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Abstract
Background: For successful protein structure prediction by comparative modeling, in addition to
identifying a good template protein with known structure, obtaining an accurate sequence
alignment between a query protein and a template protein is critical. It has been known that the
alignment accuracy can vary significantly depending on our choice of various alignment parameters
such as gap opening penalty and gap extension penalty. Because the accuracy of sequence alignment
is typically measured by comparing it with its corresponding structure alignment, there is no good
way of evaluating alignment accuracy without knowing the structure of a query protein, which is
obviously not available at the time of structure prediction. Moreover, there is no universal
alignment parameter option that would always yield the optimal alignment.

Results: In this work, we develop a method to predict the quality of the alignment between a query
and a template. We train the support vector regression (SVR) models to predict the MaxSub scores
as a measure of alignment quality. The alignment between a query protein and a template of length
n is transformed into a (n + 1)-dimensional feature vector, then it is used as an input to predict the
alignment quality by the trained SVR model. Performance of our work is evaluated by various
measures including Pearson correlation coefficient between the observed and predicted MaxSub
scores. Result shows high correlation coefficient of 0.945. For a pair of query and template, 48
alignments are generated by changing alignment options. Trained SVR models are then applied to
predict the MaxSub scores of those and to select the best alignment option which is chosen
specifically to the query-template pair. This adaptive selection procedure results in 7.4%
improvement of MaxSub scores, compared to those when the single best parameter option is used
for all query-template pairs.

Conclusion: The present work demonstrates that the alignment quality can be predicted with
reasonable accuracy. Our method is useful not only for selecting the optimal alignment parameters
for a chosen template based on predicted alignment quality, but also for filtering out problematic
templates that are not suitable for structure prediction due to poor alignment accuracy. This is
implemented as a part in FORECAST, the server for fold-recognition and is freely available on the
web at http://pbil.kaist.ac.kr/forecast
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Background
As the number of protein sequences is exponentially
growing, knowledge on their structures and functions is
lagging far behind the growth rate of the number of new
protein sequences because the experiments to determine
structures and functions are difficult and time-consuming.
One way to resolve this problem is computational meth-
ods such as structure and function prediction. In the case
of protein structure prediction, computational methods
fall into two categories; ab initio folding method and com-
parative modeling. Ab initio folding method is based on
physical principles and does not require prior knowledge
on protein structures, but comparative modeling [1] has
shown superior performance throughout recent experi-
ments assessing the effectiveness of structure prediction
methods such as CASP (Critical Assessment of Structure
Prediction) [2].

The first step in comparative modeling is the fold recogni-
tion in which one searches for homologous proteins with
known structure and chooses the best one that can be
used as a template. After this process, the alignment
between the selected template and the query protein is
generated. Finally the alignment is used to build the 3-
dimensional structure models by using 3D model build-
ing tools such as MODELLER [1,3]. High-quality query-
template alignments are, therefore, essential for successful
homology modeling. Thus, there are two factors that
essentially determine the quality of predicted protein
structures; good templates and high quality query-tem-
plate alignments. There have been many approaches to
increase the performance of fold recognition. Progress in
fold recognition has made it possible to increase the struc-
tural coverage of newly sequenced genomes [4] and to
improve our ability to predict the protein structures as
demonstrated in recent CASP experiments.

Importance of alignment accuracy for comparative mode-
ling has been already addressed [5]. Among many
sequence alignment methods, the easiest way is to use
sequence-sequence alignments such as Smith-Waterman
[6] or BLAST algorithm [7]. Other ways are to utilize evo-
lutionary information: profile-sequence alignments such
as PSI-BLAST [8] and sequence-profile alignments such as
IMPALA [9]. To get better alignments, it has been shown
in many studies that using profiles of both the query and
the template, named profile-profile alignment, are supe-
rior to sequence-profile methods and profile-sequence
methods [10]. Even though profile-profile alignments are
better, they do not always provide the optimal alignments
[11]. Profile-profile alignments can be carried out in
many different ways [12-14] and the alignment results
change as alignment options vary. There is no single best
profile-profile method and the universal alignment
option that always generates the optimal alignment.

To overcome this problem, some methods such as Con-
sensus [15], ESyPred3D [16], Multiple Mapping Method
(MMM) [17], and methods using genetic algorithm
[18,19] have used population of suboptimal alignments.
ESyPred3D fixes the redundant results from suboptimal
alignments and finds optimal alignments by moving
anchor point. Consensus make alignments by consensus
of several alignments based on the consensus strength and
by discarding the residues where alternative alignments
differ. These two methods use limited number of alterna-
tive alignments. On the other hands, other two methods
have used genetic algorithm to generate sub alignments as
many as possible. After sets of model structure are con-
structed from alignments, score of each model is calcu-
lated by fitness function such as atom-atom potential [20]
and Z-score [21]. However, these approaches take longer
time, and alignments made by crossover are likely to be
biologically meaningless. MMM, the recent study, focused
on minimizing alignment errors based on its own scoring
function by combining differently alignment segments
from alternative alignments. MMM outperformed other
methods and showed significant improvements.

We introduce here a novel method not only to predict the
alignment quality but also to improve the alignment qual-
ity by support vector regression (SVR) [22]. Machine
learning technique such as the artificial neural network
(ANN) or support vector machine (SVM) [23] has been a
popular tool for fold recognition, but is only available for
feature vectors of fixed length. A new method in which all
templates in template library have feature vectors of dif-
ferent lengths with profile-profile alignments scores has
been recently developed [24]. In our work, a modified ver-
sion has been used. Among many different kinds of meas-
ures for the alignment quality, MaxSub [25], which has
been used as a measure in assessment experiments of
structure prediction such as CASP [26], CAFASP [27], and
LiveBench [28], is used to represent a measure of align-
ment quality. MaxSub is a good measure of alignment
quality in that it is a normalized single numeric and
reflects structure-level quality.

Our attempt to develop a method to predict the alignment
quality is not entirely new. A related work [29] has been
published, but the alignment quality prediction was not
their final research goal. Rather, in the work by Xu [29],
the predicted alignment quality was used to improve per-
formance of fold recognition. In the present work, we
develop a highly accurate method to predict the align-
ment quality, and we utilize the method not only to max-
imize the alignment quality and but also to choose good
templates. In our work, an alignment of a query protein
against its template of length n is converted into a feature
vector of length n + 1 composed of profile-profile align-
ment scores and the length of the query protein. The pre-
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dicted MaxSub score is calculated by the SVR model
specifically built for that template. The test results show
highly accurate regression performance. For a pair of a
query and a template, various alignments are generated by
using many different combinations of alignment parame-
ters. The SVR model for the template is then used to find
the optimal alignment parameters which are specific to
that pair. We name this method 'adaptive selection'
method. The adaptive selection method outperforms the
method which uses the universal alignment option for
large-scale testing set.

Results and discussion
Performance measures of SVRs
Alignments are converted into (n + 1) dimensional feature
vectors which are input of SVRs where n is the length of
the templates (Figure 1). In order to evaluate the perform-
ance of the method, trained SVR models are evaluated for
the testing set. The correlation between observed and pre-
dicted MaxSub values is presented in the density map (Fig-
ure 2a). Each column in the figure2a is normalized
independently by dividing the number of alignments with
a specific range of MaxSub scores by the total number of
alignments in that column. The number of alignments in
each column is plotted on Figure 2b. The highest density
is represented by black squares; the lowest density is rep-
resented by white squares. The Pearson correlation coeffi-
cient is calculated from the pairs of predicted MaxSub
scores and observed MaxSub scores. The calculated corre-
lation coefficient is 0.945. A previous related work [29]
has reported the correlation coefficient of 0.71, which is
lower than that of the present method. However, because
the testing set and the measure of alignment quality in the
previous work (the measure of alignment quality was cal-
culated by comparing the sequence alignment and the

structural alignments generated by SARF [30] that were
assumed to be the gold standard) are different from those
used in this work, direct comparison between the two
methods may not have much meaning, although much
higher correlation coefficient of our work seems to suggest
that the present method is apparently better at predicting
the alignment quality than the previous method. The
good correlation coefficient and the density diagram with
good diagonal shape imply that the MaxSub scores as a
measure of alignment quality can be accurately predicted.
Moreover, the results suggest that for each query-template
pair it is possible to find its own optimal alignment
parameters that would maximize the alignment quality.

In addition to the Pearson correlation coefficient, three
different measures of errors are also calculated. The first
one is the mean absolute error (MAE) which is given by

where yi is the predicted value, oi is the observed value, and
N the total number of the predictions. The normalized
MAE (NMAE) is defined as follows
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Generation of the input feature vectors from alignmentsFigure 1
Generation of the input feature vectors from alignments. (a) The sequence of a template of length n is aligned to the 
sequences of examples by profile-profile alignment method. (b) Each alignment is transformed to (n + 1)-dimensional feature 
vector composed of the alignment scores at n positions and the total alignment score. (c) These feature vectors are used to 
train SVR model for the target template.
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Performance of SVR modelsFigure 2
Performance of SVR models. (a) Correlations between observed and predicted MaxSub scores with correlation coefficient 
of 0.9453. Adjacent color bar shows the mapping of relative density. (b) Plot of frequency distribution. (c) Plot of MAE distribu-
tion. (d) Plot of NMAE distribution.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Observed MaxSub
(a)            

P
re

di
ct

ed
 M

ax
S

ub

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

0

10
5

Observed MaxSub
(b)            

F
re

q.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

Observed MaxSub
(c)            

M
A

E

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

Observed MaxSub
(d)            

N
M

A
E

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9



BMC Bioinformatics 2007, 8:471 http://www.biomedcentral.com/1471-2105/8/471
MAE, NMAE, and RMSE are 0.0775, 1.877, and 0.0969,
respectively, also shown in Table 1 and distributions of
MAE and NMAE are shown in Figure 2c and Figure 2d,
respectively. MAE is always lower than 0.2 for all the range
of observed MaxSub scores when the window size is set to
0.5.

Adaptive selection of the alignment options having the 
best MaxSub score
The ultimate objective of predicting alignment quality is
to find the best alignment. One straightforward, although
not the best, way to do this is to choose a set of the opti-
mal alignment parameters, such as gap opening penalty,
gap extension penalty, baseline score, and the amount of
secondary structure term, that would yield the best align-
ments overall. However, as seen in Table 2 where the aver-
age MaxSub scores for the alignments generated with
various different combination of the alignment parame-
ters are shown, there is no such single set of parameters
that are universally optimal for all query-template pairs.
For example, for the query-template protein pairs that are
related at the family level, the optimal alignment parame-
ters are 9, 1, 1, and 0.5 for gap opening penalty, gap exten-
sion penalty, baseline score, and the secondary structure
information, respectively, while those parameters change
to 12, 2, 0, and 2 for the protein pairs that are related at
the fold level. Overall, the maximum of average MaxSub
scores is 0.2386 with the optimal alignment parameters of
9, 1, 1, and 1, which interestingly are not the optimal
parameters for the protein pairs related at any level of sim-
ilarity.

The results suggest the following alignment strategy.
Instead of using single universal set of alignment parame-
ters for all query-template pairs, by simply picking up a
different set of the alignment parameters that are uniquely
optimal for a query-template pair, the alignment can be
improved. If we do so, as seen in Table 3, the average of
the overall MaxSub scores improves from 0.2386 to
0.2887 (0.0501 point improvement, corresponding to
roughly 21% improvement).

Obviously, we do not know a priori which set of align-
ment parameters is optimal for a given query-template
pair because the structure of a query protein is not known.
Therefore, here we propose the 'adaptive selection'
method. The adaptive selection procedure is carried out as
follows. (1) Generate the alignments using many different
combinations of alignment parameters. (2) Predict Max-
Sub scores of alignments using the trained SVR models.
(3) Select the alignment that gives the highest predicted
MaxSub score.

When we follow the adaptive selection procedure, the
average of actual MaxSub scores of the alignments selected
by the adaptive selection procedure improves to 0.2563
(Table 3), which corresponds to 0.0177 point or 7.42%
improvement, compared to the single best option proce-
dure. This improvement is statistically significant (p-value
< 10-300 calculated by Wilcoxon signed rank test [31]). It
also indicates that the adaptive selection method can
scoop roughly 35.3% (0.0177 vs. 0.0501) of the maxi-
mum improvement that can be achievable by selecting the
optimal alignment parameters unique to each query-tem-
plate pair. Moreover, it also implies that it is possible to
improve the alignment quality even more by developing
more accurate alignment quality prediction method.

Performance at three levels of SCOP hierarchy
In this section, we describe performance at three levels of
SCOP hierarchy (family, superfamily, and fold) to closely
examine where the improvement is achieved. All the
experiments carried out in the previous section are done
for testing sets at the three different levels.

The density diagram in Additional file 1 shows the corre-
lation at the family level. It looks similar to Figure 2a
except that it shows weak correlation in low MaxSub score
region. The reason seems to be that alignments of pairs at
the family level likely have high MaxSub scores, and SVR
models have not experienced sufficient alignments that
have low MaxSub scores during the training stage. The cor-
relation coefficient, MAE, NMAE and RMSE is 0.9185,
0.0630, 0.3112 and 0.0936, respectively (Table 1). Addi-
tional file 1 shows the number of alignments in different
regions of observed MaxSub score. Additional file 2 shows
the correlation at the superfamily level. It shows rather
weak correlation in high MaxSub score region. The corre-
lation coefficient, MAE, NMAE and RMSE is 0.8318,
0.0773, 1.8344 and 0.0962, respectively (Table 1). Con-
trary to the case of the family level, there are not many
examples in high observed MaxSub region, which is the
reason for weak correlation in high score region. The den-
sity map in Additional file 3 represents the correlation at
the fold level. The correlation coefficient, MAE, NMAE
and RMSE is 0.6106, 0.0848, 2.6738 and 0.0988, respec-

Table 1: Performance of SVR models for overall test set and at 
three levels of SCOP hierarchy. Pearson stands for Pearson 
correlation coefficient. MAE, NMAE, and RMSE are types of 
error

All Family Superfamily Fold

Pearson 0.9453 0.9185 0.8318 0.6106
MAE 0.0775 0.0630 0.0773 0.0848

NMAE 1.8771 0.3112 1.8344 2.6738
RMSE 0.0969 0.0936 0.0962 0.0988
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Table 2: Average MaxSub scores of the alignments generated by using various combinations of alignment parameters for the protein 
pairs related at the three SCOP levels. Open, Extension, and Baseline column shows gap open penalty, gap extension penalty and 
baseline value, respectively. '2nd' stands for the weight of predicted secondary structure. The best option showing highest MaxSub at 
each level is bolded.

Average MaxSub

Open Extension Baseline 2nd All Family Superfamily Fold

5 1 0 0 0.2104 0.5930 0.1636 0.0447
5 1 1 0 0.2172 0.6073 0.1679 0.0492
5 2 0 0 0.2130 0.6062 0.1566 0.0477
5 2 1 0 0.2105 0.6060 0.1494 0.0470
9 1 0 0 0.2200 0.6080 0.1774 0.0488
9 1 1 0 0.2208 0.6133 0.1716 0.0514
9 2 0 0 0.2171 0.6115 0.1621 0.0505
9 2 1 0 0.2131 0.6104 0.1508 0.0494
13 1 0 0 0.2176 0.6096 0.1696 0.0479
13 1 1 0 0.2158 0.6109 0.1609 0.0487
13 2 0 0 0.2131 0.6102 0.1530 0.0481
13 2 1 0 0.2088 0.6076 0.1429 0.0467
5 1 0 1 0.2210 0.5950 0.1705 0.0619
5 1 1 1 0.2298 0.6070 0.1784 0.0696
5 2 0 1 0.2283 0.6066 0.1738 0.0696
5 2 1 1 0.2286 0.6089 0.1713 0.0706
9 1 0 1 0.2342 0.6129 0.1853 0.0718
9 1 1 1 0.2386 0.6176 0.1877 0.0771
9 2 0 1 0.2373 0.6175 0.1837 0.0770
9 2 1 1 0.2345 0.6169 0.1770 0.0755
13 1 0 1 0.2355 0.6139 0.1851 0.0741
13 1 1 1 0.2374 0.6165 0.1852 0.0767
13 2 0 1 0.2356 0.6163 0.1808 0.0759
13 2 1 1 0.2319 0.6143 0.1730 0.0737
5 1 0 2 0.2111 0.5765 0.1572 0.0586
5 1 1 2 0.2208 0.5935 0.1629 0.0669
5 2 0 2 0.2216 0.5950 0.1609 0.0691
5 2 1 2 0.2248 0.6017 0.1611 0.0725
9 1 0 2 0.2247 0.6014 0.1676 0.0684
9 1 1 2 0.2311 0.6090 0.1719 0.0754
9 2 0 2 0.2324 0.6101 0.1717 0.0777
9 2 1 2 0.2327 0.6106 0.1706 0.0788
13 1 0 2 0.2290 0.6073 0.1713 0.0723
13 1 1 2 0.2337 0.6110 0.1750 0.0780
13 2 0 2 0.2343 0.6122 0.1741 0.0793
13 2 1 2 0.2332 0.6120 0.1707 0.0792
5 1 0 0.5 0.2214 0.5979 0.1738 0.0593
5 1 1 0.5 0.2288 0.6094 0.1801 0.0652
5 2 0 0.5 0.2260 0.6095 0.1729 0.0638
5 2 1 0.5 0.2247 0.6104 0.1680 0.0635
9 1 0 0.5 0.2337 0.6141 0.1888 0.0678
9 1 1 0.5 0.2359 0.6183 0.1881 0.0709
9 2 0 0.5 0.2328 0.6174 0.1807 0.0693
9 2 1 0.5 0.2291 0.6170 0.1717 0.0672
13 1 0 0.5 0.2329 0.6150 0.1856 0.0678
13 1 1 0.5 0.2323 0.6162 0.1809 0.0687
13 2 0 0.5 0.2295 0.6160 0.1739 0.0672
13 2 1 0.5 0.2251 0.6139 0.1645 0.0647

Mean 0.2261 0.6090 0.1713 0.0651
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tively (Table 1). Like the case of the superfamily level, it
seems to show weak correlation at high score region.

In Table 2, the MaxSub scores are presented at three differ-
ent levels. The averages are 0.6090, 0.1713, and 0.0651,
and the values for best options are 0.6183, 0.1888, and
0.0793 at the level of family, superfamily, and fold,
respectively. These values are also compared with corre-
sponding scores achieved by adaptive selection method
(Table 3). It is also observed that adaptive selection
method shows higher performance at the every SCOP
level as for overall testing set showing an improvement of
1.16, 12.7, and 20.2% at the family, superfamily and fold
level, respectively.

To check diversity of test set, sequence identities of query-
template pairs are presented in Fig at each SCOP level,
family (Figure 3a), superfamily (Figure 3b), and fold (Fig-
ure 3c). The average values of sequence identity are
30.95%, 13.03%, and 11.51% at each SCOP level, respec-
tively. Except for some pairs in the test set at family level,
the sequence identities of almost all pairs are under 35%,
"twilight zone [32]." The distribution tells our results are
not based on high sequence identity.

Alignments of pairs that are not related
All protein pairs in the testing set used in the experiments
share the similar structure at least at the fold level (see
Methods). It is, therefore, necessary to check whether the
trained SVR models show reliable performance for pro-
teins which do not share the same fold. In order to check
this, 10 unrelated proteins per each template are ran-
domly selected, aligned against the templates, and trans-
formed into feature vectors. The vectors are then applied
to SVR models of the templates to predict MaxSub scores.
All the observed MaxSub scores are zero without excep-
tion. Thus all the predicted values should be zero in ideal
situation. Histogram of predicted values is shown in Fig-
ure 4. Unfortunately, most predicted values are not zero.
The mean is 0.1979 and the standard deviation is 0.1257.
We can infer here that SVR models predict the MaxSub
scores larger than the true values in low MaxSub score
region. The histogram shows that the true MaxSub scores
of alignments predicted to have MaxSub score near 0.1

might be zero. Thus, if a predicted MaxSub is low and is
not zero, it should be carefully examined.

Alignments of the pairs whose MaxSub scores are zero 
despite being in the same family
It is expected that two proteins in the same SCOP family
have a similar 3D structure. There are, however, many
alignments of the pairs in the same family for which
observed MaxSub scores are zero (Additional file 1).
When MaxSub score is zero, the alignment is completely
incorrect by definition [25]. For these pairs, we check how
much improvement can be achieved by adaptive selection
method. Figure 5 shows histogram of MaxSub scores
which is given by adaptive selection method for the align-
ments of those pairs. For about 37.3% of all pairs, there is
no improvement, while about 62.7% of pairs achieve
some improvement. In other words, around 63% of com-
pletely incorrect alignments between a pair of protein
related at the family level are corrected into partially cor-
rected alignments by changing alignment options by
adaptive selection method.

Then, what are the reasons that remaining 37.3% of pairs
gain no improvement? The most obvious one is regres-
sion error. Adaptive selection method might wrongly
select an option due to regression error although there is
another option that might give improved MaxSub score.
When we examine the data, it appears that 17.9% consti-
tute this type. Second, it may result from the limitation of
profile-profile alignments. It has been well known that
profile-profile alignment is not always the optimal align-
ment when compared to the structure alignment. It may
fail to align a query against a particular template with any
alignment options due to problem of alignment method
itself. The third reason may be the lack of alignment
options in our method. Although 48 options are used in
our work, they may not be sufficient because the options
used here do not cover all possible cases. For example, to
align a particular pair of proteins, abnormally large gap
open penalty might be necessary.

The fourth reason may be the limitation of MaxSub score
as a measure of alignment quality. There have been a
number of assessment methods for alignment quality. It

Table 3: Comparison of average MaxSub scores. The values in the first row "Overall best option" are retrieved from Table 2.

Average MaxSub

Method All Family Superfamily Fold

Overall Best Option 0.2386 0.6176 0.1877 0.0771
Always Best (Upper Limit) 0.2887 0.6414 0.2505 0.1396

Adaptive Selection (Observed) 0.2563 0.6255 0.2128 0.0953
Adaptive Selection (Predicted) 0.3039 0.6385 0.2501 0.1669
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Distribution of sequence identities on the test setFigure 3
Distribution of sequence identities on the test set. Distribution of sequence identities of the query-template pairs on 
the test set at (a) family (b) superfamily (c) fold level.
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has been controversial what evaluation method is the
best. There are many alternative measures such as GDT_TS
[33,34], LGscore [35] and MAMMOTH [36]. Another
aspect is that MaxSub score is basically sequence-depend-
ent assessment. In sequence-dependent assessment, only
corresponding residues in alignment are compared. It is
stricter than sequence-independent assessment [37,38]
for alignments which are slightly shifted from the optimal
alignment, which might make MaxSub scores of some
alignments become zero. Our method might be improved
by combining these sequence-dependent and sequence-
independent methods.

Finally, some template structures may not be good for pre-
dicting the structure of a query protein, even though they
are in the same family with a query protein. One example
of this case is an alignment of a query protein, d1tsk__,
against a template, d1chl__, both of which belong to the
same family (g.3.7.2). All MaxSub scores of the align-
ments generated by using all 48 options are zero. To check
whether it is caused by the problem of profile-profile
method, we perform the structural alignment by CE algo-
rithm [39], and we find that the MaxSub score of this
structural alignment is also zero. Figure 6 shows a super-
position of these two proteins. It can be inferred that there
are bad templates for structure prediction although they
are the same family member with a query protein. It might

be caused by strict definition of MaxSub. However, in the
view of MaxSub, the template d1chl__ is apparently a bad
one for the query.

Such alignments are tested by the fold recognition
method developed in the previous study [24] to see their
fold recognition scores. The raw SVM outputs are con-
verted into posterior probabilities [40], ranging from zero
to one, and the distribution of these probabilities is
shown in Figure 7. The distribution exhibits two peaks,
near zero and one. If we choose decision-threshold as 0.5,
roughly 15% of pairs are classified into protein pairs shar-
ing the same family. Let us consider a situation where one
tries to predict the protein structure and chooses the tem-
plates by means of fold-recognition score only. For some
cases, if a certain template is selected simply because it is
predicted to be homologous at the family level, the final
result of structure prediction might be failed due to wrong
selection of the template. Adaptive selection method may
help to filter this sort of templates out and can prevent
ones from selecting these bad templates.

Benchmark test
The benchmark test of adaptive selection method is car-
ried out on 62 targets of CASP7. We use EsyPred3D and
Multiple Mapping Method (MMM) for the comparing.
Both are publicly available web servers, and alignments

Histogram of predicted MaxSub scores of the alignments of the pairs that are not related at the fold levelFigure 4
Histogram of predicted MaxSub scores of the alignments of the pairs that are not related at the fold level.
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and 3D models are provided. We used the default options
of the servers.

Out of all 88 targets of CASP7, 77 targets have signifi-
cantly close template in SCOP 1.69 according to the result
of fold search by Proteinsilico [41]. The templates of 62
targets of those are trained in our dataset, and these target-
template pairs are used in the benchmarking.

Table 4 shows the performances of MMM, EsyPred3D,
and adaptive selection method. The greatest values of
MaxSub, Mammoth Z-score, TM-score [42], GDT_TS for
each pair are bolded. Our method gives better alignments
having larger MaxSub than other two methods on average
(0.264 vs. 0.203 and 0.182). In the aspect of other meas-
ures the adaptive method also shows the best perform-
ance. In addition, the values of our method are
statistically significant according to p-values calculated by
Wilcoxon signed rank test [31] with significance level
0.05.

Conclusion
In the process of protein sequence alignment, generally
only one particular set of alignment parameters is used
throughout the all protein pairs, regardless of their evolu-
tionary relationship. In some cases, many alignments are
generated using many different combinations of align-
ment parameters, and then the potentially optimal align-
ment is chosen purely based on experience or intuition. In
this work, however, we select the alignment parameters
which are predicted to give the highest MaxSub score spe-

cific to a pair of a query and a template. Our work is dis-
tinguishable to other efforts to improve the quality of
protein sequence alignments in that we directly predict
alignment quality with quite good accuracy. By predicting
the alignment quality and then choosing the optimal
alignment parameters based on the prediction, we show
that the alignment quality can be improved significantly.
Our method can be utilized to select not only the optimal
alignment parameters for a chosen template but also good
templates with which the structure of a query protein can
be best predicted.

In summary, we develop a method to predict the MaxSub
score as an alignment quality of a given profile-profile
alignment between a query and a template. The alignment
between a query protein and a template of length n is
transformed into a (n + 1)-dimensional feature vector.
These feature vectors are used to train the SVR models for
the templates. We rigorously test the performance of the
method using various evaluation measures such as Pear-
son correlation coefficient, MAE, NMAE, and RMSE.

Superposition of 2 SCOP domainsFigure 6
Superposition of 2 SCOP domains. Superposition of 
SCOP domain d1tsk__ (bright) onto d1chl__ (dark), both of 
which belong to the same family (g.3.7.2).

Histogram of MaxSub scores by adaptive selection method for the alignments of the pairs sharing the same family whose MaxSub score is zero when single best alignment option method is usedFigure 5
Histogram of MaxSub scores by adaptive selection method 
for the alignments of the pairs sharing the same family whose 
MaxSub score is zero when single best alignment option 
method is used.
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Results show the high correlation coefficient of 0.945 and
low prediction errors. Trained SVR models are then
applied to select the best alignment option which is cho-
sen specifically to the pair of a query and a template. This
adaptive selection procedure results in 7.4% improve-
ment of MaxSub scores, compared to the scores when sin-
gle best option is used for the all query-template pairs.

Methods
Data
To make a template library, classification by the SCOP
version 1.69 [43] is used. First, the fold library composed
of ~11,130 domains is constructed using domain subsets
with less than 90% sequence identity to each other pre-
pared by ASTRAL Compendium [44]. We choose the folds
containing at least 20 members for training and testing
the SVR models. A total of 7509 domains in 122 folds are
selected as a result. Two thirds are used to train and the
rest is used to test. To estimate the performance, we
employ the three-fold cross-validation procedure.

MaxSub score as alignment quality (target of each SVR)
Conventionally, the alignment quality is calculated by
comparing the sequence alignment and the structural
alignments generated by various structure alignment pro-
grams such as SARF [30], CE and MAMOTH, assuming
that the structure alignments are the gold standard. A
problem of this approach is that depending on the specific
choice of structure alignment program, the structure align-
ments can vary significantly, especially for distant
homolog pairs. A different approach is that first the struc-
ture prediction model of a query protein is quickly gener-
ated by directly copying C-α positions of all aligned

residues of the template protein using the sequence align-
ment, and then the protein structure model quality meas-
ure such as MaxSub [25] or TM-score [42] is calculated
and used as a alignment quality score. The second
approach is more relevant to the present study, because
the main focus of this work is how to generate good
sequence alignments that would eventually lead to better
structure models. Specifically, we use MaxSub [25], a pop-
ular model quality measure which finds the largest subset
of Cα atoms of a model that superimpose well over the
experimental structure. At the stage of training, each align-
ment is converted into a structure model of the query pro-
tein. MaxSub score is then calculated using the model
derived from the alignment and the correct structure, with
d parameter set to 3.5 Å which has been found to be a
good choice for the evaluation of fold-recognition models
[25]. We have also considered to use TM-score [42],
another popular model quality measure, as the alignment
quality measure. However, it turned out that the correla-
tion between MaxSub scores and TM-scores was as high as
0.95. Therefore, we expect that our specific choice of Max-
Sub score as the alignment quality measure does not affect
the performance of our method and the main conclusion
of this work.

Profile-profile alignments and SVR feature vectors
To train SVR models for all templates in the training set,
feature vector scheme developed in previous work [24] is
adopted with slight modification. We first generate all-
against-all alignments within the set sharing the same fold
by profile-profile alignment scheme with 48 different
combinations of alignment parameters (gap open-pen-
alty, gap extension-penalty, base-line score, and weight of
predicted secondary structure). The profile-profile align-
ment score to align the position i of a query q and the
position j of a template t is given by

where , ,  and  are the frequencies and the

position-specific score matrix (PSSM) scores of amino
acid k and at position i of a template q and position j of a
template t, respectively. For the secondary structure score
(sij), a positive score is added (subtracted) if the predicted

secondary structure of the query protein at the position i
is the same (different) type of secondary structure of the
template protein at position j. Finally, the constant base-
line score (b) is added to the alignment score.

The frequency matrices and PSSMs are generated by run-
ning PSI-BLAST [8] with default parameters except for the
number of iterations (j = 11) and the E-value cutoff (h =
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Distribution of posterior probabilities of outputs of SVM for fold-recognitionFigure 7
Distribution of posterior probabilities of outputs of SVM for 
fold-recognition.
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Table 4: Alignment performances on CASP 7 using MMM, ESyPred3D, and Adaptive method. The highest value for each pair is 
bolded. P-values are calculated by Wilcoxon signed rank test.

MaxSub Mammoth Z-score TM-score GDT_TS

Target Template MMM ESyPred
3D

Adaptive 
Method

MMM ESyPred3
D

Adaptive 
Method

MMM ESyPred3
D

Adaptive 
Method

MMM ESyPred3
D

Adaptive 
Method

T0283 1pq1a_ 0.000 0.000 0.212 2.30 1.18 4.69 0.234 0.216 0.315 0.210 0.208 0.301
T0288 1r6ja_ 0.743 0.668 0.756 12.42 12.81 12.56 0.775 0.720 0.767 0.769 0.712 0.769
T0289 1boub_ 0.000 0.000 0.000 1.36 1.13 0.48 0.186 0.160 0.179 0.073 0.070 0.075
T0291 1rdqe_ 0.515 0.483 0.484 28.76 28.03 27.82 0.735 0.691 0.700 0.568 0.542 0.538
T0292 1rdqe_ 0.565 0.579 0.556 27.90 28.48 29.66 0.768 0.786 0.774 0.617 0.639 0.631
T0293 1jg1a_ 0.221 0.000 0.240 12.65 11.89 12.20 0.405 0.175 0.385 0.290 0.082 0.300
T0295 1jg1a_ 0.000 0.212 0.288 0.23 8.82 11.94 0.171 0.252 0.367 0.093 0.208 0.299
T0296 1p1xa_ 0.048 0.000 0.055 2.40 3.68 5.78 0.216 0.175 0.194 0.077 0.068 0.091
T0297 1k7ca_ 0.199 0.216 0.466 17.17 18.46 16.71 0.421 0.425 0.596 0.289 0.299 0.493
T0299 1p5fa_ 0.000 0.000 0.000 0.09 0.36 0.40 0.192 0.159 0.170 0.132 0.107 0.113
T0300 1rh5b_ 0.256 0.000 0.234 3.83 2.19 4.32 0.276 0.239 0.249 0.346 0.258 0.289
T0302 1orja_ 0.000 0.000 0.149 1.72 1.92 1.72 0.257 0.224 0.265 0.210 0.189 0.239
T0303 1o08a_ 0.520 0.517 0.425 25.55 25.54 25.48 0.743 0.718 0.666 0.607 0.588 0.554
T0304 1j3wa_ 0.192 0.000 0.000 0.51 1.91 2.79 0.301 0.140 0.200 0.280 0.126 0.220
T0305 1lyva_ 0.440 0.410 0.451 26.72 22.98 26.97 0.705 0.568 0.668 0.532 0.444 0.522
T0308 1f4pa_ 0.181 0.000 0.156 8.29 1.92 8.78 0.396 0.139 0.348 0.289 0.094 0.247
T0310 1us6a_ 0.000 0.000 0.000 1.03 0.79 2.83 0.085 0.055 0.060 0.049 0.041 0.032
T0315 1i0da_ 0.388 0.296 0.457 25.66 18.39 26.55 0.667 0.582 0.720 0.476 0.394 0.541
T0316 1kqpa_ 0.140 0.115 0.169 10.72 15.53 13.13 0.316 0.227 0.277 0.170 0.146 0.190
T0317 1byi__ 0.174 0.000 0.169 0.85 8.44 6.16 0.314 0.246 0.269 0.237 0.169 0.212
T0318 1rtqa_ 0.048 0.098 0.097 6.47 5.48 16.72 0.191 0.256 0.251 0.070 0.117 0.130
T0321 1jbea_ 0.000 0.000 0.000 2.77 1.82 1.81 0.166 0.155 0.146 0.090 0.081 0.090
T0322 1vh5a_ 0.614 0.596 0.603 16.48 16.95 17.75 0.707 0.673 0.698 0.622 0.599 0.629
T0323 1c20a_ 0.000 0.000 0.000 1.01 0.58 1.62 0.173 0.118 0.114 0.103 0.080 0.083
T0324 1o08a_ 0.562 0.562 0.582 25.93 24.76 24.84 0.748 0.760 0.750 0.604 0.626 0.629
T0325 1i0da_ 0.101 0.000 0.103 13.96 4.04 5.39 0.322 0.221 0.395 0.183 0.120 0.217
T0326 1p5fa_ 0.065 0.131 0.190 8.81 7.48 14.35 0.220 0.241 0.349 0.112 0.148 0.238
T0328 1mwqa_ 0.000 0.000 0.089 0.42 3.73 9.59 0.126 0.095 0.163 0.060 0.049 0.110
T0329 1o08a_ 0.464 0.471 0.471 25.57 25.29 24.67 0.683 0.655 0.661 0.545 0.529 0.529
T0330 1o08a_ 0.424 0.365 0.376 27.13 21.07 22.94 0.694 0.649 0.604 0.552 0.519 0.496
T0332 1io0a_ 0.000 0.000 0.117 3.31 1.66 3.78 0.235 0.180 0.254 0.178 0.137 0.193
T0335 1hz4a_ 0.000 0.000 0.458 1.76 3.50 3.80 0.267 0.312 0.377 0.464 0.476 0.542
T0338 1tqga_ 0.000 0.000 0.000 0.71 1.92 2.02 0.148 0.121 0.101 0.093 0.089 0.090
T0339 1lc5a_ 0.177 0.119 0.237 20.18 20.52 26.16 0.476 0.417 0.531 0.247 0.207 0.316
T0340 1r6ja_ 0.697 0.740 0.746 13.45 11.95 12.35 0.743 0.755 0.762 0.742 0.742 0.758
T0341 1qcza_ 0.088 0.000 0.079 1.72 1.35 1.38 0.203 0.141 0.163 0.110 0.067 0.107
T0353 2igd__ 0.255 0.260 0.280 5.93 5.68 6.84 0.315 0.318 0.339 0.338 0.347 0.365
T0354 1fm0e_ 0.000 0.000 0.000 1.11 4.69 1.25 0.230 0.191 0.220 0.211 0.164 0.209
T0356 1j27a_ 0.000 0.000 0.000 -0.24 -0.87 0.46 0.083 0.087 0.045 0.034 0.040 0.031
T0357 1nxja_ 0.000 0.000 0.220 10.80 5.39 6.19 0.221 0.186 0.294 0.169 0.129 0.278
T0359 1r6ja_ 0.677 0.629 0.683 13.48 11.68 12.35 0.718 0.663 0.701 0.707 0.634 0.699
T0361 1t7ra_ 0.126 0.112 0.144 4.05 1.21 1.98 0.221 0.225 0.192 0.185 0.173 0.173
T0362 1vh5a_ 0.000 0.000 0.449 10.45 2.05 13.78 0.167 0.187 0.538 0.115 0.162 0.477
T0363 2igd__ 0.000 0.000 0.321 4.66 4.02 4.02 0.176 0.156 0.343 0.178 0.166 0.372
T0364 1vh5a_ 0.220 0.253 0.489 12.88 7.84 14.39 0.346 0.312 0.557 0.276 0.271 0.508
T0365 1g73a_ 0.146 0.000 0.109 5.23 4.47 4.83 0.247 0.162 0.190 0.188 0.115 0.140
T0366 1r6ja_ 0.685 0.754 0.781 12.59 11.78 11.37 0.722 0.774 0.777 0.702 0.780 0.765
T0367 1ug7a_ 0.000 0.000 0.220 7.65 4.20 7.16 0.274 0.196 0.304 0.242 0.172 0.264
T0368 1hz4a_ 0.211 0.159 0.208 5.65 4.49 4.16 0.327 0.295 0.308 0.261 0.239 0.266
T0369 1orja_ 0.166 0.000 0.000 4.12 2.40 5.12 0.234 0.148 0.167 0.225 0.126 0.157
T0371 1f4pa_ 0.000 0.000 0.000 0.34 2.51 5.31 0.158 0.154 0.144 0.078 0.089 0.086
T0372 1m44a_ 0.000 0.000 0.133 0.04 0.14 0.55 0.143 0.131 0.246 0.064 0.057 0.168
T0373 1rh5b_ 0.000 0.000 0.000 -0.06 3.79 3.02 0.132 0.147 0.153 0.125 0.155 0.154
T0374 1m44a_ 0.293 0.386 0.384 13.33 15.66 14.94 0.445 0.566 0.545 0.361 0.463 0.459
T0375 1bx4a_ 0.482 0.457 0.508 32.34 29.72 29.86 0.741 0.696 0.730 0.542 0.510 0.541
T0376 1twda_ 0.125 0.108 0.191 14.05 15.93 15.39 0.303 0.346 0.382 0.167 0.189 0.261
T0378 1sdsa_ 0.089 0.000 0.159 2.02 0.35 8.18 0.148 0.122 0.227 0.095 0.071 0.177
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0.001). For each template of length n in the training set,
alignments with the other templates in the training set are
generated. Then, these alignments are transformed,
respectively, into (n + 1)-dimensional feature vectors,

(sa1, sa2, ..., sai, ..., san, queary_lenth)

where sai is the profile-profile alignment score at position
i of a given template [45] and query_length is the length of
the query protein (Figure 1). If gaps occur, fixed negative
scores are arbitrarily assigned. This is the modified version
of [24]. The difference is that we use query_length instead
of total alignment score. Since the size of the vector, n is
dependent on the length of template protein, we make the
same number of SVRs for all templates.

SVR training
Only templates sharing at least the same fold with a target
template are trained. To learn as many alignment exam-
ples as possible, 48 alignments are made per each pair of
a query and a template (Table 2). Gap open penalty rang-
ing from 5 to 13 is used; gap extension is one or two; base-
line value is zero or one. The parameter for the predicted
secondary structure information content is also varied.
The input and the target of SVR are derived from the pre-
vious two sections. We would like to emphasize that there
is no correct alignment example. Regression is basically a
real value prediction. In training step for each input-target
data of training sample, SVR models are trained with
radial basis function (RBF) kernel without attempting
serious performance optimization by SVMlight version
6.01 with the parameter gamma of 0.001 [46].

Availability and requirements
The method is implemented in the platform-independent
web server, FORECAST as a part. It is freely available with-
out any restriction at http://pbil.kaist.ac.kr/forecast
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