
tive functionalities for which genes have coordinated
expression changes across the different time points or
experimental conditions.

Some of the candidate functional gene sets showed simi-
lar expression changes, making it possible to group them
into a number of clusters. Thus, GSECA further categorizes
those gene sets into several clusters using conventional
clustering methods such as hierarchical or K-means clus-
tering algorithm. The mean expression values of gene sets
are used for the clustering and the gene sets with similar
expression patterns are assigned into respective functional
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Schematic representation of GSECA algorithmFigure 1
Schematic representation of GSECA algorithm. A. The individual steps of functional clustering are demonstrated. For 
each functional gene set prepared from public gene database (left), all pairs of gene members are calculated for Pearson corre-
lation coefficient (PCC). The distribution of individual PCC is shown as histogram indicating how closely gene members are 
correlated with each other (middle). The mean of PCC values is calculated as expression coherence (EC) and the significance 
level is determined using gene permutation tests. Functional gene sets with significantly high expression coherences are then 
selected and grouped into respective functional clusters with similar expression patterns (right). B. Mean expression values of 
all genes belonging to the functional cluster are calculated as seed values of the corresponding cluster (left). The entire genes in 
the array are calculated for their similarity or Pearson correlation coefficient (PCC) with the seed values and ordered accord-
ing to the similarity. The ordered gene list is then matched with regulatory motif gene sets and the extent of enrichment 
(enrichment score or ES) is determined by GSEA method (right).
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clusters. The functional annotations of gene sets assigned
into a single functional cluster are also likely to represent
similar molecular functions or pathways. Thus, this clus-
tering reduces a collection of functional gene sets into
more comprehensive set of functional clusters, and we
refer collectively to these procedures as "functional clus-
tering".

For each functional cluster, GSECA further identifies puta-
tive transcriptional regulators responsible for the expres-
sion patterns of the individual functional clusters. For
this, GSECA exploits modified GSEA algorithm with regu-
latory motif gene sets predefined according to the pres-
ence of known TFBS in their promoter regions (Fig. 1B).
To apply the GSEA algorithm, seed expression values of a
functional cluster are first calculated for each time point
by averaging the expression values of all genes belonging
to the functional cluster. The entire genes in the array are
then ordered according to the expression similarity or
PCC with the seed values to make a ranked gene list. In the
list, genes whose expression changes are similar to the
seed values become top-positioned. The gene members of
a regulatory motif set are then matched to the ordered
rank list and measured for the enrichment using GSEA
algorithm [9]. The significance level of enrichment is
determined by gene permutation tests. The use of PCC as
gene ordering metric is one of distinguishing features in
GSECA algorithm and also extends the applicability of the
conventional GSEA algorithm for the analysis of time-
series expression profiles.

Application of GSECA to murine myogenesis and 
erythropoiesis expression profiles
Cellular differentiation represent a series of intricate and
complex cellular events the majority of which are under
the control of transcriptional regulation. Therefore, time-
series gene expression profiles derived from an in vitro cell
differentiation model are good candidates for the applica-
tion of GSECA algorithm. For test sets, we selected two
kinds of publicly available time-series expression profiles
representing the differentiation of murine myocytes [14]
and erythrocytes [15]. First, we selected 1,206 functional
gene sets including 5 – 100 genes and calculated expres-
sion coherence for each functional gene set. Significance
level of expression coherence was determined by gene per-
mutation tests and adjusted for multiple tests. As a result,
31 and 18 functional gene sets with significantly high
expression coherence (P < 0.05, Bonferroni corrected)
were identified in myogenesis and erythropoiesis expres-
sion profiles, respectively. We further used hierarchical
clustering to classify functional gene sets with similar
expression patterns into individual functional clusters.

The 31 myogenesis-related functional gene sets were
assigned into 4 functional clusters. Among the clusters, 7

functional gene sets with muscle-related functional anno-
tations showed active transcriptional up-regulation after
the induction of myogenesis and they were assigned into
functional cluster 2 (Fig. 2A). It is not surprising that mus-
cle-related functional gene sets are captured as one of key
clusters in myogenesis-related expression profiles. How-
ever, it proves that our algorithm is able to identify the pri-
mary functional theme of interests, which would be
beneficial in searching for perturbation-related molecular
functions. In addition, the expression patterns observed
for functional cluster 1 and 3 were distinguished from
those of functional cluster 2. Two kinds of functional
annotations – cholesterol biosynthesis and enzymatic
activities of NADH dehydrogenase – were identified for
functional cluster 1 and 3, respectively. These functions
are likely to propose the additional functionalities associ-
ated with myogenesis in terms of cellular components
and energy metabolism.

It has been known that genes with general housekeeping
functions such as ribosomal genes, tend to be strongly
correlated in expression profiles without direct evidence
for their phenotypic association [16,17]. This is also the
case of myogenesis dataset and the majority of functional
gene sets identified with significantly high expression
coherence (58%, 18/31 gene sets) were indicative of gen-
eral housekeeping functions such as nucleotide or protein
metabolism. Our study shows that the genes with house-
keeping functions have correlated expression patterns not
only at the individual gene level but also at the gene set
level. Thus, it is reasonable to collectively treat them as a
single functional cluster representing general housekeep-
ing function (functional cluster 4).

Among the 18 erythropoiesis-related functional gene sets
(Fig. 2B), two gene sets with characteristic functions of red
blood cells – oxygen binding and hemoglobin complex –
were assigned into functional cluster 1. Higher expression
coherence of the two gene sets suggests that the genes with
red blood cell function have coordinated and marked
transcriptional up-regulation across the process of eryth-
ropoiesis. In addition, three gene sets with heterogeneous
molecular functions such as cell adhesion and neurotrans-
mitter receptor activity, were assigned into another func-
tional cluster 2. Although speculative, those functions
might present the potential functionalities with collabora-
tive roles in erythropoiesis or hematopoiesis. Likewise the
case of myogenesis, 13 functional gene sets representing
the housekeeping functions showed similar expression
changes throughout the erythropoiesis and they were col-
lectively grouped into functional cluster 3.
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Functional clustering of murine myogenesis- and erythropoiesis-related functional gene setsFigure 2
Functional clustering of murine myogenesis- and erythropoiesis-related functional gene sets. A. Thirty-one func-
tional gene sets with significantly high expression coherences in myogenesis-related expression profile, are categorized into 4 
functional clusters. For individual functional gene sets, gene numbers and expression coherence of the corresponding gene sets 
are also demonstrated in parentheses. Hierarchical clustering was used to measure the distances between functional gene sets 
and those with similar expression patterns were grouped into individual functional clusters. The expression level of a functional 
gene set is the mean expression value of the genes belonging to the gene set and schematically illustrated in heat map with gene 
set dendrogram. B. Three functional clusters composed of 18 functional gene sets are similarly demonstrated for erythropoie-
sis-related expression profile.
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Identification of putative transcriptional regulators with 
modified GSEA algorithm and regulatory motif gene sets
The next step of GSECA is to identify the regulatory motif
gene sets associated with individual functional clusters,
which might propose the putative transcriptional regula-
tors of the corresponding functional cluster. In case of
myogenesis-related functional clusters, the cluster 2 with
key annotations of muscle functions, showed significant
enrichment (P < 0.05, Bonferroni corrected) for regulatory
motif gene sets representing six transcription factors of
Arnt, SREBP-1, Sp-1, MyoD, E2A, and USF (Table 1).
Among them, MyoD is a well known transcription factor
whose role in myogenic differentiation has been previ-
ously established [18,19]. This finding is consistent with
that functional cluster 2 is composed of a set of muscle-
related functional gene sets. The other transcription fac-
tors with significance enrichment might propose putative
transcription regulators with regulatory roles in myogene-
sis, i.e. Sp-1 have some evidences on their co-activator role
with MyoD factors in muscle-specific gene expressions
[20,21]. For erythropoiesis-related functional cluster 1,
three regulatory motifs such as SREBP-1, USF and GATA-
1 were significantly enriched. In this case, GATA-1 was
notable because the expression profile was derived from
experiments in which GATA-1-null cell lines (G1E) are
restored for their GATA-1 activity [15], supporting the bio-
logical relevance of regulatory motifs identified by GSECA
algorithm.

In addition, the functional cluster 4 of myogenesis profile
representing the housekeeping functions showed enrich-
ment for multiple ubiquitous transcription factors such as
NRF-1, E2F, CREB, NF-Y, and ZF5. This is also the case of

functional cluster 3 of erythropoiesis-related expression
profile. The enrichment of multiple transcription factors
might indicate the ubiquitous nature of the correspond-
ing factors associated with general housekeeping func-
tions [22,23]. However, the heterogeneity of functional
gene sets might have also caused the enrichment of multi-
ple regulatory motifs because the gene sets with house-
keeping functions are manually assigned into a single
cluster.

Synergistic motif pairs in murine myogenesis and 
erythropoiesis
Transcription regulation among higher eukaryotes is
likely to be mediated by multiple transcription factors in
combinatorial modes rather than by a single agent [24]. In
this perspective, the transcription factors that showed sig-
nificant enrichment with functional clusters are good can-
didates for such potential synergism. Thus, we further
investigated the synergistic relationship between regula-
tory motifs identified in previous step, i.e. 6 regulatory
motifs enriched in functional 2 (myogenesis) and 3
motifs in functional cluster 1 (erythropoiesis). Motif syn-
ergy was called when genes belonging to both regulatory
motif gene sets have significantly high expression coher-
ence (see Methods). In case of myogenesis, three motif
pairs (Arnt – SREBP-1, Sp-1 – MyoD and Sp-1 – E2A)
involving five transcription factors were observed to have
potential synergistic relationships (Table 2). Considering
the evidences on the synergistic action between Sp-1 and
MyoD [20,21], these motif pair sets might have possible
combinatorial roles for the cellular process of myogenesis.
In case of erythropoiesis, SREBP-1 and USF were observed
to have putative synergistic relationship. Such relation-
ship provides good candidate for the further transcription
analysis associated with the erythropoiesis, given the pre-
vious evidences for their relationship in the transcrip-
tional control of genes involved in lipid metabolism
[25,26]. It must be noted that in silico analysis-yielded
putative candidates cannot be assigned directly to func-
tionality; however, it suggests the putative synergism
between transcription factors and provides a testable set
of hypotheses: transcription factors X1 and X2 might play a
synergistic role for function Y under cellular condition Z.

Comparison of GSECA results with conventional 
enrichment analysis
To demonstrate the advantages of GSECA, we performed
the conventional strategy in which gene clustering and
enrichment analysis are separately performed. For two test
expression datasets, gene clustering was first performed
using two commonly used gene partitioning algorithm of
K-means and self-organizing maps (SOM). Clustering was
done with diverse setting for the gene numbers to be clus-
tered (5 – 50% of total genes) as well as the number of
clusters (5 – 100 clusters), which fits in the conventionally

Table 1: List of regulatory motif gene sets significantly enriched 
in individual functional clusters

Dataset Functional 
cluster

Transcription factora

Myogenesis 1 Sp-1
2 Arnt, SREBP-1, Sp-1, MyoD, E2A, USF
3 Sp-1, USF, LBP-1, Myc
4 NRF-1, E2F, ATF/CREB, ETF, NF-Y, 

GABP, Elk-1, ZF5

Erythropoiesis 1 SREBP-1, USF, GATA-1
2 AP1
3 NF-Y, NRF-1, ATF/CREB, E2F, Arnt, 

Tel-2, Egr-3, Myc, ETF, Sp-1, GABP, 
YY1, HIF-1, Elk-1, ZF5

aSignificantly enriched (P < 0.05, Bonferonni corrected) regulatory 
motif gene sets are shown for the corresponding transcription 
factors. When more than one regulatory motif sets corresponding to 
a single transcription factor were identified, the most significant one 
was listed taking the redundancy of regulatory motif gene sets into 
consideration. The listing order of transcription factors is according 
to the significance level of enrichment in individual functional clusters.
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used setting. For test, we selected 7 and 2 functional gene
sets representing the characteristic functions of myogene-
sis- and erythropoiesis-expression profiles, respectively.
The comparison results are demonstrated in Figure 3.

In case of myogenesis-related 7 functional gene sets,
enrichment analyses combined with K-means or SOM
clustering both yielded low level of significance which did
not reach the threshold level of GSECA (unadjusted P < 4
× 10-5). This is also the case of erythropoiesis-related two
functional gene sets. One plausible explanation for this
low level of significance is the small size of functional
gene sets in that functional gene sets containing less than
10 genes (i.e., troponin complex and sarcoplasmic reticu-
lum) showed the lowest level of significance. In case of 2
gene sets in erythropoiesis, they both have less than 10
genes and showed variable level of significance across the
different settings or used clustering methods. This is con-
sistent with our initial assumption that conventional
enrichment analysis dealing with small gene cluster or
gene sets might be prone to over- or under-estimation of
the significance.

The significance for enrichment of regulatory motif gene
sets were also improved in GSECA analysis as shown for 6
and 3 gene sets for myogenesis and erythropoiesis expres-
sion profiles, respectively. The significance of enrichment
for biologically relevant regulatory motifs such as MyoD
and GATA-1 is two to three folds higher in GSECA results.
The improved statistical power in detecting the regulatory
motifs of interest might be due to the modified GSEA
algorithm used in our method [9,10,27]. The adoption of
modified GSEA algorithm is likely to provide the robust-
ness and sensitivity of the advanced GSEA algorithm as
possible explanation for improved statistical power over
the conventional methods.

Considerations on GSECA methodology
The initial assumption of GSECA is that functional gene
sets with significantly high expression coherence suggest
putative functionality. It must be noted that annotated
functions of gene sets with higher expression coherences

do not always correspond directly with the actual biolog-
ical functions [17]. Nonetheless, many physiological cel-
lular responses require the simultaneous participation of
gene products and genes with central roles are likely to
have similar regulatory control and expression patterns
[28-30]. Comparative analysis also showed that co-
expression patterns of many functionally-related genes are
conserved across diverse species [31]. Thus, gene sets with
significantly high expression coherence might, if not all,
represent the key molecular functions of the correspond-
ing expression profiles.

Our algorithm also concerns how the functionality repre-
sented by functional clusters can be linked to regulatory
motifs to elucidate the putative transcriptional regulators.
Cares must be taken in that genes collected from the func-
tional gene sets assigned to a functional cluster might not
fully represent the putative transcriptional targets consid-
ering that the current functional gene annotation is not
complete. To compensate for this, GSECA implements a
modified GSEA algorithm to exploit the entire gene
expression profiles in terms of correlation with seed val-
ues of functional clusters. Similarity-based gene ordering
along with the enrichment algorithm is likely to ensure
the robustness and sensitivity of GSEA algorithm as dem-
onstrated by the comparison with conventional strategy.

The use of GSEA algorithm also facilitates the adoption of
the extended application for GSEA algorithm recently pro-
posed to increase the statistical power or for improved
biological insights. For example, by using absolute corre-
lation as ordering parameter, GSEA can detects unique
functional categories whose gene members have both
extreme transcriptional up- and down-regulation [32]. If
such strategy can be applied in GSECA algorithm, it can
detect putative regulatory motifs with dual roles of tran-
scriptional enhancers and inhibitors in the cellular con-
texts. However, one distinguishing feature of GSECA, the
use of distance metric such as PCC also limits the use of
GSECA algorithm only for time- or condition-series
expression profiles as compared with conventional GSEA

Table 2: List of putative synergistic motif pairs

Dataset Motif 1 (gene size/EC)a Motif 2 (gene size/EC) Gene sizeb EC Significancec

Myogenesis Arnt (694/0.0020) SREBP-1 (839/0.0024) 382 0.0086 0.02
Sp-1 (3178/0.0006) MyoD (696/0.0082) 318 0.0201 < 0.01
Sp-1 (3178/0.0006) E2A (906/0.0050) 444 0.0043 < 0.01

Erythropoiesis SREBP-1 (1126/0.0171) USF (372/0.0053) 839 0.0348 < 0.01

aTwo regulatory motif gene sets are demonstrated as motif 1 and motif 2 with the gene numbers and expression coherence (EC) of the 
corresponding gene set. For motifs pairs, genes occurred both in two regulatory motif gene sets are separately measured for gene numberb and 
expression coherence. The significance levelc determined by permutation tests is also demonstrated. Only the motif pairs with significant expression 
coherence (P < 0.05) are shown in the list.
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Statistical comparison of GSECA results with conventional strategyFigure 3
Statistical comparison of GSECA results with conventional strategy. A. Gene clustering and enrichment analysis was 
performed for 7 functional gene sets corresponding to the functional cluster 2 of myogenesis dataset. K-means and SOM clus-
tering was performed with 16 different settings for the gene numbers to be clustered (5 – 50%) and cluster numbers (5 – 100). 
The significance levels (Y-axis) are illustrated with the color lines corresponding to 16 settings (shown in the bow below). For 
comparison, the unadjusted significance level or normal P value of GSECA algorithm are demonstrated as asterisk. B. The sig-
nificance level for 2 functional gene sets of erythropoiesis are similarly calculated and compared with those of GSECA results. 
C and D. The comparison results of 6 and 3 regulatory motif gene sets with significance enrichment in the functional cluster 2 
of myogenesis (C) and cluster 1 of erythropoiesis (D) are similarly demonstrated.
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which is oriented for the comparison of two phenotypic
classes.

We also provide an additional method to identify putative
synergistic motif pairs among multiple transcription fac-
tors. The method has been previously introduced and
used to identify the synergistic combination between tran-
scription factors in yeast [33] and human [34]. However,
due to the large number of regulatory motif gene sets in
pairwise combination and permutation tests to be consid-
ered, the method is often not feasible for general applica-
tion. Thus, it would be beneficial to select a subset of
putative regulatory motifs to reduce the computational
work load and GSECA can provide such plausible candi-
dates for the in-depth analyses of combinatorial actions
between transcription factors. Expression coherence-
based identification of motif synergy would provide clues
on the complex structure of regulatory modules and sub-
strates for further experimental validation [35]. However,
recent studies on the elucidation of transcription regula-
tory networks use more sophisticated network assump-
tions and detailed parameters on the motif sequences and
their relationships [36,37]. Moreover, in silico analysis-
based results and significances must be interpreted with
care because they do not always represent the actual func-
tionality or causality.

In addition, there have been efforts to incorporate the bio-
logical knowledge into the gene clustering to maximize
the statistical efficiency and reliability of the analysis
results. For example, functional gene annotations can be
directly incorporated in the distance metric [38], or used
to guide the clustering procedures [39,40]. However, most
methods in this perspective use the functional GO catego-
ries as additional information for fine-tuning of distance
metrics to optimize the clustering, or to evaluate the
results of conventional clustering algorithms [41]. By con-
trast, GSECA algorithm directly calculates the expression
coherences of predefined gene sets then, categorizes into a
number of functional clusters by gene set clustering. Gene
set-based clustering used in GSECA provides an addi-
tional advantage over the conventional strategy in which
gene clusters are individually measured for enrichment
with functional or regulatory motif gene sets, i.e.
improved statistical power and comprehensive interpreta-
tion of the results.

Conclusion
In this study, we address an integrative method for the
interpretation of multiple expression profiles in terms of
two kinds of gene information; function gene annotation
and sequence information of TFBS in the regulatory
regions. It measures two kinds of parameters, expression
coherence and the extent of enrichment in similarity-
based ranked gene list to identify the putative functional-

ity and transcription regulators, respectively. Our method
successfully identified the key molecular functions and
putative transcriptional regulators for two test expression
profiles, which were largely consistent with the literature-
based knowledge. With improved statistical power over
the conventional strategy, our algorithm has extended
applicability for rich descriptions of high-throughput
microarray expression data.

Methods
Test expression profiles
Examples of microarray datasets were downloaded from
public expression databases, Gene Expression Omnibus
or NCBI GEO [42]. We used two expression datasets rep-
resenting time-scaled gene expression changes for the dif-
ferentiation of murine myocytes (accession no. GDS586
in GEO database) [14] and erythrocytes (GDS568) [15].
Both datasets were prepared using the same expression
microarray platform of Affymetrix MG-U74Av2 with sim-
ilar hybridization protocols [43]. The global expression
profiles were median-centered and normalized to set the
sum of the squares of probe intensities to be 1.0. We used
NetAffx Gene Ontology Mining Tools [44] to intersect the
used probes into Entrez gene annotation. Through the
study, we used Entrez gene annotation as the common
link for functional and regulatory motif gene sets.

Preparation of functional and regulatory motif gene sets
We used NetAffx software for the functional categoriza-
tion of genes to prepare the function gene sets. The gene
grouping was based on functional annotations in public
gene databases, GO (Gene Ontology), KEGG (Kyoto
Encyclopedia of Genes and Genomes) and GenMAPP
(Gene Map Annotator and Pathway Profiler) [45-47]. A
regulatory motif gene set or a TFBS-annotated gene set is
defined as a set of genes containing the sequence motif for
corresponding TFBS in their regulatory regions at least
once. To prepare regulatory motif gene sets from a pub-
licly available TFBS annotation database [48], the precom-
puted fingerprint files were downloaded from Expander
package [7,49]. This database includes the information of
putative cis-regulatory sequences predicted based on
experimentally validated binding sequence information
for known transcription factors. In total, 432 TFBS-anno-
tated regulatory motif gene sets were prepared as previ-
ously described [8] and used for enrichment analyses.

Functional clustering using expression coherence of 
functional gene sets
For each functional gene set, GSECA first determined the
extent of how gene members in a gene set might correlate
with each other. As distance measure, GSECA calculated
the Pearson correlation coefficient (PCC) for all possible
pairs of genes, omitting self-comparisons. The mean value
of PCC was used as the "expression coherence" of the
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functional gene set. For biological relevance, we only used
gene sets containing 5 – 100 highly variable genes,
because too few genes might lead to selection bias, and
the functional annotation of large gene sets is commonly
indicative of non-informative general function. To deter-
mine the significance level for expression coherence, we
used gene permutation tests. For each gene set with n
number of genes, expression coherence was calculated for
n randomly selected genes, and the fraction of random
sets that acquired higher expression coherence in 106 tests
was determined as a P value. The nominal P values were
adjusted for the multiple testing with Bonferroni correc-
tion accounting for the number of functional gene sets.
For functional gene sets with significantly high expression
coherence, mean expression values of the gene members
belonging to the gene set were calculated for each time
point. Then, agglomerative hierarchical clustering was
used to classify the functional gene sets with similar
expression patterns by using the PCC as distance measure.
We defined such clustered functional gene sets as individ-
ual "functional clusters".

Identification of transcriptional regulators for functional 
clusters
For each functional cluster, we collected the gene mem-
bers included in the functional gene sets of the corre-
sponding functional cluster. Mean expression values
across different time points were calculated as "seed" val-
ues of representative expression changes for the functional
cluster. Then, using regulatory motif gene sets, we identi-
fied putative transcriptional regulators responsible for the
seed expression values of individual functional clusters.
The overall procedure is similar to that described for the
conventional GSEA algorithm [9], while the most distin-
guishing feature of GSECA is that it uses PCC as the gene
ordering parameter, rather than signal-to-noise ratio
(SNR). First, the entire genes in the array were calculated
individually for the similarity of expression to the seed
values of each functional cluster in terms of the PCC.
Then, the genes were ordered according to the PCC and
the genes with higher PCC or those being more similar to
seed values are top-ranked in the ordered gene list. Regu-
latory motif gene sets were matched to such gene lists, cal-
culating enrichment score (ES) using Kolmogorov-
Smirnov statistics [9]. The significance level for ES was cal-
culated using 5 × 105 gene permutation tests and adjusted
for multiple testing accounting for the number of regula-
tory motif gene sets. In conventional GSEA algorithm,
phenotypic permutation is preferred in that gene to gene
correlation is preserved [9,10]. However, phenotypic per-
mutation is often not feasible for common time-series
expression datasets due to the small number of samples.
To demonstrate that gene permutation tests can obtain
the biologically relevant findings, we used gene permuta-
tion in adopting modified GSEA algorithm. However, it

must be noted that gene permutation often overestimates
the significance levels [10].

Identification of synergistic motif pairs using expression 
coherence
Pairs of putative transcriptional regulators acting in com-
binatorial mode were investigated using previously
described method [33,34]. For a candidate pair of two reg-
ulatory motifs, expression coherence was calculated for all
pairs of gene members that occurred both in two regula-
tory motif gene sets. The significance level for the expres-
sion coherence was measured by gene permutation tests.
For expression coherence of n number of genes that
occurred both in two regulatory motif gene sets, two sets
of the same number of genes were randomly selected from
two regulatory motif gene sets and expression coherence
is calculated. The nominal P value was calculated as the
fraction of random sets that acquired higher expression
coherence in 5,000 permutation tests.

Comparison of significance level with conventional 
strategy
For conventional strategy in which gene clustering and
enrichment analysis are separately performed, we used
two commonly used partitioning cluster algorithms, K-
means and SOM (self-organizing maps). We tried 15 dif-
ferent settings for variable number of genes to be clustered
(5 % – 50 % of ~10,000 total genes) and numbers of clus-
ters (5 – 100 clusters). For each setting, the individual
clusters were measured for the enrichment with the same
functional and regulatory motif gene sets used in GSECA.
The significance of enrichment was measured using
hypergeometric distribution:

N and M is the total number of genes in array and cluster
gene numbers, n is the size of corresponding gene set and
k is the number of genes both occurred in gene set and
cluster. For each setting, the most significant enrichment
across the clusters was selected and assigned to the indi-
vidual functional and regulatory motif gene sets.

Implementation of GSECA algorithm
The overall procedures of GSECA are implemented into
freely available software. The test files with two expression
profiles along with functional and regulatory motif gene
sets (human and mouse) are also available with the soft-
ware package. The software package and technical manual
can be downloaded in our website.
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