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Abstract

Background: The central role of transcription factors (TFs) in higher eukaryotes has led to much
interest in deciphering transcriptional regulatory interactions. Even in the best case, experimental
identification of TF target genes is error prone, and has been shown to be improved by considering
additional forms of evidence such as expression data. Previous expression based methods have not
explicitly tried to associate TFs with their targets and therefore largely ignored the treatment
specific and time dependent nature of transcription regulation.

Results: In this study we introduce CERMT, Covariance based Extraction of Regulatory targets
using Multiple Time series. Using simulated and real data we show that using multiple expression
time series, selecting treatments in which the TF responds, allowing time shifts between TFs and
their targets and using covariance to identify highly responding genes appear to be a good strategy.
We applied our method to published TF — target gene relationships determined using expression
profiling on TF mutants and show that in most cases we obtain significant target gene enrichment
and in half of the cases this is sufficient to deliver a usable list of high-confidence target genes.

Conclusion: CERMT could be immediately useful in refining possible target genes of candidate TFs
using publicly available data, particularly for organisms lacking comprehensive TF binding data. In
the future, we believe its incorporation with other forms of evidence may improve integrative

genome-wide predictions of transcriptional networks.

Background

Transcriptional regulation is essential for all eukaryotes
and is central to the complex development and environ-
mental responses of higher organisms. The identification
of transcription factors (TFs), TF-target genes and tran-
scriptional regulatory networks is therefore of fundamen-
tal importance for biology. The ability of TFs to modify

the expression of many physiologically important target
genes has made them attractive targets for biotechnology
[1,2]. Traditionally, experimental approaches have sought
to identify TF-targets by measuring gene expression in
loss- or gain-of-function mutants, whilst TF binding to
their target promoters has been measured using gel-shift
assays, co-transfection assays or chromatin-immunopre-
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cipitation (ChIP). With the arrival of genome-scale tech-
nologies, approaches have been scaled up to allow for the
unbiased identification of either genes with altered
expression in TF mutants using expression profiling, or
promoters and other genomic sequences that are bound
by a TF in vivo by hybridizing ChIP samples to DNA
microarrays (ChIP-chip) [3,4].

However, phenotypes of TF mutants are the product of the
combination of temporal, developmental and genetic
interactions with the altered gene function. Target identi-
fication may therefore be confounded by factors such as
redundancy, pleiotropic overlap, severe developmental
phenotypes or lethality (e.g. [5,6]). The use of inducible
expression or inducible nuclear targeting of the TF may
overcome these limitations but such systems have been
rarely used and can also lead to secondary effects [7,8].
Likewise, genome-wide location data for TF binding from
ChIP-chip experiments does not provide definitive evi-
dence of target regulation. Observed DNA binding is not
always sufficient to accurately predict a regulatory interac-
tion [4,9] as it may be related to a process other than tran-
scriptional control of gene expression, or simply be
biologically irrelevant. In yeast, ChIP-chip has been com-
prehensively applied to all 203 predicted TFs. However,
such data provides only a snapshot of the complete regu-
latory network as interactions are dependent on many var-
iables such as the cell type, genetic background and
developmental stage of the organism, and the timing and
type of environmental or biological stimuli [10]. In the
case of higher eukaryotes, which have an order of magni-
tude greater diversity of both TFs [11] and potential tar-
gets, mapping the regulatory network would require a
currently unfeasible amount of time and resources. The
central role of TFs and the limitations of the available data
have together generated considerable interest in the com-
putational prediction of TF-targets and regulatory net-
works. Applied simply, genes with altered expression in a
TF mutant may be filtered by the presence or absence of a
binding motif for the TF or for those showing a similar
treatment-response to the TF (e.g. [12]). More complex
algorithms have been used to improve the target predic-
tion accuracy by combining ChIP-chip data with other
resources such as phylogeny, TF binding motifs, co-
expression data, or a combination of these [4,10,13,14].
The power of combining multiple forms of evidence was
recently demonstrated by Beyer and coworkers, who, by
using eight forms of evidence, were able to predict previ-
ously unknown TF-binding interactions that could subse-
quently be proven by new, condition-directed, ChIP-chip
experiments [10]. In the absence of more comprehensive
ChIP-chip data, the application of these methods to
higher eukaryotes is not yet feasible. One form of evidence
that is also widely available for higher eukaryotes is co-
expression data, which has become commonly used in
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computational biology since the increase in public availa-
bility of microarray data. Several tools that support such
analyses have been developed (e.g. [15-18]). These analy-
ses have been used to identify additional components of
enzymatic modules [19] and assign specific functions to
generalist enzymes [20]. Co-expression relationships may
also support the known regulation of target genes by a TF
[20]. However, such examples are limited and the utility
of co-expression data to predict targets of a given TF in an
unsupervised fashion has not been explored. Given the
importance of translocation and post-translational modi-
fication (e.g. [21,22]) this is understandable. However,
TFs and their targets do tend to be co-expressed and by
applying methods that overcome problems such as time
shifts [23] and conditional responses [24], gene expres-
sion data can be used as a proxy to measure TF activity. Shi
et al. [14] recently demonstrated this by using expression
data from multiple time series and considering the possi-
bility of time shifts when predicting TF-targets. By mode-
ling the known regulatory relationships, they estimated
treatment specific time scales which they then used to esti-
mate the correct time shifts for predicting novel interac-
tions. Their method depends on comprehensive prior
knowledge in the form of large scale ChIP-chip data [4],
and is therefore not yet applicable to organisms for which
such resources are still unavailable. Furthermore, given
the demonstrated condition dependency of ChIP-chip
data and that its utility for inferring general properties of
TF - TF-target interactions is not fully assessed, it is
unclear whether the ChIP-chip data now becoming avail-
able will be useful beyond the directly studied TFs. Hence,
it is of interest to examine the performance of methods
that do not require prior information about regulatory
interactions.

Lacking appropriate training data, one has to resort to
fully unsupervised (clustering) approaches. Several clus-
tering methods that include the possibility of time shifts
for gene expression data (e.g. [25-27]) have been
described, but all of them take an ab initio approach by not
using the information of which genes are supposed to be
TFs, and are therefore unsuitable for querying the data for
targets for a particular TF. Recently, Heard and coworkers
also proposed a clustering method that can use multiple
gene expression time series [28], but without considering
time shifts.

A prerequisite for incorporating temporal information
into TF-target gene prediction is the selection of an appro-
priate dataset and the concomitant selection of a model
organism. As will be discussed, the AtGenExpress consor-
tium's stress series dataset for the model plant Arabidopsis
thaliana was selected as the most technically and biologi-
cally appropriate. In particular, TF-target prediction in
higher eukaryotes is appealing due to the aforementioned
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unfeasible task of comprehensive mapping of all TF-target
gene interactions, meaning that such a method could have
immediate biological application.

We developed a method to identify potential TF-target
genes as those responding strongly to the same stimuli as
their controlling TF(s) in a coordinate temporal response.
Initially, simulated data with predefined TF-target gene
expression relationships showed that, by selecting treat-
ments and incorporating temporal information, our algo-
rithm can improve performance as compared to
conventional co-expression based methods. We then
applied the method to identify known TF - target gene
relationships, as experimentally determined, using expres-
sion profiling on TF mutants. These data revealed that the
method was useful to enrich targets for a diverse set of
experimentally determined TF - target gene relationships.
Furthermore, for half of the studied TFs, the enrichment of
true targets among extracted genes was sufficient to obtain
usable numbers of high-confidence target genes. By look-
ing at a large set of annotated TFs, we also observed that
the targets predicted using our approach are more
enriched with both functional annotations and putative
cis-elements compared to those obtained by conventional
methods, hence, indicating a higher biological relevance.

We envisage our method could be immediately useful in
narrowing the search for target genes of candidate TFs
using publicly available data either through direct predic-
tion or by filtering data obtained by expression profiling
of TF mutants. This would be particularly applicable for
organisms lacking comprehensive TF binding data. We
show that considering other evidence has the potential to
improve the methods performance and, in the future, we
believe its incorporation into methods using multiple
forms of evidence may improve integrative genome-wide
predictions of transcriptional networks.

Results and discussion

Covariance based extraction of regulatory targets using
multiple time series

In a simple scenario, assuming full transcriptional control
of gene expression, the target genes will have the same
characteristic expression pattern as the regulating TF itself,
although possibly shifted forward in time. However, other
genes can have similar expression pattern as a direct
response to an applied treatment even though they are
unrelated in a regulatory sense. In order to separate such
co-expression from the more interesting co-regulation one
has to look at many different time series of the same sys-
tem but exposed to different perturbations.

A direct approach to utilize such data for co-expression
analysis is to concatenate the available time courses and
compute correlations based on the constructed pseudo
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time series as was done in the co-expression databases
CSB.DB and ATTED-II [16,18]. However, there are two
main conceptual problems with this approach. Biological
interaction patterns are very dynamic and genes that are
co-regulated in one condition can share little resemblance
in the next, particularly if they happened to regulated by
more than one TF [29]. Thus, the inclusion of an experi-
ment in which the TF is not active could theoretically
worsen predictions. The second problem is that transcrip-
tionally controlled regulation is delayed, so if the resolu-
tion of the time series is high enough then the TF will only
be correlated with its target in a time shifted manner.
Moreover, this delay might not be the same across the dif-
ferent treatments because even though the studied physical
time frame is the same, the biological time frame might dif-
fer. For example, transcription (like all other chemical
reactions) is affected by temperature and so the time shift
between the TF and its target is likely to be different under
high versus low temperature treatments. Ergo, the prob-
lem is two-fold. In order to make good predictions of
plausible targets we propose that it is necessary to, from
the total set of considered treatments, I: pick the 'right'
subset of treatments and II: introduce the 'right' time shift
for these. Finally, the use of the correlation coefficient
implies that the scale of changes in gene expression is
irrelevant and only the shape matters. To overcome the
background noise from the numerous untranscribed
genes one usually applies some sort of variance threshold.
Here, we instead experiment with using the covariance,
which pays attention to both shape and magnitude,
instead of correlation and thus assume that big changes
are more relevant than small changes. To summarize the
previous section, the following assumptions will lay the
ground for our approach:

¢ The expression of the true target genes are transcription-
ally controlled by the investigated TF.

¢ The TF-targets have a similar (covariant) response to the
TF but may show a treatment dependent delay.

¢ Genes can be part of more than one regulon so any treat-
ments in which the TF does not respond are also not
informative.

¢ Because not all genes are transcribed at the same time,
the sought TF-targets will have higher variance than the
bulk of genes.

Given a set of gene expression time series and a TF of inter-
est, the output of the proposed method is a cluster of co-
expressed genes that, given the assumptions above, look
like they are controlled by the TF of interest. Because the
cluster is directly associated with a known TF, we will
instead refer to it as a predicted regulon. Figure 1 shows a
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Figure |

A flowchart of the CERMT algorithm. The input is a set
of microarray time series for several treatments and a tran-
scription factor (TF) of interest. First the treatments in which
the TF does not respond are removed. Then a pair of treat-
ments are selected for which the same genes are highly cov-
ariant with the TF. The rest of the treatments are then
searched and added or discarded depending on a goodness-
of-fit test. Finally a cut-off for the gene list ordered by their
covariance with the, possibly time shifted, TF in the selected
treatments is estimated via the Gap statistic.

flow scheme of the proposed algorithm, and below we
outline the main strategies.

Method outline

The method we suggest predicts regulons by first remov-
ing the time series in which the TF does not respond. We
do this by only including treatments in which the TF
exceeds two thresholds; the overall maximum response of
the TF and the maximum difference between the TF of the
stressed plant and the same TF under control conditions.
The latter is necessary to account for the extensive diurnal
expression changes of Arabidopsis [30].

The remaining treatments are organized in a three dimen-
sional expression matrix, X = x; ; ;, with measurements
from n, different time points (i), n, genes (j) and n,differ-
ent treatments (k). Following the stipulated assumptions,
we rank the genes according to how strongly associated
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they are with the TF, by seeking a set of treatments, m, and
corresponding lags, I, for which the covariance

ng ’lk

(Vi,k =V, 13,) (Xi+1y,, i,k =% k,1},)
Cj,k,lkzz k nt—l;’z] IR (1)

i=1

is maximized for the genes in the sought regulon in all %

e m. In (1), X, is the average expression of gene j in

treatment k shifted backward by I time points and y,,; is

the average expression of the TF in treatment k truncated
by I, time points.

Finding the optimal solutions for m and [ is difficult as it
would require knowledge about the identity of at least
some of the true targets. This information is unavailable
in our setting and therefore we design the following
greedy heuristic. Assuming that the regulon is large
enough and under control of the TF in at least two treat-
ments, m, and m,, after time lags [, and [,, then the prod-
uct of the two corresponding covariance vectors will be
high for a good pair of treatments and lags. The product
of the covariance vectors from two lagged treatments is
defined as:

g
C(ky ki1, 1,) = ch,kl,ll XCjkeyl, (2)

j=1

If we only consider a relatively small number of possible
lags, we can set the seed pair of treatments to:

{my,my,1;,1,} =arg max C(my,m,,1,1,) (3)
my,my,ly,l,

by exhaustively trying all pairs of treatments and lags. Fig-
ure 2 exemplifies the idea. The sought regulon co-varies
with its TF in two treatments at a certain time shift and
causes (2) to reach its maximum for these.

Once the best pair has been found we create a summary of
the two treatments by concatenating the measurement
vectors to obtain a pseudo treatment with 2n,- [, - I, time
points and again calculating the covariance between the
TF and the rest of the genes according (1).

By ordering the genes after their covariance with the TF we
assume that the proposed regulator is an inducer. If
desired (see Section 'Target accuracy and input specifi-
city'), repressed targets can be extracting by reversing the
search order, i.e. by replacing c;;,;, with-c;, . This does
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Cov with TF, treatment 1

The covariance between a simulated transcription factor (TF) and all other genes in two different treatments.
With no time shift (left panel) the true regulon (red points) has low covariance with the TF in both treatments. When the
expression of the TF has been shifted forward (right panel) the correct number of time points it becomes highly covariant with

its regulon and (2) increases.

not affect the initial search for a good pair of treatments
and lags.

In order to investigate if there are more treatments for
which (1) is high for the same genes, we order the remain-
ing treatments according to (2) by setting m, to the artifi-
cial pseudo treatment. If a cross-validation based
goodness-of-fit test suggests that the next treatment is use-
ful, it is added and the procedure is reiterated.

By selecting treatments and lags we construct a pseudo-
time series in which the top-ranked genes have high cov-
ariance with the TF. This would be true even if all of the
expression data were completely independent of the TF.
Therefore, we must investigate how likely it is to observe
regulons of the same quality from randomized data. We
did this by adapting the Gap statistic described by Hastie
etal. [31] to our problem. The Gap statistic is beneficial as
it both provides an estimate of the statistical quality of the
proposed regulon, and simultaneously recommends the
best number of genes to extract.

Comparisons with other approaches

Conceptually, our approach differs from other co-expres-
sion based methods in that it aims to directly associate a
known TF with target genes. As it does not require exten-
sive prior knowledge (i.e. ChIP-chip data), it also differs
from a recently described method [14] to identify target

genes for known TFs. Methodologically, our method is
characterized by two main aspects. Firstly, it incorporates
the a priori assumption that true TF-targets have higher
variance then the bulk of the represented genes by using
the covariance instead of correlation. Secondly, it per-
forms a selection of treatments and time shifts to increase
overlap between the TF and putative targets. In order to
investigate the importance of both of these components
we assessed the performance of both the full CERMT
approach and a reduced version, CERMT-0, which always
uses all treatments without considering any time shifts.

By choosing a different initial pair of treatments, by for
example excluding treatments that are previously sus-
pected to be irrelevant, it is possible to obtain different
regulons. For simplicity, we will in this study restrict our-
selves to consider only one regulon for each TF.

The standard work-horse for detecting co-expression is the
Pearson correlation and we therefore compare our results
to just concatenating all time series and ranking genes
against their correlation with the TF. Here, we refer to this
approach as 'Cor'. However, considering the timescale,
limited number of samples and relatively controlled con-
ditions, the AtGenExpress dataset may not allow for the
best comparison with a correlation based method. We
therefore chose ACT [15] to provide a more stringent com-
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parison, which like other co-expression tools [16-18], uses
a highly diverse dataset from hundreds of steady state con-
ditions. Repressed targets were sought by ordering the
genes after their negative correlation.

To measure performance, we first looked at the threshold-
free AUC statistic (area under the ROC curve), but this
performed poorly with such grossly different sample sizes
(false targets vs. true targets). Therefore, we simply
counted the number of true targets among of the top 100
predicted genes, thereby also allowing us to assess the
ability of the method to return true targets in the very top
of the gene list; an important aspect as experimental vali-
dation rapidly becomes infeasible with the number of pre-
dicted genes.

Simulated data
We compared CERMT with its reduced version, CERMT-0,
on 100 simulated data sets that contained 10000 genes,

http://www.biomedcentral.com/1471-2105/8/454

six different treatments and seven time points. In three of
the treatments, a regulon of varying size was added that
followed the pattern of the TF directly or lagged by either
1 or 2 time points. Figure 3 shows boxplots on the per-
centage of the true positives that were found in the top 2n
genes, where n equals the size of the planted regulon. The
performance of CERMT-0 is high if there is no time lag,
but, not surprisingly, very poor if we plant a delay. The full
CERMT approach performs poorly if the sought regulon is
too small as the 'right' treatment pair becomes increas-
ingly diffcult to find with decreasing regulon size. On the
other hand, for sufficiently large regulons, CERMT shows
good performance regardless of whether response is
delayed or not. The size of the smallest detectable regulon
decreases with the amount of time points in the experi-
ment (data not shown). Note that though the limit for the
minimum regulon size in the simulation seems to be
around 50 genes, this estimate is strongly data specific and
is not transferable to performance on real data.

No lag
10 genes 40 genes 70 genes 100 genes
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CERMT CERMT-0 CERMT CERMT-0 CERMT CERMT-0 CERMT CERMT-0
Figure 3

Boxplot of method performance using simulated data. Performance was measured as the percentage of the recovered
genes (100 x True positives/n) in the top 2n predicted genes where n equals the size of the planted regulon. The simplistic
method CERMT-0 does not consider any time lag, makes no selection of treatments and is therefore robust against the size of
the planted regulon but for the same reason also fails if there exists a time lag between the TF and its targets. CERMT on the
other hand performs poorly if the planted regulon is small, but it is robust against the presence of time lags.
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Comparison with over-expression and knock-out
experiments using the AtGenExpress dataset

The abiotic stress series from the AtGenExpress project
[32] was selected for evaluation of the proposed method.
This large data set uses the standardized Affymetrix plat-
form and was all generated in parallel through the coordi-
nated work of five different research groups. It consists of
data from root and shoot of 16 days old Arabidopsis seed-
lings exposed to nine different abiotic stresses as well as
control conditions, giving a total of 18 different usable
time series (loosely referred to as 'treatments'). The seven
time points commonly measured in all treatments were
selected from each experiment to arrive at an expression
matrix with 140 samples. These time points were 0, 0.5, 1,
3, 6, 12 and 24 hours, which approximates a log times-
cale. For this data, log scaled sampling seems preferable as
we noted that a log-linear model yields higher absolute t-
values than a linear model, thus, a majority of the genes
have a more linear response in log-time than in linear
time. Non-linear sampling could otherwise have detri-
mental effects on any time shifting attempts. Considering
the response of plant gene expression to various perturba-
tions (e.g. [33,34]), it seems reasonable to assume that
this timescale will reveal at least some of the biologically
relevant TF-TF-target relationships.

CERMT depends on having expression estimates at the
same time points in all treatments. Datasets which do not
fulfill this can also be used if common time points are first
interpolated, which preferably can be done using sophis-
ticated interpolation strategies such as that proposed by
Bar-Joseph et al. [14,35]. Relying solely on gene expres-
sion data, we can only expect to extract TF-targets for TFs
that actually respond to the applied treatments. Therefore,
we conducted a literature study specifically to find experi-
ments investigating the targets of abiotic stress related TFs
either by over-expression, knock-out or ChIP-chip experi-
ments, see Additional file 1. Also, in the cases where we
could find known motifs for TF's [36-38] we extracted all
genes with those motifs in their 500 base upstream
regions regarding that gene list as a set of 'targets' to pre-
dict. We expect the experimentally obtained lists of TF -
target relationships to likely contain many erroneous
findings. For example, as many TFs regulate other TFs, it
has been pointed out that the effects of constitutive TF
mutants, as defined by expression profiling, will likely
include those of the regulated TFs [3]. Despite this, we feel
this TF target practice is a useful exercise. Firstly, only
some of the experimentally predicted targets need to be
true targets in order for these lists to be useful for the com-
parison of methods. Secondly, the targets predicted by the
method could help in reducing the number of false-posi-
tives in experimental predictions. Thirdly, even if all genes
represent indirect effects of regulated downstream TFs,
these effects may relate to the overall biological function
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of the candidate TF and so their prediction could still be
useful. Previously, a simplified version of the second of
these arguments was used to restrict gene lists obtained by
over-expressing cold-responsive TFs by also requiring the
genes to be cold-responsive [12]. To maximize the
number of TF datasets against which we could assess our
method, we somewhat loosened our selection from con-
sidering only fully transcriptionally regulated individual
TFs. We included MBF1c, a transcriptional co-activator
[39]; the functionally paired MYC2/MYB2 TFs [40] and
HSFA1a/HSFA1b [41]; the functionally redundant CBF1-
3 TFs [42] and the post-translationally regulated TFs
DREB2A [43] and AREB1 [44]. All TFs considered as pairs/
functionally redundant showed very similar expression
patterns (data not shown). The inclusion of DREB2A and
AREB1 was motivated by their demonstrated parallel tran-
scriptional and post-translational stress regulation
[43,44], which should allow their transcription to act as a
proxy for their direct target regulation. Their inclusion
could therefore validate wider use of the proposed
method beyond strictly transcriptionally controlled TFs.
Therefore, we do not expect these lists to wholly represent
direct TF-target genes, but considering these down-stream
effects, there is still utility in their prediction.

Target accuracy and input specificity

An important property of a prediction method is that it
shows specificity towards the input TF, i.e. the real TF
should really be a better input for enriching its own targets
than a random TF. To measure this, we ran the algorithm
on all 1484 genes in our data set annotated to bin 27.3,
'RNA.regulation of transcription’, by the MapMan project
and computed an empirical specificity P-value, Py, as the
number of random genes that gave the same or better
enrichments than the 'true’ TF divided by the total
number of tested TFs. Known TF families comprise
approximately 90% of this annotation bin with the
remaining 10% being putative TFs or other regulatory pro-
teins. As our method is not specific to TFs but can also
apply to other genes that regulate transcription (e.g.
MBF1c) this bin is useful for our purposes, however, in the
worst case, P, will have negligible 10% error. Note that
to calculate Py, one has to know the true regulon and it is
therefore only applicable for validation purposes.

The upper part of Table 1 shows the performance of the
proposed method along with that of the simplistic meth-
ods and the conventional co-expression database ACT. In
general, it seems that co-expression methods can be used
to identify experimental targets of a given TF. The covari-
ance based methods CERMT-0 and CERMT perform better
than the others in most cases and CERMT has the overall
best performance, although, with the exception of the CBF
regulon, the performance increase compared to CERMT-0
is admittedly modest. In half of the cases, the ratio of true
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Table I: Performance on real data
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TF Targetpool Cor ACT CERMT-0 CERMT CERMT Diagnostics
Source E Size Hits!®  Pg,..  Hits!® Py, Hits!® Py, Hits!® Po.  Size  HitsG®  Gap
Induced targets
AREB OoX 0.16 28 2 0.03 ) 0.15 9 0.03 9 0.04 128 10 0.20
CBF CRE 14.32 2508 18 0.17 0 1.00 34 0.10 58 0.01 86 53 0.27
OX 0.82 143 5 0.08 0 1.00 19 0.10 56 0.00 52
DREB2A OoX 0.12 21 3 0.03 ) 0.07 10 0.06 11 0.05 244 15 0.04
HSFA2 OoX 0.24 42 12 0.00 0 1.00 22 0.00 20 0.02 76 19 0.09
HY5 ChIP/KO 0.76 133 0 1.00 9 0.03 9 0.11 12 0.04 902 32 -0.19
KO 0.69 120 13 0.00 19 0.00 14 0.00 14 0.00 46
CRE 12.07 2113 22 0.11 24 0.05 19 0.31 19 0.30 153
MBFlc OX 0.86 150 0 1.00 2 0.17 2 0.36 4 022 102 4 0.09
MYB2/MYC2  CRE 6.75 1182 2 0.46 6 0.64 5 0.39 4 042 536 31 0.23
CRE 19.90 3485 31 0.02 23 0.32 30 0.07 32 0.05 121
OoX 0.15 26 0 1.00 0 1.00 I 0.26 I 0.30 2
NACO019 OX 0.08 14 0 1.00 0 1.00 0 1.00 I 0.13 33 0 0.0l
NACO055 OoX 0.05 9 0 1.00 2 0.00 0 1.00 0 1.00 121 0 0.09
NAC072 OoX 0.13 23 0 1.00 0 1.00 2 0.09 5 0.04 96 5 0.25
PAPI OX 0.24 42 ) 0.08 8 0.00 0 1.00 0 1.00 27 0 0.28
ZATI2 OX 0.79 139 3 0.08 2 0.17 8 0.19 10 0.06 536 19 0.08
Repressed targets
CBF OoX 0.24 43 0 1.00 0 1.00 0 1.00 2 0.17 128 2 0.09
MBFlc OX 0.46 80 0 1.00 0 1.00 0 1.00 ! 0.47 1000 10 -0.19
ZATI2 OoX 0.90 158 ! 0.18 3 0.03 7 0.16 11 0.12 1000 33 0.01

Hit ratios based on real data for the top 100 genes associated with |12 different transcription factors (TFs). Bold entries are the highest values for
that target pool, italic entries are insignificant over-representations according to Fisher's exact test (p > 0.05). Targetpool size is the number of the
true targets in our expression set, E is the expected number of hits when picking 100 genes genes at random and Py, is an empirical P-value
indicating the probability that a random TF would give the same or better hit ratio. For CERMT, the best cluster size as indicated by the Gap
statistic is shown along with the number of true targets for that regulon size. A large Gap statistic (greater than zero) indicates that the suggested
regulon is significantly more related to the expression of the TF than could be expected from the expression of a shuffled TF. Target pools were
defined from over-expression experiments (OX), knock-out experiments (KO), ChIP-chip experiments (ChIP) or by all genes carrying a known cis-

regulatory element (CRE).

targets is sufficient (12-59%) to deliver a usable number
of high-confidence target genes. ACT is the only method
that ever substantially outperforms the proposed method.
Interestingly, it does so for PAP1, for which the other
methods perform poorly. This indicates that these targets
are better found in a larger, mostly steady state correlation
dataset and that the proposed method can be comple-
mentary to existing methods. P, follows the over-repre-
sentation significance as expected, and are generally not
different between the covariance or correlation based
methods. Despite this, covariance appears to be inclined
towards finding genes that are really regulated rather than
noise genes that happen to have the same expression tra-
jectory. Presumably, the benefit of using covariance over
correlation will decrease rapidly with increasing number
of studied time points. For MBF1¢, ZAT12 and CBF, the
original studies also reported target genes that were sus-
pected to be repressed by the corresponding TF. The lower
part of Table 1 shows the predictions for these target
pools, assuming that the TF is a repressor. CERMT finds a

significant number of repressed targets in the top 100
extracted genes for CBF and ZAT12. Significant overlap
with the repressed targets of MBF1c were only found in
the top 200 predicted targets (4 hits, P = 0.006). However,
as the Gap-statistic and the corresponding recommended
cluster size indicates, the statistical significance of the
extracted regulons is not convincing. Furthermore, the
Py, indicates that the found targets are unspecific to their
corresponding TF. It is difficult to assess the utility of the
method for extracting repressed genes with only three
examples, hence, CERMT should be used with caution
when searching for repressed targets. Repression of tran-
scription is only visible using microarrays after subse-
quent degradation of available mRNA and the observed
response could be less coordinate among a regulon than
during induction as degradation rate varies between dif-
ferent mRNAs. The time scale is also likely to be quite dif-
ferent compared to that of induced responses. Thus,
searching for repression using expression data could very
well be more difficult than searching for induced targets.
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Statistical properties of the predicted regulons

Figure 4 shows an example plot of the statistical quality of
the predicted regulons for four of the examined TFs. The
CBF, AREB and NACO072 regulons show convex Gap
curves where the maximum indicates the best number of
genes to include in the regulon. The observed Gap statis-
tics are greater than zero which indicates that obtaining
such a good or better regulon is highly unlikely given that
the expression of the TF was independent of the rest of the
genes. The HY5 regulon on the other hand, exhibits no
stronger connection to its regulon than can be expected
from a randomized TF, despite the fact that it contains a
significant number of true targets. This could be an effect
of the low resolution of the AtGenExpress dataset and the
sinusoidal expression pattern of HY5 in response to UV-B
stress. Such complex patterns depend on more parameters
and are consequently harder to approximate with only
seven time points.
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Figure 4

The Gap curves for four of the examined transcrip-
tion factors (TFs). Shown is the distance between the
observed R%(goodness) of the predicted regulon and the 95t
percentile of the null-distribution (which is not shown here).
A positive R2 means that the regulon is significant on the 5%
significance level and the maximum of the Gap curve indicate
the best number of genes to include in the regulon. The Gap
curves for CBF, NACO072 and AREB are plotted along with
the the curves obtained for two-hundred shuffled TFs (thin
lines). The shuffled TFs get mostly negative Gap statistics as
they lie close the expectation value of the null-distribution.
CBF, NACO072 and AREB show very significant Gap curves,
the HY5 regulon on the other hand does not.
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CERMT can propose biologically interpretable target lists

One of the key benefits of the increasing public availabil-
ity of expression data is the ability to quickly generate
hypotheses on gene function. Standard co-expression
analyses have yielded several insights that were experi-
mentally validated [19,20]. We therefore investigated the
functional insight provided by the CERMT predicted CBF
regulon. Remarkably, among the top seven genes there are
four COR/LEA genes and one galactinol synthase. The
cold-regulated (COR) genes are the defining members of
the CBF-regulon as the CBF TFs were first identified
through their binding to the C-repeat element present in
the promoters of these genes [45]. Galactinol synthase cat-
alyzes the first committed step of raffinose synthesis
which is an important component of cold acclimation
known to be under the control of the CBF TFs [45]. Over-
all, the predicted regulon reveals many more known CBF
targets including further cold responsive COR genes,
enzymes and TFs. These data clearly offer significant bio-
logical insight into the central function of the CBF TFs in
controlling transcriptional and metabolic changes during
cold acclimation. In addition to the predicted target lists,
the information about the used treatments shown in
Table 2 can also provide useful biological insight into the
function of the TF and of the predicted regulon. Several of
the studied examples verify known biological information
such as CBF's and ZAT12's importance for the response to
cold, HY5's for UV, HSFA2's for heat and MBF1c's for heat
and osmotic stress [12,39,41,46]. Table 2 also shows
which time shifts were used for each TF along with the
time shift for which the median covariance between the
TF and all the genes in its regulon is maximized in the
used treatments. This can be seen as a supervised 'answer'
to what the algorithm is trying to predict. It is clear that
there often exists a transcriptional time shift for the stud-
ied regulons, which justifies one of our primary assump-
tions. However, the correct time lag is frequently missed
by the algorithm. The reason for this becomes apparent
when one considers the plots of the over-expression
defined regulon for PAP1 and the first 50 genes in the pre-
dicted regulon for PAP1, see Figure 5. The difference is
glaring so it is not surprising that the true regulon is over-
looked. In order to increase performance it would be nec-
essary to use additional resources rather than the gene
expression data alone. By, for example, using the informa-
tion that the deep purple phenotype of the PAP1 over-
expresser is due to anthocyanin accumulation and there-
fore only consider genes involved in flavonoid metabo-
lism [47]. When this information is combined with the a
priori assumption that there exists a time shift, the algo-
rithm picks out nine of the true targets in its top 100
(Fisher's exact test: P = 10-5). Including such additional
data therefore adds one more TF to those whose hit ratio
is sufficient to deliver a usable number of high-confidence
target genes. This illustrates an unavoidable problem with
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Table 2: The used treatments and time shifts

Regulator Used treatments Used shift:Best shift
AREB osmotic-S, salt-S 0:0 0:2

CBF (Induced) cold-S, cold-R 2:22:2

CBF (Repressed) cold-S, cold-R, drought-R 2:22:2 1:0
DREB2A genotoxic-R, wounding-S, cold-R, cold-S, osmotic-S 1:0 0:0 2:1 2:1 0:0
HSFA2 drought-R, oxidative-R, oxidative-S, heat-S, heat-R 0:0 0:0 1:0 0:0 0:0
HY5 uvb-R, cold-S, uvb-S 0:0 1:00:0

MBFIc (Induced) osmotic-R, heat-S, heat-R 0:2 0:1 0:0

MBFIc (Repessed) oxidative-S, cold-R, heat-S, heat-R I:1 0:0 0:0 0:0
MYC2-MYB2 salt-R, drought-R 0:2 0:1

NACO19 uvb-S, osmotic-R, salt-R osmotic-S, salt-S 0:1 0:0 0:0 0:1 0:0
NACO055 cold-R, osmotic-R, salt-R 0:0 0:1 0:0
NAC072 osmotic-S, salt-S 0:1 0:1

PAPI osmotic-S, salt-S 0:2 0:2

ZAT12 (Induced) osmotic-R, cold-R, salt-R 0:2 0:0 0:0
ZATI12 (Repressed) drought-R, oxidative-R, cold-R, salt-R 0:0 0:0 0:2 0:0

The treatments and time shifts CERMT selected for the real data. Also shown are the 'best’ time lags based on maximizing the covariance between
the TF and the experimentally determined regulon. These data can be useful for interpreting the biological relevance of the predicted regulon.

Treatments ending with 'S' and 'R are from shoot and root respectively.

gene expression data for TF-target prediction; there are no
unique solutions. Given these data sets however, we draw
the conclusion that the true regulons often, but far from
always, can be discovered with simple statistical functions
thus conceptually strengthening the approach by Beyer et
al. [10] which integrates many different techniques to
boost target predictions.

Biological significance of the predicted regulons for a large set of
transcription factors

Having used existing experimentally validated TF-targets
to assess the utility of the proposed algorithm for predict-
ing plant regulons, we wished to extend the study to also
include less characterized TFs. Although no known targets
are available for validating the predictions for such TFs, it
is still possible to estimate the statistical significance of
the extracted regulons from a biological point of view, and
this information can be used to compare the different pre-
diction methods. By searching for significance, we can
estimate how randomly chosen a selection of genes seems
to be, and, lacking stronger guidelines, we prefer a method
which is less random.

A standard method for assessing the biological signifi-
cance of gene expression clusters is to look at the overlap
between the clusters and existing functional annotations
[48,49]. The predicted regulons are in a sense also clusters
and because targets of a given TF often share biological
functions (e.g. [12,47]), we reasoned that the predicted
regulons, just like standard gene expression clusters, also
should share functional annotations, and that these
should be detectable by searching for over-representation.

TFs regulate the expression of their target genes by binding
to sequence motifs, i.e. cis-regulatory elements (CREs), in
their promoter regions. A group of genes that is more
likely to share sequence elements amongst each other is
therefore also more likely to be co-regulated. Measuring
this likelihood could possibly be done by identifying the
best motif and assessing its significance. There are many
excellent algorithms for identifying motifs given a set or
promoters available (e.g. [50-52]), however, the use of
these methods is not feasible for our purpose as most of
them are very time consuming and need data specific
parameter tuning [53]. Fortunately, we are not directly
interested in finding the correct motif, but merely to score
how reasonable the existence of such a motif is. Therefore
we chose a more simplistic method, which was inspired
by the enumeration strategy used by the efficacious
Weeder algorithm [54], and estimate the likelihood of
motif-existence by the number of over-represented nucle-
otide hexamers. Although it might be naively assumed
that a single, highly over-represented motif would be
found for each regulon, there are at least two reasons why
better regulon prediction is more likely accompanied by
an increased number of over-represented motifs. Firstly,
the hexamers searched for are redundant or overlapping
in sequence, resulting in multiple hits from a single CRE.
Secondly, genes may be regulated by more than one CRE,
and these 'hitchhiking' elements may also be enriched.

To assess the plausibility of our assumptions about regu-
lon characteristics, we counted the over-represented hex-
amers and functional annotations in the experimentally
defined regulons. Six of the seven target pools that con-
tained more than 30 genes had between 5 to 37 over-rep-
resented hexamers and seven had between 3 to 8 over-
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The PAP regulon. Comparison of the expression of the CERMT predicted regulon (upper panel) and the over-expression
defined regulon [47] (lower panel) versus the expression of the PAP| transcription factor in the shoot in response to salt and
osmotic stress. No time lag was used for the prediction, so there is no overlap between predicted and true regulons. The dif-
ference in terms of coherency and variance is pronounced so it is not hard to see why the algorithm is seeded with no time lag
instead of the more appropriate lag of two time points. This illustrates an unavoidable problem of TF target prediction based
only on gene expression data — there are no unique solutions and the most obvious solution is not necessarily the correct one.

represented functional annotations, see Additional file 2.
In addition, by examining the gene lists annotated to a
common known TF binding site by ATCISDB [55], we
found that 80% had significantly more over-represented
hexamers than could be expected by chance. This strongly
indicates that biologically relevant regulons are more
likely to contain over-represented annotations and hex-
amers than random selections of genes. Note that these
numbers are dependent on the size of the regulon and are
thus not readily transferable to regulons of different sizes.

From the simulated data, we could draw the conclusion
that, if the proposed method is better than a simple corre-

lation based measure using concatenated time series, then
the improvement would be most apparent when there is
a time shift between the TF and its regulon. Therefore, we
ran the proposed algorithm, treating the TFs as both
inducers and repressors, on each of the 1484 genes in our
data set annotated in the MapMan software [56] to bin
27.3, 'RNA.regulation of transcription'. For the 265 and
307 genes that the algorithm chose to introduce a time
shift in at least one treatment in induction and repression
mode respectively, we counted the over-represented
annotations and upstream motifs.
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Figure 6 shows boxplots of the number of significantly
over-represented annotations and motifs as a function of
the number of extracted genes using the four tested meth-
ods. There is strong difference between the correlation
and covariance based methods in all four. Obviously, the
covariance based methods enrich both more functional
annotations and hexamers, and thus extract regulons with
more appealing properties than the standard correlation
based methods do. No prominent differences could be
seen between CERMT and CERMT-0, suggesting that the
qualitative differences between these methods was too
small to be resolved by this type of enrichment analysis.
As indicated by the non-overlapping notches in Figure 6,
CERMT-0 enriched slightly more hexamers than CERMT
in induction mode, a trend which was reversed and more
prominent in repression mode. Having shown that the
predicted regulons show significant promoter sequence
properties, it is tempting to speculate that a way to further

http://www.biomedcentral.com/1471-2105/8/454

separate overlapping regulons and refine the target lists,
could be to integrate CERMT with motif prediction algo-
rithms.

Conclusion

We designed a method for extracting potential targets to
known TFs using gene expression data in the form of mul-
tiple time series. The method provides a heuristic for solv-
ing the combinatorial problem of selecting informative
treatments and appropriate time shifts between the TF and
its targets. By maximizing the overlap in covariance
between the TF and all other genes in two treatments and
then systematically adding further treatments, we not only
avoid the need for computationally expensive optimiza-
tions, but also increase the interpretability and quality of
the predictions.
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Figure 6

Characteristics of predicted regulons. Boxplots of characteristics of predicted regulon. The number of over-represented
functional annotations and over-represented hexamers 500 nucleotides upstream in the top 100-500 predicted genes for a
selection of transcription factors were counted for each method. The results are shown from both induction mode (A) and (B)
repression mode. Truly co-regulated genes share cis-regulatory elements in their promoters and are also likely to share biolog-
ical function. Due to hexamer redundancy, motif interactions and parallel TF pathways, a higher number of enriched hexamers
and functional annotations therefore indicate a higher probability that a group of genes actually is co-regulated. Compared to
the previously described methods ACT (Arabidopsis Co-expression tool), Cor (Pearson correlation), the covariance based
methods CERMT-0 and CERMT extract genes with more over-represented hexamers and functional annotations.
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Using existing experimental data on target associations for
twelve TFs, the method showed higher performance than
existing steady-state co-expression tools, but indicated
that both methods could be complementary. This not
only highlighted the utility of the method but also
showed that the targets identified by mutant profiling in
normal conditions indeed often are highly covariant with
the associated TF in a treatment and time dependent fash-
ion in the wild-type plant.

The predicted regulons for unknown TFs also showed
appealing properties in terms of enriching both annota-
tions and upstream motifs. These results indicate that the
described approach could be used both as a method for
exploratory analysis of regulatory relationships of a partic-
ular TF, and as a means of obtaining high-confidence sub-
sets from putative target genes identified by mutant
profiling or other experimental techniques.

Gene expression based techniques are especially useful for
extracting potential targets when no information about
the regulatory relationships is available. Such methods
can therefore just as well be used for aiding hypothesis
generation regarding regulatory properties of e.g. metabo-
lites.

Methods

Cross-validation based test for adding further treatments
In order to investigate if there are more treatments for
which (1) is high for the same genes, we order the remain-
ing treatments according to (2) by setting the first treat-
ment to the artificial pseudo treatment. For the remaining
treatments we measure the goodness-of-fit by estimating
the change in predictive performance between the one-
component partial least squares (PLS) regression model
[57] predicting the expression of the TF from all other
genes including the new treatment, y" = X"B + E", versus
the old one, y' = X'B + E', where B is the vector with regres-
sion coefficients and E the residual matrix. The predictive
capability is measured by calculating the Q2 statistic using
repeated five-fold cross-validation. By using Student's ¢-
test we test the hypothesis H,: Q2'> Q?" (i.e. including the
next treatment led to a decrease in predictive perform-
ance) and only include the treatments where we fail to
reject. Q2 is defined as following:

3k 0imr)?

2

(4)
ki

Q=1

PLS is designed for developing models with strong predic-
tive performance, although this is not our direct interest,
it is suitable here as it is desirable to find a set of genes of
undefined size that are strongly related to a given TF for all
treatments used. Q2 will not increase when a treatment is
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added that requires high regression coefficients for genes
that are unrelated to the TF in the other treatments and it
therefore provides a valid, albeit indirect, tool for deciding
whether to leave treatments out or not.

Our method does not allow for more than one time shift
per treatment. Therefore, we are only interested in looking
for targets responding in the same (induced) or opposite
(repressed) direction as the TF. Hence, we modified the
PLS algorithm slightly to set all negative or positive coef-
ficients respectively, to zero. According to Hoskuldsson
[58] this does not affect the central properties of the PLS
regression.

Estimation of the regulon size and significance using the
Gap statistic

The Gap statistic has previously been proposed as a
method for simultaneously choosing a suitable cluster
size and assessing its statistical quality [31]. The method
works by calculating a goodness-statistic for several differ-
ent cluster sizes and choosing that which is farthest away
from a pre-defined null-distribution. In our setting, the
null-distribution is the goodness-statistics of the regulons
we obtain when using a random gene whose expression
has been shuffled within each treatment. We define statis-
tical quality of a regulon as the amount of its variance that
can be directly related to the TF, and measure this by
reversing the previous PLS regression model and calculat-
ing R2.

Xjer VB4 E (5)
2
Y X
R = =tk (©)
Xjel...k

We then define the Gap statistic as the observed R2 minus
the 95t percentile of the null-distribution - R2*.

Gap(k) = R? (k) - Qqo5(R?* (k) (7)

The recommended regulon size is given by:

k =arg max Gap(k). (8)
Because we use the 95t percentile, a positive Gap curve

can directly be translated to a significant regulon at the 5%
confidence level.

Simulation of gene expression data

The gene expression, x, at time pointi € {1, 2,..., 7} for
genej € {1, 2,.., 10000}, in treatment k € {1, 2,..., 6} was
simulated in a naive way as
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N(O,o, ) +ciyig p+PjrYia, . ifi>1,
WETIN(,0,) ifi<l,

)

where

0, €T(1,04)+02,
Vir € N(0,1.5),

and ¢;was one or zero depending on if gene j was part of
the planted regulon or not. The constant I, defined the
planted lag for treatment k. The lag was either set to zero
or allowed to vary between 1 and 2 time points. The
parameters for the distribution of o, were picked to resem-
ble a real world dataset. Tomake the data more illustrative
the term p; 1y;; 1, in (9) was added where p; ;, was one or
zero depending on whether or not the gene j belonged to
a 'masking' regulon in treatment k, a non-intersecting
group of genes of the same size as the true regulon. Thus,
in order to recover the hidden regulon it is necessary to
combine information from different treatments.

Simulating time series data using random normal deviates
is naive in the sense that the different time points are inde-
pendent of each other. For this particular application it is
however acceptable as the simplification only becomes
detrimental when comparing methods that utilize the
time series aspect of the data, as for now CERMT does not
do this.

The AtGenExpress data

The data from abiotic stress series of the AtGenExpress
project was downloaded from [59] and normalized using
the RMA normalization algorithm [60] as provided by the
Bioconductor project [61] for the statistical programming
environment R [62]. Probesets matching multiple AGI
codes or organellar encoded genes were excluded and
where multiple probesets matched the same AGI code the
original chip design designations were used and superflu-
ous probesets were dropped in order to obtain a bijective
mapping for 20872 probesets. Only probesets that
received a present call by the MAS5 algorithm for both
replica in at least one time point were kept giving a final
expression set of 17513 probesets.

Throughout this study, we only considered the time shifts
0, 0.5 and 1 h, as further time shifts would result in relying
on too few time points and unrealistically long transcrip-
tional delays.

The thresholds used for judging whether a TF responded
to a treatment or not were set to the standard moderate
outliers threshold, Q, ;5 + 1.5 x IQR, i.e. the third quartile
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plus 1.5 times the inter-quartile range, to the distributions
of the maximum responses and maximum deviations
from the control, given the probes on the arrays with only
insignificant expression signals, as judged by the MAS5
algorithm.

Motif and Bin enrichment

The enrichment of hexamers in predicted regulons was
calculated by first building a dictionary with all possible
hexamer, minus those that resembled the TATA-box, and
counting their occurrences in the 500 base upstream
regions of all considered genes. The obtained global dis-
tribution was then compared with that of the predicted
regulon. P-values for over-representation were calculated
using the hypergeometric distribution, FDR corrected [63]
and over-representation was noted for FDR < 0.05.

The calculation of annotational enrichments was based
on the method proposed by Hannah et al. [64], which
uses MapMan ontologies [56,65] combined with Fisher's
exact test. Bins (gene classes) were counted as significantly
enriched if FDR < 0.05. The MapMan annotations were
preferred over alternatives such as mappings to Gene
Ontology [66] because of its maturity and plant specific
scope.

Availability and requirements

The R package is contains all methods discussed in this
paper and the part of the AtGenExpress data as it was used
here. It is not organism specific and makes it possible to
apply CERMT to other species after collation of the appro-
priate gene expression time series. For Arabidopsis thaliana,
we also provide the method as a web-service which allows
the user to select the TF of interest, extract and plot the
suggested regulon using a fast but simplified version of
the proposed algorithm.

Project name: cermt

Project home page: http://cermt.mpimp-golm.mpg.de/

Operating systems: Platform independent

Programming language: R package with Java based web-
interface

Licence: GPL v2
Any restrictions to use by non-academics: No
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Additional material

Additional file 1

Literature study of transcription factors and their targets considered in this
study. We focused on TFs that have previously been implicated in stress
responses, but as not all respond under the conditions used to generate the
AtGenExpress dataset, some were therefore excluded from our test set.
Wherever multiple genes were knocked out or over-expressed, or where
functional redundancy has been implicated, the average of those genes was
used.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-8-454-S1.csv]

Additional file 2

The numbers of over-represented hexamers and annotations (MapMan
bins) in the experimentally defined regulons. With randomly chosen genes
we would not expect any over-representation. A clear majority of the larger
regulons have several over-represented hexamers annotations. 'OX' indi-
cates that the targets were found using over-expression, 'KO' using knock-
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