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Abstract
Background: This work addresses the problem of detecting conserved transcription factor
binding sites and in general regulatory regions through the analysis of sequences from homologous
genes, an approach that is becoming more and more widely used given the ever increasing amount
of genomic data available.

Results: We present an algorithm that identifies conserved transcription factor binding sites in a
given sequence by comparing it to one or more homologs, adapting a framework we previously
introduced for the discovery of sites in sequences from co-regulated genes. Differently from the
most commonly used methods, the approach we present does not need or compute an alignment
of the sequences investigated, nor resorts to descriptors of the binding specificity of known
transcription factors. The main novel idea we introduce is a relative measure of conservation,
assuming that true functional elements should present a higher level of conservation with respect
to the rest of the sequence surrounding them. We present tests where we applied the algorithm
to the identification of conserved annotated sites in homologous promoters, as well as in distal
regions like enhancers.

Conclusion: Results of the tests show how the algorithm can provide fast and reliable predictions
of conserved transcription factor binding sites regulating the transcription of a gene, with better
performances than other available methods for the same task. We also show examples on how the
algorithm can be successfully employed when promoter annotations of the genes investigated are
missing, or when regulatory sites and regions are located far away from the genes.

Background
Genome sequencing projects have told researchers where
genes are located, in human and an ever increasing
number of other species, and microarrays and other
sources of information can tell when genes are activated:
but the complete understanding of how genes expression
is regulated at the transcriptional and post-transcriptional

levels, as well as the characterization of all the elements
involved in the process still remain an open question in
molecular biology. Transcription is a fundamental step in
the regulation of gene expression, and it is modulated by
the interaction of transcription factors (TFs) with their
corresponding binding sites (TFBS) on the DNA [1],
mostly located near the transcription start site (TSS) of the
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gene or far apart organized in cis-regulatory modules
(CRMs, i.e. enhancers, silencers, etc.).

Computational methods for the discovery of conserved
TFBSs (motifs) can be split into two broad categories: the
'single species, many genes' approach [2], and the 'single
gene, many species' one [3]. In the former case, a set of
regions (i.e., promoters) from co-regulated genes are ana-
lyzed looking for over-represented motifs, that is, the
TFBSs responsible for the co-regulation of the genes; while
in the latter approach, known as phylogenetic footprinting (a
term first introduced in [4]), a single gene is investigated,
and non coding regions flanking it are compared to their
homologs in other species. Non coding sequence ele-
ments that are found to be conserved by evolution are
likely to be involved in the regulation of the expression of
the gene. Clearly, the two approaches can be merged, and
each of a set of co-regulated genes can be compared both
to its homologs, and to the others [5,6], and this analysis
can be also performed on a full-genomic scale [7-10].
Given the ever increasing number of annotated genomic
sequences available, phylogenetic footprinting has
become more and more widely used, since it avoids the
need of assembling a set of co-regulated genes (that in
turn implies the need of building reliable datasets) and
allows for the investigation of single genes alone.

The comparison of homologous non coding sequences
can be performed both for the identification of single
TFBSs, for example in promoter regions, and on a larger
scale for the discovery of distal CRMs, an approach that
has been successful in several cases ever since the first
human-mouse comparisons have been possible (see [3]
for a review). The available methods that are more com-
monly used first build an alignment (either local or glo-
bal) of the sequences investigated [11], or take advantage
of the pre-computed full genomic alignments now availa-
ble [12,13]. Then, one simple solution to identify con-
served functional elements is to use descriptors of the
binding specificity of TFBSs (like position specific weight
matrices [14] provided for example in the TRANSFAC
database [15]) and look for conserved aligned regions fit-
ting the descriptor. This approach can be used both for the
detection of single TFBSs (see for example [16]) as well as
of clusters of TFBSs likely to form conserved CRMs
(among many others, [17,18]).

Methods of this kind have to face two issues: first of all,
the need of reliable descriptors of the binding specificity
of the different TFs. Usually, PWMs yield a large number
of false positive matches [19], and while requiring a
match to be conserved throughout different sequences
reduces them, the problem of defining whether a match is
significant in all the species considered remains. Second,
and most important, is the need of having a reliable align-

ment of the sequences investigated. TFBSs tend to be quite
short (6–15 nucleotides), when compared to a typical
region analyzed (a promoter of 500–1000 bps): in case
the sequences aligned are too divergent, the result is that
conserved TFBSs can be missed simply because not cor-
rectly aligned. A dual solution, of using matches of TFBSs
as anchors for the alignment has indeed been proposed in
order to overcome this problem and improve alignment
reliability [20]. Sequence alignments are avoided by the
Footer algorithm [21], that performs human-mouse com-
parisons by using distinct descriptors for the TFBSs of the
two species, and looks for matches for homologous TFs
that fall at similar positions with respect to the genes stud-
ied.

When known TFBSs descriptors are not used, the idea is
naturally to identify elements or regions that can be con-
sidered to be "significantly conserved", and hence likely to
possess a regulatory function. The simplest strategy is just
to single out the most conserved parts of the alignments,
according to identity percentage: while a non-coding
region highly (or "ultra") conserved can be reasonably
suspected to possess a functional role [22,23], the prob-
lem is often to define how much conserved regions
should be to be considered significant. In fact, while con-
served TFBSs and CRMs can be qualitatively defined as
"islands of conservation in a sea of much less conserved
DNA" [24], suitable measures able to quantify this con-
cept have to be introduced [25]. Indeed, recent research
has focused on this point. MBA is an algorithm that looks
for blocks of highly constrained alignments, weights them
according to phylogenetic distance, and estimates signifi-
cance according to neutral substitution rates [26]. A regu-
latory potential (RP) score is defined in [27], by looking
for patterns of conservation frequently found in con-
served regulatory regions. Evolutionary and hidden
Markov models are combined in phastCons [28], in order
to define a measure of significance for the conservation of
a multiple genomic alignment.

While all these methods can perform well in the identifi-
cation of quite large conserved regulatory regions like
CRMs or whole promoters [29], they are less powerful for
the identification of single TFBSs. Size and conservation of
TFBSs are in fact often not enough to constitute "signifi-
cant" parts of the alignments (or significant local align-
ments) [30]. Another important issue is defining how
much conserved a region should be to be considered as
worth of further investigation. Different homologous
genomic regions, for example in a human-rodent compar-
ison, show a varying degree of conservation, that is, seem
to evolve at different rates [31]. Thus, for example, if a
unique significance threshold is used in some cases a
whole promoter region can be considered as "significantly
conserved" (thus missing the locations of single TFBSs),
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while in others no significant sequence element is
reported.

Indeed, some methods that do not compute a global or
local sequence alignment have already been proposed.
Several motif discovery algorithms for the detection of
conserved sequence elements in co-regulated genes
already exist [2,32], and sometimes have been successfully
applied to homologous sequences as well [33]. Algo-
rithms of this kind, however, assume that input sequences
are not related by evolution, and thus look for subtle sim-
ilarities: the result is that a human-mouse comparison can
report a deluge of conserved motifs, regardless of the algo-
rithmic strategy and significance evaluation employed.

Footprinter [34], instead, is an algorithm for the discovery
of conserved motifs explicitly devised for phylogenetic
footprinting, that looks for conserved sequence motifs
making use of the phylogenetic relationships among the
sequences. Motifs conservation is first of all evaluated
according to parsimony scores. While this approach
bypasses the need of pre-aligning the sequences, parsi-
mony scores alone do not provide a fine-grained ranking
of the motifs found, especially when a few sequences are
investigated, i.e., in a typical human-rodent comparison.
A statistical evaluation of the results of the algorithm is
possible, by comparing motifs found with a "random"
dataset of simulated orthologous sequences. The problem
is, again, that even when the same species are compared
the degree of conservation in the promoters of different
genes can vary significantly according to the genes investi-
gated, and thus establishing unique significance thresh-
olds has the effect of yielding too many significant motifs
in some cases, too few in others.

The aim of this work is to introduce a novel strategy to
identify significantly conserved motifs and regions in
homologous sequences. Given a reference sequence, and
one or more homologs, the algorithm we propose is based
on the idea that functional conserved elements should be
conserved both in sequence and in position with respect
to the genes they regulate. Starting from this considera-
tion, we adapted to this case a statistical measure we pre-
viously used for the discovery of TFBSs in sequences from
co-regulated genes, by adding to it positional conserva-
tion. Moreover, as we discussed before, defining absolute
measures of significance for conservation is hard, given
that sequence conservation varies greatly according to the
species and the genes considered. We tackle this problem
by measuring conservation not in an absolute, but in a rel-
ative way, according to the average degree of conservation
of the whole sequences compared, with the idea that func-
tional elements should be more conserved than the rest:
in other words, what the algorithm evaluates is not signif-
icant conservation, but rather significant variation of con-

servation within the same sequences. Clearly, the motifs
and regions selected by the algorithm can be further proc-
essed by matching them against descriptors of known
TFBSs, or compared to regions extracted from other co-
regulated genes.

Results
In this section we first present the algorithm, then we
assess its performance showing results obtained on tests
performed on collections of known functional elements.

Algorithm
The WeederH algorithm takes as input a reference
sequence S, and any number k ≥ 1 of homologous
sequences H1 ... Hk. Also, it assumes that all the sequences
have been taken from the different genomes with respect
to the same reference points: that is, all sequences are
upstream of the TSS or the ATG codon of homologous
genes, or are intergenic regions between two genes and
between their homologs in other species, and so on. Con-
served motifs are identified in the reference sequence, by
comparing it to the homologs. The steps performed by the
algorithm can be summarized as follows:

1. Each oligo of suitable size of the reference sequence is
matched against the homologous sequences;

2. Matches not exceeding a given substitution threshold
are scored with a measure taking into account sequence
and position conservation, and the highest scoring match
is kept;

3. Oligo scores are transformed into relative scores,
according to the average scores obtained by oligos of the
same size;

4. High scoring oligos are merged, whenever possible, in
order to obtain longer motifs and regions.

It can be immediately seen that we used for modeling con-
served sites the oligos themselves, rather than more
involved representations of TFBSs like profiles and posi-
tion weight matrices [14]. The latter are clearly more pow-
erful than oligos and consensi for modeling the binding
specificity of a given TF: however, for the ab initio discov-
ery of novel motifs and sites, which in turn is essentially
based on the detection of similar oligos and its statistical
evaluation [2], recent results have shown no definite prev-
alence, and rather consensus- (or oligo-) based models
have often yielded better results [32].

Finding conserved motifs
In the first step, each oligo of a given length m of the ref-
erence sequence S is matched against each of the homol-
ogous sequences, and all its occurrences with at most e
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substitutions are collected. Given si, the m-mer at position
i of the reference sequence, a match at position j of the k-
th homologous sequence Hk presenting d ≤ e substitutions
is scored by taking into account sequence and position
conservation:

Bk (i, j, m) = - log (E (si, d, k)) - log (Δ (i, j) + 1)

Where E(si, d, k) is the expected frequency of si with at
most d substitutions in the species of sequence k (see
Methods), and Δ (i,j) is the distance between the two posi-
tions, measured according to the reference points defined
(e.g. i and j bps upstream of the TSS of the respective
genes). This function is similar to the one we employed in
the original Weeder algorithm [35,36], that anyway did
not make any assumption on the positional conservation
of the motifs.

The score of oligo si with respect to the k-th homolog Hk is
given by the maximum among the matching positions:

If no match is found for si in sequence Hk, or all matches
yield negative scores (that is, the distance exceeds the
expected value) this score is set to zero. At this point, the
overall score associated with si could be defined as the
sum of the scores in each homologous sequence: but, the
Bk(i) values can vary greatly according to the overall con-
servation of the sequences compared (e.g., a human-
mouse comparison will yield scores greater than a human-
chicken comparison). However, regardless of the species
considered, the idea underlying the algorithm is that func-
tional elements should be more conserved than the rest of
the sequences: thus, instead of using directly the Bk(i)
scores the algorithm first transforms them into relative
scores. Let

and

Be the mean and the variance of the scores obtained by m-
mers of the reference sequence when matched against
sequence Hk. The term |S| indicates the length of the ref-
erence sequence. The score of each m-mer is standardized
into a χ2 relative score:

The overall relative score for the m-mer at position i of the
reference sequence is finally defined as the sum of the rel-
ative score contributions of each homologous sequence:

χ2 scores are computed only when Bk (i, m) > μ (k,m) for
each homologous sequence Hk, otherwise it is set to zero.
Concerning suitable values for the motif length m that has
to be considered, in the experiments we present in this
article we ran the algorithm on size m = 8 and m = 12,
computing for each mean and variance values: longer
motifs or regions are detected by combining and merging
shorter ones, as explained in the following section.

Merging motifs
Very often, the regulation of the transcription of an
eukaryotic gene is the result of the simultaneous action of
different TFs. Binding sites for cooperative or competitive
factors are often adjacent or overlapping each other, with
the result that regions longer than a single site are often
found to be conserved throughout different species. In
order to detect explicitly these regions, in the second step
the algorithm merges motifs adjacent in the reference
sequence (e.g., motif m1 in position i of length l and motif
m2 in position i + l), if their best occurrences (the ones that
were used to compute their scores) are adjacent in all the
homologs.

Since the occurrences of the two motifs do not overlap
and are independent, the sum of the original Bi scores of
two motifs m1 and m2 (denoted here for sake of simplicity
as Bi(m1) and Bi(m2)) has mean μ1 i + μ2 i and variance σ2

1

i+σ2
2 i, that is, are the sum of mean and variance of the first

and second motif Bi scores, respectively, computed
according to the motifs' length for each homologous
sequence Hi. The resulting χ2 score of the merged motif
can be then defined as:

Merging is performed by the algorithm only on motifs
that in the first step had positive χ2 score, and thus were
more conserved than the average in each homologous
sequence. This step is iterated for each position of the ref-
erence sequence, that is, single motifs are first compared
to the adjacent ones; then, motifs resulting from merging
are compared to the adjacent ones, and so on until no fur-
ther merging is possible. The result is that in this way long
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conserved regions can be detected, but the regions have to
be conserved also locally: they must be built by fragments
that, taken singularly, fit our model for conserved TFBSs.
Thus, in the merging step the algorithm is able to detect
regions of size 16, 20, 24, and so on.

Input parameters
The only parameters needed by the algorithm, other than
the species of origin of the input sequence, are the motifs'
size and the maximum number of substitutions allowed
when collecting occurrences. As introduced before, in our
experiments we used oligos of length m = 8 and 12, with
e = 2 and 3 substitutions, respectively. The choice of these
parameters was based first of all on the parameters used in
the original Weeder algorithm, and also on studies that
showed how variation of 25% of the sequence seems to be
a critical value, at least for human-rodent comparisons.
This, in turn, implies that also longer regions must present
at most 25% of substitutions in their occurrences in the
homologs. Usually, TFBSs presenting 30% or more muta-
tions in their homologs are in fact much less likely to pre-
serve their function [37].

Output
In a typical application, like a human-rodents compari-
son, several overlapping motifs (before and after merging)
with positive χ2 scores are found. To trim down the size of
the output, the algorithm avoids reporting motifs that
overlap by more than 2 bps for eightmers, 3 bps for
twelve-mers, and 4 bps for longer motifs, with a simple
top-down greedy procedure. If a motif overlaps another
motif with higher score by more than the defined number
of nucleotides, it is removed from the ranked output of
motifs.

An example of a typical output of the algorithm is shown
in Figure 1, for the 500 bp upstream and non-coding first
exon of the p53 gene of human, mouse, and rat. The high-
est scoring motifs are shown, displayed within a UCSC
genome browser window. Known TFBSs annotated for the
human gene in the TRANSFAC database are also shown. It
can be seen how a quite long region has been reported, on
which adjacent binding sites map, while other shorter
motifs are scattered along the sequence, the distal ones
falling within a region not deemed to be conserved
according to genomic alignments ("Conservation" track).
We also show the location on the human sequence of
motifs predicted by MEME [38] (run in one occurrence
per sequence mode), that cover most of the sequence
itself: in fact, since algorithms of this kind are mainly
aimed at the detection of very subtle similarities [2], the
high level of overall conservation and the few sequences
available lead to the prediction of several long signifi-
cantly conserved motifs.

Experimental setup
To test the algorithm, we used data taken from the ABS
database [39], a collection of experimentally validated
transcription factor binding sites conserved in at least two
species, together with the homologous promoters con-
taining them. We retrieved from the database 99 sets of
homologous sequences 500 bps long, containing a total
of 302 experimentally validated binding sites. Seven
sequence sets contained human-mouse-rat sequences, 66
a human-mouse pair, 17 a human-rat pair, and 9 mouse-
rat sequences. We used these data first to build simulated
datasets, then to test the algorithm on real orthologous
sequences.

Results on simulated sequences
We built a dataset of simulated sequences as follows. For
each human sequence retrieved from the database, we
generated simulated mouse and rat sequences by using
the Dawg program [40], that permits the simulation of
sequence evolution also including insertion and dele-
tions. We set different substitution rates yielding different
sequence identity percentages, while gap and the other
parameters needed were estimated by the Dawg algorithm
from the alignment of the sequences retrieved from the
database. Since our algorithm selects motifs according to
maximum substitution rates, rather than defining substi-
tution rates also for the evolution of binding sites we
chose to use the original sites annotated in the ABS data-

An example of the output of WeederHFigure 1
An example of the output of WeederH. An example of 
the output of WeederH, showing the highest scoring motifs 
in core promoter and first non-coding exon of the human 
p53 gene, compared to mouse and rat homologs. Motifs are 
displayed within the UCSC genome browser. Sites annotated 
in the TRANSFAC database are shown in green. The longest 
(and highest scoring) motif encompasses several adjacent 
sites. Regulatory potential (RP) score [27] and phastCons 
[45] tracks are also displayed (see Results), together with the 
motifs output by MEME [38] on the same dataset (run in 
"oops" mode).
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base. Thus, once a simulated rodent sequence set was gen-
erated, we selected a single site annotated in the human
sequence and we planted its annotated homologs in the
rodent sequences, together with the five nucleotides flank-
ing them on each side. Motifs were planted at their origi-
nal positions, since WeederH scores motifs according to
their conservation in position. In this way, we obtained
254 sequence sets, each containing a single planted motif.
Eighteen sets were composed by human-mouse-rat
sequences, 185 by a human-mouse pair, and 51 contained
human-rat sequences.

We assessed the performance of the algorithm by using
different measures. First of all, at the nucleotide level, we
calculated the percentage of the nucleotides of the true
sites planted in the sequences that were predicted as part
of a conserved motif by the algorithm (nucleotide cover-
age – Nc). This measure is equivalent to sensitivity (ratio
of true positives vs. overall sites length). Then, at the site
level, by defining a site as correctly predicted if either at
least eight of its nucleotides or at least 75% of the site
nucleotides overlapped a predicted motif (site coverage –
Sc). In order to have an estimate of the false positive pre-
dictions of the algorithm we also computed the overall
length of the motifs predicted by the algorithm in each
sequence set, that is, the percentage of the reference
sequence covered by motifs (%pred), and according to
this the specificity (ratio of true negatives vs. overall
length of the part of the reference sequence not containing
a site).

Table 1 shows the results of the algorithm applied to sim-
ulated sequences with an average identity of 50%, which
has been shown to be average identity percentage on
2,000 bp regions in non-coding human-rodent homolo-
gous sequences [5,41]. The performance varies according

to the χ2 score threshold used. At threshold value 2 we
obtain 85% and 93% of nucleotide and site coverage,
respectively, but 44% of the reference sequence is covered
by motifs, with a specificity of .54. Increasing the score
threshold significantly lowers the number of motifs
reported, with the percentage of motifs correctly predicted
remains at satisfactory values. With threshold 7.5, the
algorithm identifies more than 85% of the planted sites,
with only 15% of the reference sequence covered by
motifs (specificity .85).

To make a comparison, the core of the Footprinter algo-
rithm is based on the same idea, finding matching oligos
in the sequences examined, and computing a parsimony
score according to the number of mismatches in motifs'
instances and the phylogenetic relationship among the
species investigated. When no substitution was allowed in
motifs instances, Footprinter yielded a nucleotide cover-
age (sensitivity) of 61%, and a site coverage of 72%, with
motifs predicted only on small fraction of the reference
sequence (10% – specificity .9). With threshold 10, how-
ever, WeederH reached the same specificity, but with sen-
sitivity of .67 and site coverage of about 78%, respectively.

Other than yielding lower accuracy, the parsimony score
employed by Footprinter makes a fine grained ranking of
motifs more difficult, especially when few (two or three)
homologous sequences are examined. Allowing one or
two substitutions when searching for conserved motifs
(eightmers with two substitutions are exactly the same
parameters employed by WeederH) improved the results
up to 99% when allowing two substitutions, but also
increased significantly the percentage of the reference
sequence covered by a motif: 99% with two substitutions
(as in WeederH with no score threshold employed, data
not shown) and 72% with one substitution. Figure 2

Table 1: Performance of WeederH on simulated promoter sets

χ2 Score Threshold %pred Nc Sc Sp

0 82.98 94.99 99.21 0.12
1 57.97 88.51 96.45 0.39
2 44.50 85.74 93.30 0.54
3 34.98 82.89 91.73 0.64
5 24.00 78.87 89.37 0.76
7.5 15.59 74.23 85.82 0.85
10 10.90 67.44 77.95 0.90
12 8.33 64.30 73.62 0.93
15 6.15 60.23 69.29 0.95

FP 10.54 61.48 72.44 0.90

Performance of WeederH at different χ2 score thresholds on the 254 simulated sequence sets. %pred indicates the percentage of nucleotides of the 
reference sequence belonging to a motif output by the algorithm. Nc indicates the nucleotide coverage, the percentage of nucleotides in annotated 
sites matched by a predicted motif (equalling sensitivity); Sc indicates the site coverage, the percentage of annotated sites matched (at least by 75% 
of their length) by a motif predicted by WeederH; finally, Sp is specificity. The bottom row reports the performance of the Footprinter algorithm 
on the same set.
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shows the ROC curve obtained by WeederH at different χ2

values, plotting sensitivity and site coverage vs. (1-specifi-
city).

Results on homologous human-rodent promoters
As a further test, we applied the algorithm to the original
datasets retrieved from the ABS database (sequences are
available as Additional file 1, and the location of the con-
served TFBSs as Additional file 2), composed of 90 sets of
human-rodent homologous promoters and 9 mouse-rat
sequence sets. The results, at different χ2 values are sum-
marized in Table 2 and Figure 3 (see Additional file 3 for
the full WeederH output, and Additional file 4 for a more
detailed performance analysis).

The first piece of information that can be gathered is that
virtually all the reference sequence is covered by a motif
satisfying the substitution threshold, as shown by the first
row of the table that reports the motifs found regardless of
the χ2 score threshold. But, the annotated sites in the
sequences have indeed a positive χ2 score, since using a
threshold of 0 yields coverage of about 99% at the site
level and 96% at the nucleotide level. In this case, how-
ever, the motifs output still cover about 79% of the refer-
ence sequence. Increasing the χ2 score threshold to values
≥ 2 has the effect of lowering the fraction of the reference
sequence covered by a conserved motif to 30–40%, while

the site coverage falls less sharply, with about 80–85% of
the annotated sites correctly predicted. It should be
noticed that in this case higher performances are obtained
at lower threshold values, nevertheless with lower specifi-
city values. This is due to the fact that the sequence sets
analyzed are in general more conserved than the artificial
sets we generated (around 60–65% of identity), and thus
motifs stand out less well with respect to the rest of the
sequences. A single sequence can also contain more than
one annotated site. Moreover, rather than be spread ran-
domly along the sequences as in the previous case, now it
is more likely to find conserved blocks within the
sequences, thus yielding a higher number of oligos satis-
fying the substitution thresholds employed by the algo-
rithm.

The number of sites correctly predicted by the algorithm is
anyway again quite satisfactory, but in this case assessing
how many false positives are reported is far from being
straightforward. First of all, one should have an estimate
of how many functional sites should be expected inside
the 500 bp promoter of a mammalian gene. Then, accord-
ing to the species included in the analysis, how many sites
should be expected to be conserved, a number that for
human-mouse comparisons has been estimated to be
ranging from 60 to 72% [37,42-44]. In other words, the
region analyzed might also contain other functional sites

Performance of WeederH on the simulated promoter setFigure 2
Performance of WeederH on the simulated promoter set. Performance of WeederH at different χ2 score thresholds 
on 254 simulated promoter sequence sets. The plot shows the ROC curve (sensitivity vs. 1-specificity), blue line, and the site 
coverage Sc versus 1-specificity, red line. Blue and red boxes indicate the performance of Footprinter (sensitivity and Sc).
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not conserved in the other species. Finally, the conserva-
tion of functional sites often spans a region longer than
the sites themselves, increasing the number of predicted
nucleotides.

We then ran Footprinter also on this sequence set. Again,
the best performance (79% at the site level, 70% at the
nucleotide level) was obtained by using a parsimony score
threshold of 0 (no substitution allowed in motifs' occur-
rences), with motifs covering more than 37% of the refer-
ence sequence. With χ2 score threshold of 3.0 WeederH
motifs covered the same percentage of the reference
sequence, with 84% of success at the site level and 76% at
the nucleotide level (see Table 1). Thus, with the same
specificity, WeederH yields a higher sensitivity. Introduc-
ing for Footprinter significance evaluation of motifs
(using the different significance settings available and try-
ing different combinations) did not improve the results,
increasing the specificity but also reducing the percentage
of correctly identified sites to 70%. The same specificity
was reached by WeederH with χ2 score threshold of 5.0,
but with 79% of the annotated sites correctly predicted.

We also compared our results to the phastCons annota-
tions [28,45] available at the UCSC genome browser [13].
The overall percentage of the reference sequences used in
this test annotated as "most conserved" is around 25%,
and about 55% of the sites annotated in the database are

covered (50% at the nucleotide level). Although the tracks
are generated by comparing human to all the vertebrate
genomic sequences available, instead of rodents alone
(and vice versa), this result nevertheless highlights the fact
that methods like phastCons are better suited to identify
large conserved regions rather than single sites. Examples
are shown in Figures 4 and 5, with the results of WeederH
compared to the conserved regions predicted by phast-
Cons and RP [27] available at the UCSC genome browser.
Indeed, these examples show typical situations in which
the two methods either do not detect any conserved ele-
ment in the core promoter because single TFBSs are too
small to reach a significant level of conservation (Figure
4), or can single out only large conserved regions (Figure
5, as also in the p53 example, see Figure 1). This is also a
drawback deriving from the usage of a single, global
threshold of significance. These examples show how
WeederH can work at a much more fine grained level of
detail, actually being able to identify correctly conserved
TFBSs either with little or, vice versa, a very high level of
overall sequence conservation.

Given the difference in performance on the same thresh-
old values for the artificial and real datasets, it might seem
that the problem of defining a significance threshold
remains, only recast at a relative level, that is, depending
on the overall degree of conservation of the sequences
investigated. However, useful information can be gath-

Table 2: Performance of WeederH on the ABS promoter set

χ2 Score Threshold %pred Nc Sc Sp

None 98.37 99.70 100.0 0.02
0 78.90 95.77 98.68 0.23
1 51.04 83.91 91.72 0.52

1.5 45.79 81.42 89.07 0.57
2 41.93 78.26 86.75 0.61

2.5 39.53 76.35 85.10 0.64
3 37.55 75.24 84.11 0.66
4 34.55 73.96 82.45 0.69

4.5 33.26 72.42 80.79 0.70
5 32.30 71.56 79.14 0.71

5.5 31.44 70.77 78.48 0.72
6 30.58 68.96 77.48 0.73
8 27.51 64.81 72.18 0.75

FP 37.18 70.32 79.47 0.65
FPSIG 31.55 62.61 70.19 0.71

phastCons 25.97 50.02 55.51 0.73

Performance of WeederH at different χ2 score thresholds on the 99 orthologous promoter sets retrieved from the ABS database. %pred indicates 
the percentage of nucleotides of the reference sequence belonging to a conserved motif output by the algorithm. Nc indicates the nucleotide 
coverage, the percentage of nucleotides in annotated sites matched by a predicted motif; Sc indicates the site coverage, the number of annotated 
sites matched (at least by 75% of their length) by a motif predicted by WeederH; Sp is specificity. The next two rows report the performance of the 
Footprinter algorithm on the same set, using parsimony score alone (FP), and with the introduction of significance estimation (FPSIG). Finally, the 
bottom row shows the same data for the phastCons most conserved tracks available at the UCSC genome browser (on genomes: human and 
mouse, March 2006; rat, November 2004).
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ered by examining the ranking, in the lists output by the
algorithm, of the motifs matching a planted site. The over-
all distribution is shown in Figure 6. In artificial
sequences, more than 60% of the planted sites matched a
top-scoring motif, and nearly 80% one of the first three.
Also in the real promoter case, motifs corresponding to a
functional site tend to appear within the first five posi-
tions (blue bars in the histogram of Figure 6), thus provid-
ing further evidence to the fact that indeed the measure
used by the algorithm highlights conserved real TFBSs,
that are as we stated in the introduction, "more conserved
than the rest". One third of the 302 sites are matched by
the highest ranking motif, 17% by a second-ranking motif
and 13% by the third one. 75% of the annotated sites are
matched by a motif ranking among the first five, 90%
among the first ten. The percentage is increased if we
remove from the ranking those higher-scoring motifs that
match an annotated site, in other words, if we count in the
ranking of a motif only those preceding it that do not
match an annotated site (hence "putative false positives").
In this case, almost half of the sites are matched by the

highest ranking motif, or by a motif that is preceded by
other motifs matching a solution (red bars in Figure 6).
Vice versa, in 62 sequence sets out of 99 the highest scor-
ing motif matched an annotated site (or more than one,
since the algorithm can report regions longer than a single
site, that hence can contain more than one site), and in 91
out of 99 one of the first three motifs matched an anno-
tated site. A rapid inspection of the highest scoring motifs
not matching a site annotated in the ABS database, how-
ever, revealed that in all the cases but one the highest scor-
ing motif matched at least one site annotated in
TRANSFAC, or a signal like TATA- or CAAT-boxes that
given their constrained position are perfect candidates to
be picked by the algorithm.

The scoring function employed by the algorithm seems
thus to be reliable, and scanning the output list from top
to bottom is very likely to produce satisfactory results. An
interesting result is also the fact that in the case of mouse-
rat comparisons, where the sequences presents a much
higher degree of similarity, the percentage of annotated

Performance of WeederH on the ABS promoter setFigure 3
Performance of WeederH on the ABS promoter set. Performance of WeederH at different χ2 score thresholds on the 
99 promoter sequence sets retrieved from the ABS database. The plot shows the ROC curve (sensitivity vs. 1-specificity), blue 
line, and the site coverage Sc versus 1-specificity, red line. Blue and red boxes indicate the performance of Footprinter (sensi-
tivity and Sc), blue and red triangles Footprinter with significance measure, blue and red diamond the results of phastCons 
most conserved regions.
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sites correctly identified remains fixed at 90% even at high
score thresholds, showing that true sites are higher scoring
also in the presence of a higher level of sequence conser-
vation.

Finding conserved distal motifs and regions
As we have shown in the previous section, the scoring
function employed by the algorithm can successfully dis-
criminate motifs and regions corresponding to true func-
tional sites. The dataset we used for the test, however, was
composed of sequences carefully selected, in other words,
truly orthologous promoters. In this way, the positional
conservation term in the scoring function quite naturally
yields the best results. Very often, however, the selection
of the input sequences is far from being straightforward:
even in largely annotated genomes like human and
mouse, genes present several different transcription start
sites, alternative promoters, and so on, making difficult
the choice of which "upstream" region has to be consid-
ered. Moreover, in other recently sequenced genomes like
dog, no transcripts are often available, and genes are
annotated only starting from the ATG codon [32]. To
assess whether the scoring scheme employed is efficient
also in the case of longer sequences less carefully selected
we performed further tests.

The Actin cardiac alpha chain gene (ACTC) has the ATG
codon located within the second exon, with a fully non-
coding first exon. WeederH successfully identified all the
7 sites contained in the 500 bp promoter region retrieved
from the ABS database (ABS 3 in Additional file 1). We
repeated the experiment, but this time retrieving the
10,000 base pairs upstream of the ATG codon of the
mouse and human genes. The results are shown in Figure
7, displayed within a UCSC genome browser window. The
topmost track (WeederH motifs) shows the location of
the highest scoring motifs. It can be seen that they are clus-
tered around the TSS of the gene, falling within the 500 bp
promoter of the ABS database (indicated by the "Your
sequence from BLAT search" track). Motifs shown in this
area cover all the ABS annotated sites. Also interestingly
enough, other clusters of motifs are visible, namely at
around -2000, -6000, and -8000 from the TSS. As a matter
of fact, three distal enhancers are annotated for the ACTC
gene, driving developmental and cardiac-muscle specific
expression of the gene [46].

To ease the identification of clusters of conserved motifs,
we added to the basic algorithm the computation of the
average motif χ2 score (for 12-mers) in regions 500 bp
long. Figure 7 shows the regions with average 12-mer χ2

score greater than 1, matching the experimentally anno-
tated enhancers.

Another example is the Actin, skeletal muscle gene
(ACTA1, ABS 4 in Additional file 1). In this case, we
retrieved for human, mouse, and rat the whole intergenic
region (of about 7000 bps) upstream of the gene. In this
case, two regions were selected as densely populated of
significant motifs (see Figure 8): the core promoter, again,

WeederH output on the 500 bp promoter of the ADH1B gene (as defined in the ABS database)Figure 4
WeederH output on the 500 bp promoter of the 
ADH1B gene (as defined in the ABS database). Top 
three motifs output by WeederH (top track), ABS annotated 
sites (in green), sequence of the ABS database (obtained by 
BLAT search) and predictions according to RP score [27], 
light blue) and phastCons ([45], bottom track). Notice how 
neither of the latter two methods reports anything signifi-
cantly conserved in the core promoter itself, where motifs 
are located.

WeederH output on the promoter and 5'UTR of the MYB gene (as defined in the ABS database)Figure 5
WeederH output on the promoter and 5'UTR of the 
MYB gene (as defined in the ABS database). Highest 
scoring motif output by WeederH (top track), ABS anno-
tated site (in green), sequence of the ABS database (S66422 – 
aligned with BLAT), and conserved regions predicted by RP 
score [27], light blue) and phastCons ([45], bottom track). 
Notice how both the latter methods predict conserved long 
regions spanning most of the promoter itself, making difficult 
the identification of single conserved TFBSs.
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and another region at around -1,500 matching an experi-
mentally validated enhancer [47].

These examples, as well as other tests we performed, show
how the conservation principle the algorithm is based on
can work also on input sequences whose size spans well
outside the typical length of a core promoter, where posi-
tional conservation is looser. While not explicitly devised
for the identification of distal enhancers, WeederH never-
theless can be applied to cases where the exact location of
the TSS of a gene in different species is not available, or in
general to identification of conserved motifs located at
several hundreds of base pairs of distance from the refer-
ence point selected, on which other methods that do not
compute global sequence alignments cannot be applied.

Conclusion
The ever increasing availability of annotated genomic
sequences, as well as the observation that several non cod-
ing regulatory sequence elements are highly conserved
throughout different species, have made phylogenetic
footprinting one of the most widely used approaches to
the identification of sequence cis-acting elements regulat-
ing gene expression. The algorithm we presented in this
work was aimed at overcoming some of the drawbacks of
the methods currently used, namely, the need of reliable
genomic alignments and/or descriptors for the binding
specificity of transcription factors. The introduction of a
relative scoring strategy, moreover, bypasses the problem
of defining global significance thresholds. The algorithm
is also quite efficient, requiring less than one minute for a
typical promoter analysis and a few minutes for sequences
a few kbp long. The results we obtained from the tests we
performed show that the algorithm can reliably predict

conserved TFBSs in homologous promoters, with better
performance over existing methods and annotations, but
also can identify conserved sites and regions in longer
sequences. Clearly, other methods are more suited for the
discovery of distal regions and enhancers, that can be
located at several thousands or millions of base pairs from
the gene they regulate; nevertheless, WeederH can provide
significantly more information than traditional motif-
finding algorithms.

Methods
Computing motifs expected frequency values
The scoring function employed by WeederH is based on
the comparison of the observed oligo frequencies with
expected values. The term E(s,d,k), indicating the expected
frequency of a given oligo s with d substitutions in the spe-
cies of origin of sequence Hk is computing according to
the observed frequency of oligos within d substitutions
from s in intergenic regions of the species sequence Hk is
taken from:

where N(s,d) is the set of oligos differing from s in no
more than d positions. Frequency values for eightmers
(E(s,k)) were retrieved from the RSAT Tools database [48],
while the expected frequency of longer oligos is computed
starting from the eightmer frequencies with a seventh-
order Markov model.

For oligos longer than 8 nts, we modeled the expected fre-
quency by using a seventh order Markov chain. In other
words, let p = p1 .... pn be an n-mer, with n greater than 8:

where P (pi | pi-7 ... pi-1) is the conditional probability of
having nucleotide pi preceded by nucleotides pi-7 ... pi-1,
computed by using the expected frequencies of 8-mers:

The motivation for the choice of a seventh order model is
based on the fact that a high order background models (at
least third or fourth) have been proven in several experi-
ments to improve significantly the reliability of motif dis-
covery methods (see for example [49-51]). Moreover, we
chose to use directly the n-mer count for computing the
Exp(p) values of n-mers, up to the maximum length for
which each oligo appeared at least once in the regulatory
sequences of the organisms we examined (avoiding the
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WeederH ranking of the sites annotated in the simulated and ABS promoter setsFigure 6
WeederH ranking of the sites annotated in the simu-
lated and ABS promoter sets. Ranking of the motifs out-
put by WeederH matching a planted site in the simulated 
promoter set (green bars) and the ABS promoter set (red 
and blue bars, see text for explanation).
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introduction of pseudo-counts to compensate for missing
oligo counts). Then, we computed the Exp(p) values of
oligos longer than 8 nucleotides starting from the eight-
mer count values.

Availability and requirements
• Project name: WeederH

• Project home page: Part of the Motif Discovery Tools
web server, http://www.beacon.unimi.it/modtools/ or
http://www.pesolelab.it/modtools/.

• Operating systems: web interface that can be accessed
from any OS.

• Programming language: C/C++, Java (web interface).

• Restrictions to use by non-academics: none.
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Orthologous sequence sets. Orthologous sequence sets taken from the ABS 
database used for testing the algorithm.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-8-46-S1.gz]

Additional file 2
Motif solutions. Motifs annotated in the ABS database in the test 
sequences.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-8-46-S2.txt]

Additional file 3
Output of WeederH on orthologous sequence sets. Full output of WeederH 
on the orthologous sequence sets taken from the ABS database used for 
testing the algorithm.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-8-46-S3.gz]

WeederH identifies the promoter and the three annotated enhancers upstream of the mouse actin, alpha cardiac geneFigure 7
WeederH identifies the promoter and the three 
annotated enhancers upstream of the mouse actin, 
alpha cardiac gene. Highest scoring motifs predicted by 
WeederH in the 10,000 bps region upstream of the ATG 
codon of the mouse actin alpha cardiac gene, displayed within 
the UCSC genome browser. Track "Weeder H motifs" 
shows the location of the motifs; the track "Weeder-H" 500 
shows 500 bps regions in which the average 12-mer χ2 score 
is greater than 1. Track "Your sequence from Blat Search" 
shows the location of the original promoter retrieved from 
the ABS database. The three regions, other than the just 
upstream of the TSS (the promoter), match three experi-
mentally known enhancers of the gene.

WeederH identifies the promoter and the annotated enhancer upstream of the human skeletal actin geneFigure 8
WeederH identifies the promoter and the annotated 
enhancer upstream of the human skeletal actin gene. 
Highest scoring motifs predicted by WeederH in the inter-
genic region upstream of the ATG codon of the human skel-
etal actin gene, displayed within the UCSC genome browser. 
Track "Weeder H motifs" shows the location of the motifs; 
the track "Weeder-H" 500 shows 500 bps regions in which 
the average 12-mer χ2 score is higher than 1. The two 
regions selected, are the promoter and an annotated 
enhancer located at about 1500 bps upstream of the TSS 
[47]. Track "Your sequence from Blat Search" shows the 
location of the original promoter retrieved from the ABS 
database.
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