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Background

The sequencing of the human genome has made it possi-
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Abstract

Background: Maximum parsimony phylogenetic tree reconstruction from genetic variation data
is a fundamental problem in computational genetics with many practical applications in population
genetics, whole genome analysis, and the search for genetic predictors of disease. Efficient methods
are available for reconstruction of maximum parsimony trees from haplotype data, but such data
are difficult to determine directly for autosomal DNA. Data more commonly is available in the form
of genotypes, which consist of conflated combinations of pairs of haplotypes from homologous
chromosomes. Currently, there are no general algorithms for the direct reconstruction of
maximum parsimony phylogenies from genotype data. Hence phylogenetic applications for
autosomal data must therefore rely on other methods for first computationally inferring haplotypes
from genotypes.

Results: In this work, we develop the first practical method for computing maximum parsimony
phylogenies directly from genotype data. We show that the standard practice of first inferring
haplotypes from genotypes and then reconstructing a phylogeny on the haplotypes often
substantially overestimates phylogeny size. As an immediate application, our method can be used
to determine the minimum number of mutations required to explain a given set of observed
genotypes.

Conclusion: Phylogeny reconstruction directly from unphased data is computationally feasible for
moderate-sized problem instances and can lead to substantially more accurate tree size inferences
than the standard practice of treating phasing and phylogeny construction as two separate analysis
stages. The difference between the approaches is particularly important for downstream
applications that require a lower-bound on the number of mutations that the genetic region has
undergone.

ble to conduct genome-wide studies on genetic variations
in human populations. Most of these variation data are in
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the form of single nucleotide polymorphisms (SNPs), sin-
gle DNA bases that have two common variants in a popu-
lation, of which several million have now been identified
[1]. Phylogenetic inference is central to identifying shared
ancestry among populations and is also useful as a means
of increasing the statistical power of association studies
used to detect disease-related variations [2]. Furthermore,
phylogenies can provide specific guidance as to the selec-
tion of marker SNPs for such studies, for example by
allowing one to avoid variant sites that have appeared
multiple times in an evolutionary tree and that are there-
fore likely to confound association tests. Phylogenetics on
short evolutionary time scales, such as within a single spe-
cies, is generally performed using a maximum parsimony
objective [3], i.e., finding trees that explain the observed
data with the minimum possible number of mutations.
On such data, it is usually assumed that one must find a
Steiner tree in which observed sequences may be present
anywhere in the tree and additional Steiner nodes may be
introduced. This is in contrast to the species trees used to
describe longer time scales, where observed sequences are
generally found only at the leaves of the tree. Although
inferring maximum parsimony Steiner trees on binary
SNP data (haplotypes) is an NP-hard problem [4], there
are excellent methods now available for solving it in prac-
tice, including fast heuristics suitable for difficult
instances [5-8], fixed parameter tractable methods for
provably efficient optimal solutions in some cases [9,10],
and integer linear programming methods for provably
optimal solutions of many harder cases [11].

Unfortunately, the haplotype input data these methods
assume, also known as "phased" data, are not easily avail-
able for autosomal genetic regions. Large-scale genetic
studies usually instead must gather unphased, or geno-
type, data, in which haplotype contributions from two
homologous chromosomes are conflated with one
another.

To illustrate the problem, it will be helpful to arbitrarily
denote the minor allele at each SNP site by 1 and the
major allele by 0. In a genotype data set, we only observe
the number of minor alleles present at each SNP site,
which we will denote by 0 for homozygous major, 1 for
heterozygous and 2 for homozygous minor. For example,
see Figure 1. Hence, if we examine m sites, then a genotype
sequence is a string of the form {0, 1, 2}™ while a haplo-
type sequence is a string of the form {0, 1}™. A pair of
haplotype sequences is consistent with (explains) a geno-
type sequence when they have the same allele counts at all
sites. In the {0, 1, 2} notation above, a pair of haplotypes
is consistent with a genotype when the sum of the two
haplotype vectors produces the genotype vector.
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Phasing: computationally inferring genotypes from
haplotypes. Although DNA sequences consist of four
bases, single nucleotide polymorphisms (SNPs) are biallelic.
Therefore, the sequence variation can be expressed using
binary symbols. The observed genotype sequences consist of
conflated combinations of two true haplotype sequences.
Programs that computationally infer haplotypes attempt to
minimize switch errors.

While mitochondrial and Y chromosome data can serve
for tracking population histories on broad scales [12],
autosomal phylogenies are still independently valuable
for practical applications in association study design,
marker selection, and the identification of specific variant
sites that are unusually mutable, repeatedly altered by
gene conversion, or under selective pressure to recurrently
mutate. Phylogeny inference cannot generally be per-
formed directly on genotype data and in practice one must
therefore analyze autosomal data by first computationally
phasing the data to predict the haplotypes [13]. Many
methods are now available for this phasing problem, such
as PHASE [14], fastPHASE [15], HAP [16] and PPH [17].
This phasing step, however, can produce erroneous
assignments and the maximum parsimony phylogeny on
the computationally phased genotypes need not be the
same as, or even close to, the maximally parsimonious
tree consistent with the original unphased genotypes.
Phasing programs are typically designed to minimize the
"switch error," in which the contributions from two
homologous chromosomes are swapped between two
consecutive markers (see [15] for the formal definition).
Yet a single switch error in a phasing assignment can
introduce a large number of errors (linear in the number
of markers) in the resulting phylogeny assignment, as
shown in Figures 1 and 2. Even high-quality phasing
methods can thus produce poor-quality phylogenies.

A limited amount of prior work has examined the pros-
pect of inferring maximum parsimony phylogenies
directly from genotype data. Notice that in such problems,
we wish to determine a pair of haplotypes for each input
genotype sequence such that the maximum parsimony
phylogeny size on the set of haplotypes is minimized.
Gusfield showed that the problem can be efficiently
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Phylogenetic error. Although switch errors in phase infer-
ence can be small, in this case I, the phylogeny size could be
significantly altered. Therefore estimates such as mutation
rates could be significantly affected if performed on computa-
tionally inferred haplotypes as opposed to genotypes. More-
over, in current methods it is impossible to say if the inferred
phylogeny size is larger or smaller than that of the phylogeny
from the true haplotypes.

solved when the genotype data are consistent with a per-
fect phylogeny [17], an evolutionary tree in which each
variant site mutates only once. Several subsequent algo-
rithms were developed for the same problem that were
either simpler or faster asymptotically [17-21]. While the
perfect phylogeny assumption is restrictive, this variant
does have practical importance as a technique for fast
phasing (e.g., [16]). The perfect phylogeny assumption
will not be true in general, however. In particular, it will
not allow analysis of data containing recurrently mutating
sites, the detection of which is an important reason for
studying phylogenetics of autosomal DNA. Halperin et al.
[16] generalized Gusfield's perfect phylogeny method
heuristically to allow limited solution of phylogenies
deviating slightly from the assumption of perfection.
These are called near-perfect phylogenies [22] and specifi-
cally g-near-perfect (or g-imperfect) when ¢ additional
mutations are needed beyond those required to produce a
perfect phylogeny. Song et al.[23] and Sridhar et al.[24]
developed rigorous methods for efficiently finding maxi-
mum parsimony near-perfect phylogenies, but these
methods proved practical only for small g (at most 2). In
practice, the problem of finding maximum parsimony
phylogenies from genotype data has remained intractable
for all but the simplest data sets.

We note that the parsimony based approach described
above is different from finding haplotypes corresponding
to the given genotypes based on 'pure parsimony,' an
objective that minimizes the number of distinct haplo-
types needed to explain the observed genotypes as
opposed to minimizing the number of mutations. The
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pure parsimony problem is NP-complete as well and there
are integer program based approaches that solve problem
instances of reasonable size [25]. Pure parsimony and
maximum parsimony phylogenetic trees share some
properties that we can exploit in our method. The solution
to the pure parsimony problem provides a lower bound
on the size of the maximum parsimony phylogeny, as no
phylogeny can have fewer mutations than one less than
the minimum number of haplotypes needed to explain
the genotypes. Furthermore, the solution of the pure par-
simony problem also provides a good starting set of hap-
lotypes from which we can obtain an upper-bound for the
size of the maximum parsimony phylogeny.

In this paper, we provide the first general, practical meth-
ods for maximum parsimony phylogeny inference from
genotypes and use these methods to assess the inaccura-
cies introduced by phasing genotypes prior to phylogeny
inference. Our algorithm relies on solving integer linear
programs and allows for efficient solution of moderate-
sized problem instances but large imperfection. As an
immediate application, our method can be used to infer
the minimum number of recurrent mutations required to
explain the given set of genotypes. We apply the resulting
methods to a selection of real and simulated data, where
we compare the true imperfection, imperfection from
haplotypes computationally inferred from genotypes and
imperfection directly obtained from genotypes. This anal-
ysis shows that the phasing step often increases inferred
phylogeny size, overestimating the true maximum parsi-
mony. Motivated by our observations, we introduce a new
phylogenetic error statistic that is better suited for assessing
phase accuracy for phylogenetic applications than the
standard switch error statistic [15].

Results and Discussion

We now present the results of a series of empirical tests to
assess the utility of the method on real and simulated
genetic data. With both kinds of data, we begin with
known haplotypes and then artificially pair them to pro-
duce genotypes. For each problem instance, we recon-
struct maximum parsimony (MP) phylogenies in three
ways: directly from the genotypes using the algorithm pre-
sented in this paper, from the original (true) haplotypes
and from haplotypes computationally inferred from the
genotypes using fastPHASE [15] and haplotyper [26], two
leading methods for haplotype inference. We use the
notation T, Ty, and Ty, to denote the MP phylogeny
from the genotypes, true haplotypes and inferred haplo-
types (either using fastPHASE or haplotyper) respectively.
We further denote the parsimony score (number of muta-
tions) of a phylogeny T by length(T). For phylogeny T that
is either T,,,, or T,,;, we define a phylogenetic error based
on length(T,,,,) as follows.
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Definition |

The phylogenetic error of Phylogeny T (T, or Tye) is
|length(T,,,,) - length(T)|. Phylogeny T is said to have a pos-
itive error if length(T) > length(T,,,) and negative error if
length(T) < length(T,,,)-

Note that it is impossible for T,,;, to have positive phylo-
genetic error. This is because our algorithm optimizes over
all possible haplotypes consistent with the given set of
genotypes and selects the one that minimizes the size of
the phylogenetic tree. In contrast, T, can suffer from
both types of errors and it is impossible to know if the size
of the true phylogeny is larger or smaller than T,,,. The
following definition of an imperfection of a phylogeny has
been widely used.

Definition 2

The imperfection of a phylogeny T constructed for an input set
of sequences (genotypes or haplotypes) with m varying sites is
length(T) - m.

Simply stated, the imperfection is the minimum number
of recurrent mutations required to explain the sequences
using the phylogeny. Notice that if there are m varying
sites in an input set of genotypes then every possible set of
haplotypes that explain it must have m varying sites as
well. The experiments presented in the following section
allow us to understand the gap between the size of the
phylogeny from genotypes, the true size and the artifi-
cially inflated sizes due to incorrect phase inference.

Simulated Data

Due to difficulty of obtaining phase-known autosomal
data, we begin by examining simulated data. We used coa-
lescent simulations to generate recombination-free haplo-
types and genotypes for varying mutation rates and used
these for a series of tests on how the accuracy of our
method and the two comparative haplotype-based
approaches varied with different parameter values. Each
test measured the total number of errors of each method
in 200 independently generated data sets. We first varied
the mutation rate parameter 6 to test its influence on the
accuracy of all the methods. The results are provided in
Figure 3. We find that the relative performance of the three
methods is fairly consistent. The greatest number of errors
is generally made by fastPHASE and the least by direct
phylogeny inference from the genotypes, with haplotyper
in between. As one would expect, the number of errors of
all three methods increases with increasing mutation rate.
The curves are not monotonic, but additional simulation
runs identical to those described here (data not shown)
show no conservation of specific peaks and troughs of the
graphs, indicating that they reflect only random noise due
to a high variance in phylogenetic errors across trials.
Table 1 separates the results of the two indirect methods,
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fastPHASE and haplotyper, into positive and negative
errors. Both methods show mixtures of generally similar
numbers of positive and negative phylogenetic errors with
no apparent consistent trends towards favoring one or the
other error type as one particular parameter varies. Note
that by definition, our new method cannot produce posi-
tive errors and all errors it produces therefore reflect
underestimates of phylogeny size.

We next tested variation in accuracy with the number of
haplotype sequences sampled for fixed mutation rate with
6= 0.5. The results are shown in Figure 4. Our direct meth-
ods show a slightly more pronounced advantage for 10-
SNP windows than 5-SNP windows. This could simply be
due to higher variance in the results of the 5-SNP win-
dows. Table 2 shows the breakdown of the indirect meth-
ods into positive and negative errors, with both indirect
methods again showing a mixture of comparable num-
bers of positive and negative errors across the parameter
range, haplotyper again shows generally better accuracy
than fastPHASE by this measure. One might expect that
with increase in the number of haplotypes, the number of
mutations required to explain the data would increase as
well. Therefore, the number of errors should increase with
the number of haplotypes. This, however, does not seem
to be the case in practice, an observation that can be
explained by the fact that greater numbers of haplotypes
provides more information and thus yield improved accu-
racy in phase inference. Therefore, the number of phylo-
genetic errors roughly stay the same with the increase in
the number of haplotypes for all the methods.

Mitochondrial DNA

The next step in our analysis used mitochondrial DNA
(mtDNA), which is naturally haploid. Although one
would not normally need to phase mitochondrial DNA,
we use it in our validation because it provides a source of
large numbers of known haplotypes and because it pro-
vides a good model of recombination-free DNA. The lack
of recombination in the mitochondrial DNA means that
if the most parsimonious phylogeny on the genotypes is
g-imperfect, then that region must have undergone a min-
imum of ¢ recurrent mutations. The mitochondrial
genome contains known regions of high mutation rate
that allow us to validate the ability of phylogenetic imper-
fection to identify true sites of recurrent mutation, a key
application of our method. For the purpose of these tests,
we generated artificial diploids by randomly combining
60 mitochondrial complete sequences (16,569 bases)
from a data set of Fraumene et al.[27] to produce thirty
diploids. We then computationally inferred haplotypes
from the all of the genotypes using fastPHASE. Haploty-
per was omitted from these tests because the data set was
larger than it could process. We then constructed phylog-
enies for all sliding windows of 50 bases across the data
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(b) Accuracy vs. Mutation Rate (5 sites, 60 haplotypes)
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(d) Accuracy vs. Mutation Rate (10 sites, 60 haplotypes)
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Phylogenetic error as a function of mutation rate for varying dataset sizes. Each plot shows the phylogenetic errors
for inferences from our direct inference method (black circles), indirect inference using fastPHASE (light grey triangles), and
indirect inference using haplotyper (dark grey squares) as a function of the mutation rate 6. Plots are provided for two window
sizes (5 and 10 SNPs) and for two population sizes (30 and 60 haplotypes). Each data point in the plot was computed by run-
ning each algorithm over 200 randomly generated data-sets, (a) window size 5, 30 haplotypes. (b) window size 5, 60 haplo-
types. (c) window size 10, 30 haplotypes. (d) window size 10, 60 haplotypes.

set by each of three methods: maximum parsimony using
true haplotypes, inferred haplotypes and directly from the
genotypes. Our method required 116 seconds on a desk-
top Linux PC to reconstruct the phylogenies for all the
sliding windows, clearly demonstrating its practical effi-
ciency.

Figure 5 shows the results for two regions of the mito-
chondrial D-loop that are known to have unusually high
mutation rates [28]. The intervening sequence between
these two regions, where mutation rate is low, is not

shown since all windows have true imperfection zero. The
genotype imperfection is identical to the true imperfec-
tion for the large majority of windows (zero positive and
negative phylogenetic errors). While inferences from gen-
otypes could err in the direction of underestimating the
true haplotype imperfection, they nonetheless appear in
practice to provide very good estimates of the true imper-
fection on these data. Genotype imperfection is never less
than one below the true imperfection, i.e., at most 1 neg-
ative phylogenetic error for any window. Imperfection
from inferred haplotypes is usually higher than the true
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Table I: Positive and negative errors for indirect phylogeny inference with varying mutation rate

SNPs ny Method 6=0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60
5 30 fastPHASE positive errors 2 8 8 13 7 15 14 8 14
5 30 fastPHASE negative errors [ 8 | 5 I 16 19 19 26
5 30 haplotyper positive errors | 10 2 10 3 6 12 5 12
5 30 haplotyper negative errors | 8 2 5 I 17 22 21 26
10 30 fastPHASE positive errors 7 12 27 38 28 38 38 27 42
10 30 fastPHASE negative errors 10 12 9 I 24 29 24 23 26
10 30 haplotyper positive errors 7 14 15 23 28 24 37 4] 40
10 30 haplotyper negative errors I I 12 Il 21 31 20 18 25
5 60 fastPHASE positive errors 6 7 7 15 16 13 16 I 14
5 60 fastPHASE negative errors 2 3 3 7 7 7 12 12 21
5 60 haplotyper positive errors 5 3 3 9 7 8 7 7 6
5 60 haplotyper negative errors 2 2 3 9 10 9 14 15 24
10 60 fastPHASE positive errors 24 25 25 29 28 32 43 54 41
10 60 fastPHASE negative errors 4 Il 20 14 12 17 27 23 36
10 60 haplotyper positive errors I 13 14 13 22 25 27 42 34
10 60 haplotyper negative errors 7 12 24 18 I 21 28 22 29

The table separates the phylogenetic errors from the experiments of Figure 2 into positive and negative errors for indirect phylogeny inference
using fastPHASE and haplotyper.

imperfection in the imperfect regions, often substantially
so, demonstrating that incorrect phasing can lead to large

phylogenetic errors.
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Phase-known Autosomal DNA

Only a very limited amount of true phase-known auto-
somal data is available. We chose to examine a set taken
from the lipoprotein lipase (LPL) gene [29], which is the
only true phase-known data publicly available that has a
sufficiently large population sample and number of SNPs

(b) Accuracy vs. Number of Sequences (10 sites, 6=0.5)
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Phylogenetic error as a function of population size. Each plot shows the phylogenetic errors for inferences from our
direct inference method (black circles), indirect inference using fastPHASE (light grey triangles), and indirect inference using
haplotyper (dark grey squares) as a function of number of input haplotypes. Plots are provided for two window sizes (5 and 10
SNPs). Each data point in the plot was computed by running each algorithm over 200 randomly generated data-sets, (a) win-
dow size 5. (b) window size 0.
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Table 2: Positive and negative errors for indirect phylogeny inference with varying sample sizes

SNPs Method ny =30 40 50 60 70 80 90 100 110 120
5 fastPHASE positive errors 10 12 15 14 I 15 25 15 10 10
5 fastPHASE negative errors 16 12 14 14 10 12 10 13 13 8
5 haplotyper positive errors 5 6 7 10 3 Il 12 7 5 4
5 haplotyper negative errors 18 12 15 17 9 15 14 14 14 I
10 fastPHASE positive errors 38 32 43 34 31 41 46 53 41 38
10 fastPHASE negative errors 26 25 19 18 14 17 23 22 24 22
10 haplotyper positive errors 32 26 31 28 35 23 36 30 23 14
10 haplotyper negative errors 27 27 22 22 17 25 28 28 34 26

The table separates the phylogenetic errors from the experiments of Figure 3 into positive and negative errors for indirect phylogeny inference
using fastPHASE and haplotyper.
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Figure 5

Mitochondrial DNA D-loop. Imperfection around two high-variation segments (bp 1:800 and 16100:16350) of the D-loop
of the mtDNA. Each position on the x-axis denotes the central nucleotide of the window examined. The y-axis shows the
inferred imperfection by our direct method (solid grey line), imperfections inferred by the indirect method using fastPHASE
(dotted black line), and the true imperfection (dashed black line), (a) bp | to 800. (b) bp 16100 to 16350.
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to provide a challenging test for the methods considered
here. The dataset consists of 144 haplotypes (77 distinct)
belonging to three different ethnicities and 86 SNPs. The
true genotypes corresponding to the haplotypes were not
published for this data sets and so we duplicated the first
haplotype to obtain 78 distinct sequences and then ran-
domly paired them to produce 39 artificial genotypes
from the true haplotypes. As in the previous case, we ran
fastPHASE and haplotyper on all of the SNPs put together
to obtain inferred haplotypes. Unlike mtDNA, the auto-
somal chromosomes undergo recombinations and so we
used the HAP webserver [16] to break the 86 SNPs into
blocks. We obtained 22 blocks which we assume to be
recombination-free. We then estimated the size of the
phylogenies within each of the blocks separately from the
true haplotypes, inferred haplotypes and genotypes
directly. Note that we would expect this to be a particu-
larly difficult dataset for our algorithm because haploty-
per and fastPHASE made inferences from all the SNPs at
once, whereas our method was run on each block inde-
pendently.

The results are shown in Figure 6, where the x-coordinate
of each point is the central SNP of the block and the y-
coordinate is the imperfection in that block. Most of the
blocks are imperfect. On this dataset, in contrast to the

http://www.biomedcentral.com/1471-2105/8/472

prior ones, the direct and indirect approaches showed
almost equal total accuracy, with haplotyper being
slightly worse. This difference may reflect a failure to elim-
inate all recombination from the data set or might be
because any advantage of direct inference is too modest to
stand out on such a small data set. Even on a dataset that
would be expected to be unusually easy for a phasing pro-
gram, though, our method does no worse than the indi-
rect approach. This dataset also suggests that the two
approaches could be used in a complementary fashion, as
the methods often bracket the true answer from opposite
directions.

Resource Usage

We have, finally, examined the performance of our
method in run time and space usage using additional sim-
ulation tests. We examined a range of data set sizes from
30 to 120 genotypes for fixed mutation rate = 0.5 for 5-
SNP and 10-SNP windows using averages for 200 repeti-
tions per parameter value. Run times were measured for
our method and for fastPHASE and haplotyper. Figures
7(a) and 7(b) shows run times for the method for 5- and
10-SNP windows, respectively. Our method is consist-
ently faster than fastPHASE and slower than haplotyper
for 5-SNP windows. Like haplotyper and unlike fast-
PHASE, our method appears insensitive to the number of

S 4
(=] direct inference
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5 41 / — o ey o — haplotyper
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Lo \ / A - -
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Figure 6

Phylogenetic errors on lipoprotein lipase (LPL). Imperfections for 22 blocks from LPL. Each data point has an x-coordi-
nate corresponding to the central SNP of a given block and a y-coordinate corresponding to the imperfection of the inferred
phylogeny on that block. Data is shown for our direct method (solid grey line with squares), indirect inference with fastPHASE
(dotted grey line with X's), indirect inference with haplotyper (dash-dot grey line with triangles), and the true imperfection

(dashed black line with diamonds).
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(a) Run Time vs. Number of Sequences (5 sites, 6=0.5)
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(b) Run Time vs. Number of Sequences (10 sites, 6=0.5)
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Run time and space performance as a function of input size. Each plot measures performance for fixed mutation rate
@- 0.5. Run time is measured in seconds processor time required per parameter value, averaged over 200 independent runs.
Run time data is provided for our direct method (solid block line with circles), fastPHASE (dotted line with triangles), and hap-
lotyper (dash-dot line with squares). Space usage is measured in maximum linear program size in variables X constraints over
the full branch-and-bound execution, averaged over 200 independent runs, (a) Run time performance on 5-SNP windows, (b)
Run time performance on 10-SNP windows, (c) Space usage on 5-SNP windows, (d) Space usage on [0-SNP windows.

input sequences. Our method shows a substantial slow-
down in moving from 5-SNP to 10-SNP windows. While
the method is faster than fastPHASE for 5-SNP windows it
is on average a few times slower with 10-SNP windows.
This slowdown is to be expected since our method con-
structs a program of potentially exponential size in win-
dow size, haplotyper is consistently the fastest of the
methods for both window sizes.

We further assessed space usage of our method based on
the maximum linear program relaxation size examined
over the course of a given problem instance, averaging this
value over the 200 trials. Here size is expressed as the

product of the number variables and constraints. Figures
7(c) and 7(d) show the results for 5- and 10-SNP win-
dows. The results show a high degree of noise, with a sin-
gle outlier point requiring roughly 100-fold more space
than the others. Nonetheless, program size appears gener-
ally to increase with number of input sequences. Space
usage also increases substantially with window size,
which we would again expect given that worst-case pro-
gram size is exponential in window size.

Conclusion
We have developed the first practical, general methods for
finding maximum parsimony haplotypes from unphased
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genotype data and have used them to assess the costs
introduced by computational phasing prior to phyloge-
netic inference. Our methods used a collection of heuris-
tics based on the theory of Steiner trees, a variant of a
flow-based ILP, and a branch-and-bound approach to
solve problem instances with high imperfection that were
not solvable by any prior method. While the method pre-
sented here is specific to the problem of inferring purely
mutational phylogenies, similar approaches may prove
productive for inference of ancestry by more general mod-
els of molecular evolution, such as ancestral recombina-
tion graphs (ARGs). Empirical tests on simulated and
semi-simulated data show that direct phylogeny inference
from genotypes leads to fewer errors than does the stand-
ard practice of building phylogenies from phased data.
Methods for this problem have several practical applica-
tions. Most important is to estimate the minimum
number of recurrent mutations required to explain a set of
observed genotypes. A large such value may indicate fre-
quent recurrent mutation or gene conversion or a selective
pressure to recurrently alter a given allele. Researchers try-
ing to establish such effects need to ensure that the size of
the phylogeny is not an artifact of phase inference. The
method should similarly be useful for improving esti-
mates of local mutation rates. Other applications include
improving the power of association tests by eliminating
spurious effects from recurrent mutation, and providing
alternative methods for detecting recombination-free
autosomal regions and performing phase inference from
genotype data.

Methods

We implemented two versions of the integer linear pro-
gram both of which were competitive in practice. The first
is a direct integer linear program implementation and the
second is a branch-and-bound algorithm that wraps over
a second integer linear program. We describe the direct
implementation first followed by the branch-and-bound
method. Both methods were implemented in C++ using
the Concert Technology of CPLEX 10.0 for integer linear
program (ILP) solutions. We found the branch-and-
bound method to give generally lower run times in prac-
tice than the direct ILP method. We therefore used the
branch-and-bound method exclusively in generating the
empirical results presented here.

Direct Integer Linear Programming Approach

This section introduces our ILP algorithm to solve the
Genotype MP Phylogeny Problem. In the first subsection,
we introduce pre-processing techniques that typically
reduce the problem size after which we describe the ILP.

http://www.biomedcentral.com/1471-2105/8/472

Preprocessing

Preprocessing techniques form an integral part of any
solution method based on integer programming. We now
describe the major preprocessing methods used.

Let G be the n x m input genotype matrix. Without loss of
generality we can assume that all m sites are varying. We
can also remove redundant rows (genotypes) of G until all
rows are distinct, since this does not change the length of
the optimal phylogeny. We now describe a method to
remove redundant sites (columns) from G. Note that we
are free to exchange labels 0 and 2 (homozygous major
and minor alleles) independently at each site without
change in the size of the phylogeny. Therefore two sites i
and j are considered redundant if they are identical or
become identical after relabeling one site.

For all sites k, let weight w), be initialized to 1. We then iter-
atively perform the following operation: for any pair of
redundant sites i, j, set w;:= w; + w;, and remove site j from
the matrix. Let G' be the final matrix after this sequence of
preprocessing steps. We now redefine the length of a phy-
logeny using a weighted Hamming distance as follows.

Definition 3

The length of phylogeny T(V, E) is length(T) =
2 (up)eEXieD(uu)Wy where D(u, v) is the set of sites where u, v
differ.

The following lemma justifies the preprocessing step:

Lemma |

The transformation from genotype matrix G to weighted geno-
type matrix G' does not change the length of the most parsimo-
nious phylogeny.

Proof |

For any genotype matrix I, let T, denote the optimal phylogeny
on L. For a site i of I, let j be a redundant site and consider the
matrix I U {j}. The topology of phylogeny T, also gives a phyl-
ogeny for I U {j}, obtained by mutating j wherever i mutates.
The length of Ty is length(Ty ;) = length(T)) + w(i),
where (i) is the number of times site i mutates in T,. Now,
assume that the most parsimonious phylogeny T for G resolves
redundant genotype sites i and j differently, i.e., there is a hap-
lotype for which sites i and j differ. Without loss of generality,
suppose (i) < u(j) in Tg. Then removing column j from T
results in a phylogeny T, (;, with length(T, (;;) = length(T()
- 1(j). Now, since j is identical to i, the argument above implies
that adding site j back to the phylogeny gives a tree with length
length(T,) - u(j) + p(i) < length(T,;). Therefore, there is an
optimal phylogeny resolving sites i and j identically.

Due to these preprocessing steps, we assume from now on

that the input genotype matrix G has distinct rows, dis-
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tinct sites, and weights w; > 1 associated to sites. For each
genotype g € G, we create the set R(g) consisting of all pos-
sible pairs of haplotypes explaining g. Note that if p is the
number of heterozygous sites in g, then R(g) consists of 2¢-
1 pairs of haplotypes.

Now, consider the matrix H = -,_;R(g), where the rows are
all possible haplotypes that can explain input genotypes
in G. H is a binary matrix, and for such instances, struc-
tural properties of the optimal phylogeny can be captured
by a graph known as the Buneman graph 8 (H) [30]. We
will explain the generalization of this graph due to Bar-
thélemy [31].

For a binary input matrix H and a site ¢ of H, the split
¢(0)|c(1) defined by c is a partition of the haplotypes into
two sets, where ¢(0) is the set of haplotypes with value 0
in site ¢ and ¢(1) is the set of haplotypes with value 1 in
site ¢. Each of ¢(0) and ¢(1) is called a block of c. Each ver-
tex of the Buneman graph is an m-tuple of blocks [c, (i;),
¢(i3),-C(i)] (i;= 0 or 1 for each 1 <j < m), with one
block for each site and such that each pair of blocks ¢;(i;)
M ¢,(i,) has nonempty intersection. There is an edge
between two vertices in B (H) if and only if they differ in
exactly one block. Notice that vertices in the Buneman
graph can be viewed simply as haplotypes. An m-tuple
[c1(i1),....c,y(iy,)] translates to haplotype (iy,...,i,,). Bune-
man graphs are very useful due to the following theorem:

Theorem |
[3,5]Let B (H) be the Buneman graph for binary (haplotype)

matrix H. Every optimal phylogeny Ty, is a subgraph of B (H).

Using Theorem 1, we first construct the Buneman graph
on H and then solve the phylogeny problem on underly-
ing graph 8 (H). The following lemma gives a bound on
the time required to construct 8 (H).

Lemma 2

[11]The Buneman graph B (H) for input H on m sites can be
constructed in time O(km) where k is the number of vertices in
B (H).

The Buneman graph is simply a method to reduce the size
of the underlying graph from an m-cube with 2 vertices
to a (typically significantly) smaller sub-graph. Putting
together these methods, we can summarize our preproc-
essing steps as follows:

http://www.biomedcentral.com/1471-2105/8/472

1. Create a weighted genotype matrix G where sites are
pair-wise distinct.

2. Create a set H of all possible haplotypes explaining
rows of G.

3. Construct the underlying graph F(V, E) = 8 (H) where

H c V and (u, v) € E connects two vertices (haplotypes) if
and only if they differ in exactly one site. Edge weights w,, ,

= w; where i is the site at which u and v differ.

We apply some additional heuristic preprocessing steps
that have proven very effective in practice. One of these
steps identifies a subset of haplotypes that must occur in
any optimal solution and then removes from the input
any genotypes that can be produced from pairs of these
obligatory haplotypes. As any optimal output can produce
these genotypes, their absence will not change the final
output. We can also eliminate certain possible haplotypes
because they would imply high-weight edges and there-
fore cannot occur in any low-cost solution.

Once all preprocessing steps have been applied, we have a
weighted Buneman graph B(H) that contains every node
and edge that might be included in any optimal phylog-
eny for G. We now show an ILP formulation to simultane-
ously select the optimal subset H' < H such that all of G
can be derived from H' and connect H' using a tree.

ILP Formulation

We now develop an ILP formulation for the problem
based on multicommodity flows [32]. The formulation
borrows from prior work on fast ILP solution of maxi-
mum parsimony phylogenies on haplotypes [11].
Although this formulation can use exponential numbers
of variables and constraints in the worst case, it is fast in
practice. It is possible to solve the maximum parsimony
genotype problem using an ILP with polynomial numbers
of variables and constraints, but all polynomial-size vari-
ants that we developed proved intractable in practice.

The high-level idea of the method is to send flow from a
designated root to each haplotype that is used to explain
an input genotype. Each of these haplotypes acts as a sink
for one unit of flow. The program must select a subset of
edges that accommodate all flow while minimizing the
cost of the edges selected. This flow formulation guaran-
tees that every haplotype is connected to the root and the
minimization prevents formation of cycles. The formula-
tion thus forces the output to be a tree. For the sake of sim-
plicity, we assume that the all-zeros haplotype is present
in all the solutions. We can treat this as the root.
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Let h;, be an indicator variable denoting the presence or
absence of haplotype k € H. If h, = 1, k is called a present
haplotype. We have binary variables p;; that denote the
presence of both haplotypes h;and h;. All the present hap-

lotypes act as a sink for one unit of flow from the root ver-
tex. On the other hand, all non-present haplotype vertices
and Steiner vertices satisfy perfect flow conservation. To

enforce this, we use two types of binary variables f, i{gj and

s;jfor each edge (i, j) € E. The variables ffj are real valued

and represent the amount of flow along edge (i, j) whose
final destination is haplotype k. Note that if k is a non-
present haplotype, then filfj should be set to 0 for all
edges (i, j). Variables s; ; are binary variables that denotes if
edge (i, j) of the graph has been selected. We want to

enforce that flow can be sent along edge (i, j) only if it has
been selected.

We now have the following integer linear program:

min 2, w;s; (1)

st p<h; VijeH (2)
pi<h VijeH 3)
2(ij)ergPij= 1 Vinputg e G (4)

Z]féeffzzjf]}fk:hk Vke H (5)
foj=2,fffi Vi#0,kke H (6)
J j

fli<sy; Vijk (7)

In constraints (2) and (3), variable p; indicates the pres-
ence of the haplotype pair (h; h;). Constraint (4) guaran-
tees that each genotype is explained by at least one pair of
haplotypes. Constraint (5) imposes inflow/outflow con-
straints on haplotypes as well as enforcing the condition
that there is positive flow to a haplotype h, only if h, is
selected. Constraint (6) imposes flow conservation at all
non-present haplotype vertices as well as Steiner vertices
and constraint (7) imposes the condition that flow can
only be sent along edges present in the solution. Note that
all integer variables of the above linear program are
binary. Finally, we observe that the solution of the ILP is
the size of the most parsimonious phylogeny on G.

http://www.biomedcentral.com/1471-2105/8/472

Branch and Bound Algorithm

We developed an alternative method for the problem that
uses a simpler integer linear program embedded in a
branch-and-bound routine. The high-level idea behind
the method is to first guess the set of haplotypes that
would phase the given input genotypes and then con-
struct a most parsimonious phylogeny on the haplotypes.
Note that all the pre-processing techniques outlined in the
previous sub-section still apply for this method.

We use G to refer to the input set of genotypes. For a given
set of haplotypes H , we can construct the most parsimo-
nious phylogeny T, using the algorithm described by

Sridhar et al. [33]. We will use hapMP to denote this algo-
rithm, which will take a set of haplotypes and return the
size of the most parsimonious phylogeny. We now have
the following branch and bound method.

function genBB(genotypes G, haplotypes HH , integer u)

1. for all row vectors § € G

(a)if3hy, hy,e H st hy+h, =3 then G « G\{g}
2. if (|G| = &) then return hapMP(H )
3. if (hapMP(H ) > u - 1) then return o

4. let ¢ be a row vector of G
5.forall hy, hy st. hy+h,=3

() G« G\{g}

(b) H' « H U {hy, h,}
(c) b « genBB(G', H', u)
(d) if b <u then u < b

6. return u

The branch step is performed by Step 5, where the algo-
rithm attempts to phase genotype g using all possible
pairs of haplotypes h,, h,. Integer u of the above pseudo-
code refers to the current best upper-bound. The bound
step is performed by Step 3 which just reconstructs a phy-
logeny over the current set H of haplotypes. Step la

ensures that at least one more haplotype h ¢ H is
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required to obtain the final set of haplotypes. Therefore,
even if hapMP(H ) = u - 1, this branch cannot yield a
solution of smaller cost than current upper-bound u.

In the above method, the height of the branch-and-bound
tree is at most n, the number of input genotypes. The
branching factor at each internal node is at most 2* where
k is the number of heterozygous sites on the genotype g.
This is always bounded by 2. Although the running-time
of the final branch-and-bound method is super-exponen-
tial, we find that its run time is competitive with and often
superior to the ILP described in the previous section.

Data Generation and Analysis

In order to generate simulated data, coalescent trees were
created using Hudson's ms program [34]. The only
parameter required to generate tree topologies is the
number of haploid chromosomes ;. The ms program can
also use this tree to produce haplotype sequences, but
does so under the infinite-sites model (without any recur-
rent mutations). We therefore instead used the seq-gen
program of Rambaut and Grassly [35] to generate 1, hap-
lotypes using the ms coalescent tree. We varied the
number of SNPs m and the mutation rate parameter 6 =
4N, where  is the probability of mutation of any of the
simulated SNPs in one generation and N, is the effective
population size. We relate the simulation parameter u to
the per-site mutation rate by assuming an effective popu-
lation size Ny= 10, 000 (a reasonable estimate for humans
[36]). For instance, for 5 sites, we obtain a per-site muta-
tion probability of 10-¢ for = 0.2.

seq-gen was used under the GTR model, a generic time
reversible Markov model. Mutation rates between A and C
and between G and T were defined using the same param-
eter 6. For all the other four pairs we set the mutation rate
to be 0 in order to produce biallelic data. The exact com-
mand line used to execute seq-gen for a given mutation
rate parameter § and SNP number m was the following:

seq-gen -mGIR -1 6,0,0,0,0, &-1m

Each data point was generated from 200 independently
generated simulated data sets, with the reported error
rates summed over the 200 replicates. In our first set of
simulations, designed to test the effect of mutation rate on
accuracy, we varied 6 over the range 0.2-0.6 in increments
of 0.05 for windows of 5 and 10 SNPs and for sample sizes
of 30 and 60 input haplotypes. Our second set of experi-
ments, designed to test the effect of sample size on accu-
racy, fixed @ at 0.5 and varied the number of haplotypes
from 30 to 120 in increments of 10 for windows of 5 and
10 SNPs. Data points plotted represent summed errors
over the 200 replicates per parameter value.
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Mitochondrial data was extracted from of a set 63 com-
plete mitochondrial DNA sequences of 16,569 bases each
produced by from Fraumene et al. [27]. We produced arti-
ficial diploids from the data by randomly selecting 60 of
the sequences and randomly grouping them into 30 pairs.
We computationally inferred haplotypes from all of the
genotypes using fastPHASE and we constructed phyloge-
nies for all sliding windows of 50 bases across the data set
by each of three methods: maximum parsimony using
true haplotypes, inferred haplotypes and from the geno-

types.

Autosomal DNA was extracted from a lipoprotein lipase
(LPL) data set due to Nickerson et al. [29]. Because the
pairs of haplotypes into genotypes were not published, we
duplicated the first haplotype to obtain 78 distinct
sequences and then randomly paired them to produce 39
artificial genotypes from the true haplotypes. As in the
previous case, we ran fastPHASE and haplotyper on all of
the SNPs put together to obtain inferred haplotypes. In
order to reduce the possibility of recombination events
confounding our results, we used the HAP webserver [16]
to break the 86 SNPs into blocks. HAP was also used to
infer missing data. We then evaluated phylogeny sizes by
our direct method, from the true haplotypes, and from the
inferred haplotypes for each block.

Availability and requirements
Project name: Direct Imperfect Phylogeny Reconstruc-
tion from Genotypes

Project home page: http://www.cs.cmu.edu/~imperfect,

direct/

The implementation of the algorithm that was used in our
empirical study is accessible through a web form at the
project web page. Instructions are provided at the site.
Requirements below are for use of this web server. Source
code in C ++ will be provided upon request, but requires
that the user have access to ILOG CPLEX 10 and a CPLEX-
supported operating system and compiler.

Operating system(s): Linux Redhat, Windows, Mac OS X

Other requirements: Web browser: software has been
tested on Mozilla 1.6, Firefox 2.0.0.4, Internet Explorer
6.0, Internet Explorer Mac 5.2, and Safari 2.0.4.

Any restrictions to non-academics: Web-based access to
the analysis tools is freely available.
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