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Abstract
Background: The secondary structure of an RNA must be known before the relationship
between its structure and function can be determined. One way to predict the secondary structure
of an RNA is to identify covarying residues that maintain the pairings (Watson-Crick, Wobble and
non-canonical pairings). This "comparative approach" consists of identifying mutations from
homologous sequence alignments. The sequences must covary enough for compensatory
mutations to be revealed, but comparison is difficult if they are too different. Thus the choice of
homologous sequences is critical. While many possible combinations of homologous sequences
may be used for prediction, only a few will give good structure predictions. This can be due to poor
quality alignment in stems or to the variability of certain sequences. This problem of sequence
selection is currently unsolved.

Results: This paper describes an algorithm, SSCA, which measures the suitability of sequences for
the comparative approach. It is based on evolutionary models with structure constraints,
particularly those on sequence variations and stem alignment. We propose three models, based on
different constraints on sequence alignments. We show the results of the SSCA algorithm for
predicting the secondary structure of several RNAs. SSCA enabled us to choose sets of homologous
sequences that gave better predictions than arbitrarily chosen sets of homologous sequences.

Conclusion: SSCA is an algorithm for selecting combinations of RNA homologous sequences
suitable for secondary structure predictions with the comparative approach.

Background
Structural RNAs are important as regulators, catalysts, and
structural components of cells. Their secondary structure
must be known in order to understand the relationship
between structure and function. The concept of secondary
structure was introduced by Doty and Fresco [1]. The sec-
ondary structure is produced by the Watson-Crick pairings
(AU and GC), Wobble pairing (GU), and non-canonical
pairings [2]. The consecutive pairings form stems, and

stems and loops make up the secondary structure; this, in
turn forms the basis for tertiary structural elements like
pseudoknots. The secondary structure of an RNA can be
predicted from thermodynamic studies or by comparative
studies. The thermodynamic approach is based on the
idea that the actual structure is that with minimal free
energy. This involves calculating the secondary structure
of an RNA sequence that has the lowest free energy using
a set of experimentally defined thermodynamic parame-
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ters [3,4]. The first efficient algorithm is based on dynamic
programming [5]. An improvement of this algorithm was
proposed by Zuker, who developed the Mfold program
[6]. Mfold has a time complexity of (n3), where n is the
length of the considered RNA sequence. A disadvantage of
the thermodynamic approach is that the real structure is
not necessarily the one with lowest free energy, but one
that is close to this minimum. Mfold was therefore
upgraded to find also suboptimal structures [7]. The ther-
modynamic approach is not so suitable for use with long
sequences; the main problems are the influence of kinet-
ics on folding and the lack of good thermodynamic
parameters for junctions.

The comparative approach is used when several aligned
homologous RNA sequences are available. The idea is to
find pairs that covary to maintain Watson-Crick and Wob-
ble complementarities (compensatory mutations) [8].
The comparative approach was initially used to predict
manually the structure of long RNA sequences [8,9]. Later,
some automatic procedures were proposed. The first algo-
rithm was designed by Han and Kim [10]. However, all
these early algorithms for implementing the comparative
approach have high complexities (about (n3), where n
is the length of the sequences). An algorithm implement-
ing the comparative approach was proposed in [11] that
has a complexity of n2*m* (log4n) in time with n the

length of the sequence and m the number of homologous
sequences used (m << 10). The principle underlying this
algorithm is to predict the secondary structure of a given
sequence, the "target sequence", using a set of homolo-
gous sequences, the "test sequences". It uses the "divide
and conquer" approach, searching for stems from the
most significant to the least significant ones (introduced
by Papanicolaou in [12]). The helices are selected accord-
ing to criteria of length and number of compensatory
mutations. Helices on the target sequence are first identi-
fied, and only those whose length is greater than or equal
to log4n (where n is the length of the target sequence) are

selected. The comparison step considers only the helices
preserved in all the test sequences, with a minimum of
compensatory mutations. This set of helices breaks down
the target sequence into a set of sub-sequences. Other hel-
ices in each sub-sequence are then identified. This algo-
rithm, P-DCfold, has been improved to find pseudoknots
with the same complexity [13]. The thermodynamic
approach is suitable when a few sequences (often one) are
used, while the comparative approach is more appropri-
ate for more sequences. Nevertheless, the two approaches

can be combined [14,15]. The algorithm RNAalifold com-
bines thermodynamic and covariation information in a
modified energy model [16]. Another recent, novel algo-
rithm, KNetFold [17], uses thermodynamic and mutual
information [18]. This algorithm introduces a hierarchical
network of k-nearest neighbor classifiers for predicting a
consensus RNA secondary structure.

The drawback of the comparative approach is the need to
use many homologous sequences. This approach
becomes more useful as the number of available
sequences increases. Nevertheless, it is difficult to select
appropriated homologous sequences. Many of the algo-
rithms for predicting the secondary structure of RNAs
available today predict structure from an alignment and
cannot accurately predict a structure from a very large
alignment. A single misaligned sequence can destroy the
prediction. The first part of this article shows that, while
there are many possible combinations of homologous
sequences that can be used, only a few correctly predict
the structure. This can be due to the variability of homol-
ogous sequences and to poor quality alignment in stems
(as shown in the second part of this paper). The problem
of homologous sequence alignment can be overcome by
predicting the structure and the alignment at the same
time [19,20]. Another approach is to select the best set of
homologous sequences for predicting the structure. But
no publications up to now give any information on how
this selection is done. We therefore assume that it is done
manually. The third part of this paper describes an algo-
rithm, SSCA, that makes this selection automatically.
SSCA considers an alignment of a set of RNA homologous
sequences, one of which is the "target sequence", and clas-
sifies the other sequences according to their suitability for
predicting the structure of the target sequence. Finally,
results of predictions made using the SSCA algorithm for
sequence alignments of tmRNA, RNaseP and other RNAs
are presented.

Selecting homologous sequences
The secondary structure of a given sequence can be pre-
dicted from a set of aligned homologous sequences. The
problem is to select those homologous sequences that are
the most relevant for the comparison. This requires a set
of well aligned homologous sequences, and at least two
main problems can occur with the alignment of sequences
under structure constraints:

• Regions at the ends of sequences are often quite variable,
making it difficult or impossible to compare sequences in
these regions. In contrast, the core of the structure is less
variable (often because of catalytic activity), so that this
region provides no useful information on compensatory
mutations.






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• Mutations are selected more rapidly in stem regions
because of structure constraints. Thus, these regions seem
to be more variable than the remainder of the structure
(single strand regions) [21-23]. Consequently, alignments
are often of poor quality in these regions and stems are
often shifted.

We carried out the following tests to demonstrate how
prediction quality can vary according to the homologous
sequences used. We used a tmRNA alignment of 44
sequences from the tmRDB Database [24] and a RNaseP
alignment of 54 sequences from the RNaseP Database
[25]. Theses databases contain more sequences, but
because of the time complexity of the tests, we used only
a few of them. The sequences were chosen arbitrary, elim-
inating sequences with less than 30% of identity and
sequences which are redundant. The sequences are re-
aligned using ClustalW before performing the structure
prediction in order to avoid other secondary structure
information than ours.

We used the algorithm P-DCfold to predict the secondary
structure of the Escherichia coli tmRNA and RNaseP. P-
DCfold needed 4 homologous sequences: the number of
homologous sequences used by P-DCfold depends on the
length of the target sequence (more the target sequence is
long, more homologous sequences are needed), and is at
least equal to 4 sequences [13]. We then made predictions
using each combination of 4 homologous sequences of
the considered alignments. We calculated a quality score
for each prediction according to differences from a known
reference structure provided by the tmRDB Database [24]
and the RNaseP Database [25]. We employed a slightly
modified version of the Matthews correlation coefficient
(MCC) [26] defined in [14] by Gardner and Giegerich,
which measures both sensitivity (X) and selectivity (Y):

where TP is the number of correctly predicted base pairs
(true positives), FP the number of incorrectly predicted
base pairs (false positives), FN the number of base pairs
not found (false negatives) and TN the number of true
negatives which is equal to (n * (n - 1)/2) - TP - FN - FP,
with n being the length of the sequence. Because not all of
the false positives are necessarily false, Gardner and Gieg-

erich introduced the  value, representing the number of
false positive pairings that are not in conflict with the pair-
ings of the reference structure. MCC ranges from -1 for
extremely inaccurate predictions to 1 for very accurate
ones, and is generally between 0 and 1. We set a threshold
of 0.75, above which we considered a prediction to be
good. Only a few percent of the possible combinations
accurately predicted the structure: around one percent for
tmRNA and RNaseP (Table 1). Hence, there is only one
chance in a hundred of obtaining a good prediction with-
out criteria for selecting homologous sequences.

One common method to minimize the heterogeneity of
prediction results is to select homologous sequences of
pairwise sequence identities between 60% and 80%
according to the target sequence, and to remove identical
or almost identical sequences from the alignment. This is
the common homology model MHC. We used this method
to select ten homologous sequences from the alignments
of the tmRNA and the RNaseP considered above. The pre-
dictions for each combination of 4 sequences from
among these 10 sequences gave better prediction scores
(MCC) than the predictions did using all sequences (see
Table 1). The average MCC was increased from 45.19 to
56.82 for the tmRNA, and from 41.03 to 60.27 for the
RNaseP. As shown in Table 1, the probability that the MHC
selection method gives a good prediction for tmRNA was
8.5%, and it was 18% for a good prediction for RNaseP.

These results show the importance of selecting appropri-
ate homologous sequences for efficiently predicting the
secondary structure of an RNA. We have therefore
designed an algorithm for selecting combinations of
homologous sequences that give better prediction scores
(MCC) than those obtained with the MHC method.

X
TP

TP FN
=

+

Y
TP

TP FP
=

+ −( )

MCC
TP TN FP FN

TP FP TP FN TN FP TP FN
= ∗ − − ∗

+ − + + − +
( ) ( )

( ( ))( )( ( ))( )


 



Table 1: Characteristics of secondary structure predictions 
performed using the P-DCfold algorithm on a tmRNA alignment 
of 44 sequences and a RNaseP alignment of 54 sequences, when 
all possible combinations of 4 homologous sequences are 
considered (left) and when only combinations of 4 sequences 
among 10 homologous sequences initially selected by the 
common homology model MHC are considered (right).

All sequences MHC

tmRNA RNaseP tmRNA RNaseP

Total number of 
predictions

123410 266699 210 210

Nb of predictions 
with MCC > 75

1620 1958 18 38

Average MCC 45.19 41.03 56,82 60,27
Maximum MCC 89 86 85 84
Minimum MCC 10 5 26 30
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Methods and Results
Criteria for selecting homologous sequences
The most appropriate homologous sequences are those
that have adequate variability and correct stem alignment.
We need information on the substitutions by which the
target sequence and the homologous sequences differ in
order to evaluate these parameters. This information is
calculated using substitution matrices. A substitution
matrix is built for each homologous sequence: it contains
all the substitution rates between this sequence and the
target sequence for the four bases A, C, G and U.

Variability criteria
We want to select those homologous sequences that are
variable enough to have compensatory mutations yet
close enough to be compared with the target sequence.
Hence, we defined the "adequate variability" of a homol-
ogous sequence with respect to the target sequence,
depending on the percentages of identities and deletions.

The comparison step in predicting the secondary structure
of an RNA by the comparative approach consists in look-
ing for those compensatory substitutions that indicate the
relevance of the stems. A stem is relevant when the
number of compensatory substitutions per base exceeds a
threshold T. Adequate variability depends on the number
of homologous sequences used to predict the structure.
The probability of finding compensatory mutations
increases with the number of sequences used. If N is the
number of homologous sequences used to predict the
structure, the adequate identity I of the homologous
sequences is:

The percentage of deletion was indexed to the percentage
identity. This allowed us to eliminate those homologous
sequences that have an abnormally high percentage of
deletions compared to their percentage of identities (due
to long deletions). We assume the following relation for
the adequate percentage of deletion:

We also discarded sequences with ambiguous or indeter-
minate bases.

Stem alignment criteria
Evolution acts to conserve the structure of an RNA mole-
cule that is essential for its function. The sequence of a
stem region is less important than the base pairing. Muta-
tions that do not conserve the pairing disrupt the stem

and can be deleterious if this stem is functionally impor-
tant. On the contrary, compensatory mutations on both
sides of a pair, which conserve the pairings, are not dele-
terious. Therefore, pairing constraints mean that not all
the possible mutations are conserved by evolution in
stems. The result will be a deviation of the substitution
matrix in stem regions compared to single strand regions.
Single strand regions are generally correctly aligned
because they are less variable, whereas the stem regions
can be incorrectly aligned [21,22]. Correct stem alignment
results in an alternation between a stem substitution
matrix MH and a single strand substitution matrix MS, and
the substitution matrix of the sequence is influenced by
the stem substitution matrix MH. On the other hand, the
single strand substitution matrix MS alternates with
another substitution matrix MU different from MH if stems
are not correctly aligned (Figure 1).

Since MS is identical in correct and incorrect alignments,
the difference between the two types of sequence is due
solely to the alignment around and within stems, there-
fore to MU and MH. If we can identify MH, we will be able
to differentiate correct alignments from incorrect align-
ments, and choose well-aligned homologous sequences.
We must therefore identify the phenomena that influence
the substitution matrices in stems and find criteria for
selecting homologous sequences with correct stem align-
ments.

In the following are described three possible influences on
stems: stability of base pairs in stems, differences between
transitions and transversions, and intermediate states in
double substitutions.

Stability of base pairs
The GC base pair is more stable than the AU base pair and
the AU base pair is more stable than the GU base pair.
Because of these differences in stability, GC base pairs are
preferred when a stem is important for maintaining the
overall structure, while GU base pairs are disadvantaged.
The result is that stems are composed of a majority of GC
base pairs [16]. There should therefore be a difference in
the substitution matrices of stems.

Let us consider all the possible substitutions between base
pairs, without the less frequent GU base pairs. We can
eliminate AU ↔ UA and CG ↔ GC substitutions since
they are symmetrical and do not change the substitution
matrices. For the four other substitutions, if GC pairs are
preferred in stems, the balance between base pairs will
tend towards GC base pairs. The result will be a deviation
of the nucleotide substitution rates (Figure 2, left bot-
tom). There must therefore be more A → C and A → G
substitutions than A → U substitutions, and more U → C

I
T
N

= −1 (1)

D
I=

75
(2)
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and U → G than U → A, and fewer C → A and C → U than
C → G, and fewer G → A and G → U than G → C.

Why do stems not consist entirely of GC base pairs? This
is undoubtedly because stems tend towards stability, but
not rigidity. Both constraints lead to a balance between
the percentage of each base pair, with many GC pairs and
few GU pairs.

Transitions versus transversions
Mutations that involve two bases of the same kind (two
purines (A and G) or two pyrimidines (C and U)) are tran-
sitions (G ↔ A and C ↔ U). The others are transversions
(G ↔ U, C ↔ G, U ↔ A and C ↔ A). Transitions occur
more easily than transversions [23]. This phenomenon is
accentuated in stems since the mutations involve base
pairs. Thus, the substitution matrix in stems will be devi-
ated positively for transitions and negatively for transver-
sions (Figure 2 left top).

Stability of intermediate states
Double mutations between base pairs cannot appear
simultaneously because of the low mutation rate, so they
use an intermediate state (for instance AU → UU → UA).
Double mutations are supported or disadvantaged
depending on the stability of this intermediate state. It

may be a very deleterious unpaired state or a GU pairing
state that is only slightly deleterious [27]. Nevertheless,
the intermediate state is rarely observed in sequence align-
ments [28]; this is because the intermediate state is kept
rare by selection [22]. As the GU pair is the most stable
and the least deleterious of the intermediate states, the
double substitutions which use the GU intermediate state
may occur more frequently than the others [28].

The double substitutions which use this intermediate state
are AU ↔ GC and UA ↔ CG (Figure 3). Hence, the sub-
stitution rates of AU ↔ GC and UA ↔ CG must be
increased in stems. The substitutions to and from GU
(and UG) base pairs do not increase because the fre-
quency of GU (and UG) intermediate states are kept low
by selection.

As the base pair substitutions AU ↔ GC and UA ↔ CG
imply substitutions A ↔ G and C ↔ U, the result must be
an increase in A ↔ G and C ↔ U nucleotide substitutions
over those of the other substitutions (Figure 2 left top).

Deviation substitution matrix summarizing all the influences in stems
Since the influence of transitions/transversions and of the
GU intermediate state give the same deviation (Figure 2
left top), we cannot measure them separately. Therefore, 

Correct and incorrect stem alignmentsFigure 1
Correct and incorrect stem alignments. Single strand regions are generally correctly aligned because they are less variable, 
whereas the stem regions can be incorrectly aligned. Correct stem alignment results in an alternation between a stem substitu-
tion matrix (MH) and a single strand substitution matrix (MS). On the other hand, the single strand substitution matrix (MS) 
alternates with another substitution matrix (MU) different from the stem substitution matrix if stems are not correctly aligned.
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we group them together as one influence. Considering
this deviation matrix (Figure 2 left top) and the deviation
matrix measuring the influence of base pair stability (Fig-
ure 2 left bottom) together, we obtain a single new devia-
tion matrix that summarizes the three influences
described above (Figure 2 right).

The influences neutralize each other for some substitu-
tions (A → C, C → U, G → A, U → G). Since we cannot
easily assign weights to each of these influences, we can
measure the three influences at the same time only by
comparing the squares A → G and U → C, which undergo
all the influences positively, and the squares C → A and G
→ U, which undergo all the influences negatively. If we
want to measure each influence separately, we must com-
pare substitutions that change only for one influence:

• The influence of GC stability is measured by comparing
A → C with C → A, U → C with C → U, A → G with G →
A and U → G with G → U, since the difference is due only
to the influence of GC stability in these corresponding
matrix squares.

• The influence of the GU intermediate state and the influ-
ence of transitions/transversions are measured by com-
paring substitutions between A → G and A → C, U → C
and U → G, C → U and C → A, G → A and G → U.

Existing evolutionary models under structure constraints
Many models of evolution under secondary structure con-
straints use the idea of a GU intermediate state. In [29],
these models have been compared using maximum likeli-
hood methods and sequences of the small subunit ribos-
omal RNA. They conclude that the Higgs model [30] is the
best for this set of RNA sequences. The base pair frequen-
cies given in [30] confirm our idea of base pair stability:
GC base pair is the most frequent. Also, the base pair sub-
stitution rates given in [30] confirm the idea of intermedi-
ate state stability. We used the best base pair mutabilities
and frequencies obtained by Higgs to verify the deviation
matrix in Figure 2. We computed the matrix of nucleotide
substitutions rates from the Higgs values (obtained by
Higgs [30]) as follows:

with P(ik) the frequency of the base pair ik and P(ik→jl) the
probability of a mutation from a base pair ik to a base pair
jl.

The obtained matrix (Table 2) confirms the deviation
matrix in Figure 2:. PA→G > PA→U, PC→U > PC→G > PC→A,
PG→A > PG→C > PG→U and PU→C > PU→G > PU→A.

Existing base pair substitution matrices
The RIBOSUM85-60 matrix obtained by Klein and Eddy
[31] confirms our models. This matrix gives the log-odds
ratio for a given base pair substitution relative to back-
ground nucleotide frequencies. It confirms the idea of a
deviation of the substitutions due to base pair stability.
Adding together the scores of the matrix that include the

P P P P Pi j ik ik jl ki

k l

ki lj

k l

( ) ( ) ( ) ( )

,

( )

,

→ → →= × + ×∑ ∑

Table 2: Nucleotide substitution rates calculated with the Higgs 
model parameters [30].

A C G U

A 0.0201 0.1911 0.0642
C 0.0185 0.1194 0.1948
G 0.1915 0.1180 0.0871
U 0.0641 0.1947 0.0873

Theoretical stem substitution matricesFigure 2
Theoretical stem substitution matrices. Left top: Stem devia-
tion matrix due to influences of transitions/transversions and 
of GU intermediate state on stem substitution matrices. Left 
bottom: Stem deviation matrix due to influences of GC sta-
bility. Right: Stem deviation matrix due to all the influences.

Base pair substitutions in stemsFigure 3
Base pair substitutions in stems. Double mutations are sup-
ported or disadvantaged depending on the stability of the 
intermediate state. As the GU pair is the most stable and the 
least deleterious of the intermediate states, the double sub-
stitutions which use the GU intermediate state (AU ↔ GC 
and UA ↔ CG) may occur more frequently than the others.
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pairs GC and CG gives a score of 26.12. This score is 22.14
for the pairs AU and UA and 5.48 for the pairs GU and
UG. Thus the GC (and CG) pairs are more attractive than
the other pairs (AU, UA, GU and UG). Hence, substitu-
tions that give GC (and CG) pairs are more abundant than
the others. The matrix also confirms the stability of GU
intermediate state. The frequencies of AU ↔ GC and UA
↔ CG substitutions (which uses the GU intermediate
state) are higher than the frequencies of the other substi-
tutions. The substitutions GU ↔ CG, GU ↔ UA, UG ↔
GC, UG ↔ AU have negative scores.

The algorithm SSCA for selecting homologous sequences

The algorithm SSCA is based on a selection model, ,
that represents constraints on the substitution matrices of
the homologous sequences towards the target sequence.
These constraints model an ideal homologous sequence
having adequate variability and correct stems alignment.

SSCA calculates the substitution matrix for each homolo-
gous sequence with respect to the target sequence. A use-
fulness score is then calculated for the sequence according
to the model  and its substitution matrix. The
sequences closest to the ideal sequence (modeled by )
are the most useful for predicting the secondary structure
(Table 3).

The model  has two parts: one concerns the sequence
variability and the other the stem alignment.

Homologous sequence selection constraints
Constraints for selecting homologous sequences according to their 
variabilities
The constraints on the selection of homologous
sequences according to adequate variability are:

Given a homologous sequence, constraint C1 measures
the difference between the conservation rate and the ade-
quate identity rate I described in the equation (1) (given
above). Constraint C2 measures the difference between
the deletion rate and the adequate deletion rate D
described in the equation (2). C3 measures the rate of
ambiguous or indeterminate bases ('N').

Homologous sequences with adequate variability are then
selected by minimizing the sum SV of the constraints C1,
C2 and C3.

Constraints for selecting homologous sequences according to their 
stem alignment
We have proposed two methods for building the second
part of the model and selecting homologous sequences
according to their stem alignments. These methods
emphasize the three influences in stem regions described
above. Each method provides a model that can be used in
our algorithm SSCA:

The first method measures the influence of the GU inter-
mediate state and differences between transitions and
transversions. A → G is compared to A → C, U → C to U
→ G, C → U to C → A and G → A to G → U, applying con-
straints on squares of the substitution matrices for each
homologous sequence:

Constraints C4, C5, C6 and C7 measure the differences
between the substitution rates A → G, U → C, C → U and
G → A and the substitution rates A → C, U → G, C → A
and G → U. The score SA1 is then maximized to select
sequences that are greatly influenced by the GU interme-
diate state.

• The second method measures GC stability. It compares
A → C with C → A, U → C with C → U, A → G with G →
A and U → G with G → U, using the constraints:

Constraints C4, C5, C6 and C7 measure the differences
between the substitution rates A → C, A → G, U → C and








C x x I x A C G U

C x D x A C G U

C x N x A
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= → − ∈
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⎪
⎪⎪

⎩

⎪
⎪
⎪ C C C C

Table 3: Algorithm SSCA

Algorithm SSCA (St: target sequence, Al: homologous sequences 
alignment)

Begin

-Build a model  according to constraints
-For each homologous sequence Si of Al

-Calculate the substitution matrix Mi between St and Si

-Calculate a score for Si according to the constraints of the 

model  and to the substitution matrix Mi

-Classify the sequences Si according to their score
End




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U → G and the substitution rates C → A, G → A, C → U
and G → U. The score SA2 is then maximized to select
sequences greatly influenced by the GC intermediate state.

Models for sequence selection
Each method of calculating the second part of the model
(stem alignment) is combined with the method of calcu-
lating the first part of the model (variability). We thus
obtained two models for selecting homologous
sequences, each of which can be used to calculate a score
for each homologous sequence:

• Model  with a calculated score of SGU = SV - SA1

• Model  with a calculated score of SGC = SV - SA2

Another model, which is a combination of the two above,
provides a measure of the combined influences of GC
pairing stability and of the GU intermediate state:

• Model  with a calculated score of SGC+GU = SGC

+ SGU

The homologous sequences to be used to predict the
structure of the target sequence are selected according to
their SGU, SGC or SGC+GU scores. The most suitable homol-

ogous sequences for the comparative approach have the
lowest scores (since SA1 and SA2 are maximized and SV

minimized). The algorithm SSCA can be used using each

of the three models ,  and .

Results
The SSCA algorithm was tested on several RNA sequence
alignments: tmRNA, RNaseP, SRP RNA, U1 RNA and 5S
RNA. It was initially tested with the P-DCfold algorithm
[13] for predicting the secondary structure, then with the
RNAalifold algorithm [16].

Results obtained using the P-DCfold algorithm
The RNAs tmRNA, RNaseP, SRP RNA, U1 RNA and 5S
RNA are between 80 and 380 nucleotides long. P-DCfold
needed four homologous sequences to predict the sec-
ondary structure of each of these RNAs. The SSCA algo-
rithm was then used to select the four most suitable
homologous sequences.

The following procedure was used to test and compare the
three models of SSCA for each target sequence:

1. We predicted the structure of the target sequence with
P-DCfold using each possible combination of the four
homologous sequences. Since we know the secondary

structure, we calculated and attributed the MCC scores to
each prediction.

2. The algorithm SSCA was used to classify the homolo-
gous sequences according to scores obtained with each of

the three models ,  and . We also

classified them using the common homology model MHC.

3. In order to have a big enough sample of predictions to
draw conclusions, the ten best homologous sequences for
each classification were selected and each possible combi-
nation of four homologous sequences was tested using P-
DCfold. MCC scores were calculated for the resulting 210
predictions.

Results for Escherichia coli tmRNA
An alignment of 44 sequences and a reference structure
from the tmRDB Database [24] were used to predict the
secondary structure of Escherichia coli tmRNA.

The four models MHC, ,  and  pro-

vided higher MCC scores than the ones obtained when
using all the sequences (Table 4). The best results were

obtained with  and : the average MCC

was around 67.5 instead of 45.19 in the case of using all
sequences. The results obtained with the three models,

 (average MCC of 63.38),  (average MCC of

67.45) and  (average MCC of 67.66) were better

than those obtained with the model MHC (average MCC of

56.82).

The SSCA algorithm therefore gave about one chance in
four of obtaining a good prediction (prediction with a
MCC greater than 75) of the secondary structure of this

RNA (using  and  models) while there is

one chance in a hundred of success when no method of
homologous sequence selection is used.

Results for Escherichia coli RNaseP
An alignment of 54 sequences and a reference structure
provided by the RNaseP Database [25] were used.

The results were better than those for tmRNA. The models

,  and  improved the MCC average

by 30% (Table 4): the average MCC is equal to 41.03
when no method for selecting homologous sequences is
used and is equal to an average of 73 when using SSCA.

The best results were obtained with the  model.
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Without any method of homologous sequences selection,
there was 0.7% chance of obtaining good predictions,

against 60.4% when using the  model. The

 model gave three times as many good predic-

tions as the MHC model.

Results on other RNAs

SSCA was also tested for predicting the secondary struc-
ture of Halobacterium halobium SRP RNA, Echinococcus
multilocularis u1RNA and Escherichia coli 5S RNA (using
the P-DCfold algorithm). While the tmRNA and RNaseP
have around 370 nucleotides, SRP RNA, U1 RNA and 5S
RNA have 300, 160 and 80 nucleotides respectively. We
used a sequence alignment provided by the Signal Recog-
nition Particle Database [32] with 54 sequences for SRP
RNA, a sequence alignment from the uRNA Database [33]
with 76 sequences for u1RNA and a sequence alignment
from the 5S ribosomal RNA database [34] with 57

sequences for 5S RNA. The three models , 

and  provided better average MCC values than

MHC (Table S1 in Additional file 1). About 78% of the pre-

dictions done using SSCA had a MCC > 75 (82% for

, 64% for  and 88% for ), when

only 46% of the predictions done using the method MHC

had a MCC > 75. This means that there was about three
chances in four of obtaining a good prediction when
using SSCA. The best results were, again, obtained with

 model: about 90% of the predictions were

good when using this model for selecting homologous
sequences.

Results obtained using the RNAalifold algorithm
We tested whether SSCA was suitable for use with another
RNA secondary structure prediction algorithm, the RNAal-

ifold [16] algorithm. Since RNAalifold computes a consen-
sus structure and since we wanted to obtain a structure for
one sequence, we obtained the best thermodynamic fold-
ing for this sequence that had the base-pairs specified by
the constraint of the consensus structure. This refolding
was done by RNAfold with option -C.

We tested RNAalifold on tmRNA and RNaseP alignments,
using the same procedure than the one used for P-DCfold.
We have considered three cases: all sequences of the align-
ment, ten sequences selected by the model MHC and ten

sequences selected by the model  of SSCA. Then

we performed predictions with RNAalifold for each com-
bination of 4 sequences. The results obtained are given in

Table 5. The  model gave average MCC values

higher than the ones obtained by the MHC model which in

turn are better than the ones obtained when no method
for homologous sequences selection is used.

SSCA and MCC scores

We checked the capacity of the  model to meas-

ure the usefulness of sequences for the comparative
approach. We used the two alignments of tmRNA and
RNaseP to predict the secondary structures of Escherichia
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Table 5: Average MCC distributions of tmRNA and RNaseP 
secondary structure predictions done with the RNAalifold 

algorithm and using the model MHC and the model  of 

SSCA for selecting homologous sequences.

All sequences MHC

tmRNA 52,54 58,17 60,09
RNaseP 58,92 60,93 65,37
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Table 4: MCC distributions (Average MCC, Maximum MCC and Minimum MCC) of tmRNA and RNaseP secondary structure 
predictions done with the P-DCfold algorithm using all sequences and using different homologous sequence selection models (MHC, 

,  and ). The percentage of predictions with MCC > 75 are also given.

tmRNA RNAseP

All MHC All MHC

Avg MCC 45.19 56.82 63.38 67.66 67.45 41.03 60.27 73.58 70.13 75.3
Max MCC 89 85 84 80 85 86 84 85 80 85
Min MCC 10 26 41 56 41 5 30 56 56 56
% MCC > 

75
1.3% 8.6% 5.7% 27.6% 26.7% 0.7% 18% 48.6% 23.3% 60.4%
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Coli sequences for all possible combinations of four
homologous sequences among all the homologous
sequences of the alignments, using the algorithm P-
DCfold. We calculated the average MCC score for each
homologous sequence. The most useful sequences for pre-
dicting the secondary structure had the highest average
MCC scores.

We plotted the correlation between the average MCC
score of each homologous sequence and the score SGC+GU

attributed to this sequence with the model  (Fig-

ure 4). Figure 4 shows that the homologous sequences
with the lowest SSCA scores have the highest average
MCC scores, validating our model and algorithm for
selecting homologous sequences.

We did a correlation study using Pearson's correlation
coefficient, which is a measure of correlation between two
variables. This coefficient varies between -1 for variables
inversely correlated (which is the case here) and 1 for var-
iables correlated in the same way. When it is equal to 0,

this means that the two variables are not correlated. On
our data, we obtained 0.68 for tmRNA and 0.79 for
RNaseP, showing the inverse correlation existing between
SSCA scores and MCC.

Discussion and Conclusion
We have developed an algorithm, SSCA, for selecting
homologous sequences for use in predicting the second-
ary structure of RNAs using the comparative approach.
Homologous sequences selection is based on the idea that
structure constraints skew the substitution matrices in

stems. We have defined three selection models, ,

based on GU intermediate state constraints, , based

on GC stability constraints and , based on both

GC stability and GU intermediate state constraints.

We compared our three models with a currently used
model (MHC) by predicting the secondary structures of

tmRNA and RNaseP using P-DCfold algorithm. All the
three models significantly improved the probability of

 + 
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 +

Correlation between SSCA scores (using the model ) and average MCC scores of homologous sequences of tmRNA (left) and RNaseP (right) alignmentsFigure 4
Correlation between SSCA scores (using the model ) and average MCC scores of homologous sequences of tmRNA 

(left) and RNaseP (right) alignments. Homologous sequences with the lowest SSCA scores have the highest average MCC 
scores. The best correlation is for the low SSCA scores.
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obtaining good predictions. The three models, ,

 and  gave better results than the model

MHC. The better model is , which gave three

times more good predictions than the model MHC (Tables

3).

We also tested SSCA on other RNAs: RP RNA, U1 RNA and
5S RNA, and we obtained good results. Finally, we tested
the use of SSCA with RNAalifold algorithm. The results
when SSCA was used for selecting homologous sequences
were also better than when no selection of homologous
sequences is done. Nevertheless, the results obtained with
RNAalifold were not as good as the ones obtained with P-
DCfold. One reason could be because RNAalifold was
designed and optimized for predicting a common second-
ary structure of a set of homologous sequences, instead of
P-DCfold which was designed and optimized for predict-
ing the secondary structure of one sequence using a set of
homologous sequences.

To improve the results of predictions, it may be possible
to make several predictions using different subsets of
homologous sequences selected by SSCA and to calculate
the structure common to these predictions. Our basic idea
of selecting sequences with adequate variability can be
improved by using phylogenetic trees. Skimming through
the phylogenetic tree can select homologous sequences
that are variable and similar enough to the target
sequence.

Finally, the time complexity of the SSCA algorithm is
(m × n), with n the length of the target sequence and m

the number of homologous sequences. All our tests took
less than 5 seconds.
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