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Abstract
Background: Eukaryotic cells have developed mechanisms to respond to external environmental
or physiological changes (stresses). In order to increase the activities of stress-protection functions
in response to an environmental change, the internal cell mechanisms need to induce certain
specific gene expression patterns and pathways by changing the expression levels of specific
transcription factors (TFs). The conventional methods to find these specific TFs and their
interactivities are slow and laborious. In this study, a novel efficient method is proposed to detect
the TFs and their interactivities that regulate yeast genes that respond to any specific environment
change.

Results: For each gene expressed in a specific environmental condition, a dynamic regulatory
model is constructed in which the coefficients of the model represent the transcriptional activities
and interactivities of the corresponding TFs. The proposed method requires only microarray data
and information of all TFs that bind to the gene but it has superior resolution than the current
methods. Our method not only can find stress-specific TFs but also can predict their regulatory
strengths and interactivities. Moreover, TFs can be ranked, so that we can identify the major TFs
to a stress. Similarly, it can rank the interactions between TFs and identify the major cooperative
TF pairs. In addition, the cross-talks and interactivities among different stress-induced pathways are
specified by the proposed scheme to gain much insight into protective mechanisms of yeast under
different environmental stresses.

Conclusion: In this study, we find significant stress-specific and cell cycle-controlled TFs via
constructing a transcriptional dynamic model to regulate the expression profiles of genes under
different environmental conditions through microarray data. We have applied this TF activity and
interactivity detection method to many stress conditions, including hyper- and hypo- osmotic
shock, heat shock, hydrogen peroxide and cell cycle, because the available expression time profiles
for these conditions are long enough. Especially, we find significant TFs and cooperative TFs
responding to environmental changes. Our method may also be applicable to other stresses if the
gene expression profiles have been examined for a sufficiently long time.
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Background
Microarray gene expression data can provide a global view
of transcriptional regulation, but new methods of analysis
are needed to extract biologically meaningful informa-
tion. The DNA sequence elements that act as binding sites
for transcription factors (TFs) coordinate the expression of
genes having one or more such elements in their pro-
moter region [1]. Systematic approaches to identifying the
biological functions of TFs are needed to ensure rapid
progress from genome sequence data to direct experi-
ments and applications [2-7].

A popular approach to analyzing microarray data at
present is to cluster genes based on the similarities of their
expression profiles. It has been used to identify cis-regula-
tory elements. The rationale is that co-expressed genes are
likely to be co-regulated and, therefore, may share com-
mon regulatory elements [8]. In addition, Eisen et al. [9]
constructed a probabilistic model that uses expression
data to link regulators to regulated genes. Their method
assumes that the expression levels of regulated genes
depend on the expression levels of their regulators. These
methods cannot reliably distinguish among genes that
have similar expression patterns but are under the control
of different regulatory networks. Recently, the genome-
wide location analysis of DNA-binding motifs offers new
information for identifying regulatory relationships, such
as trans-/cis- regulatory networks. The ChIP-chip method
identifies the interactions between TFs and DNA binding
regions, providing strong direct evidence for genetic regu-
lation [10,11]. Although helpful, the usefulness of bind-
ing information is also limited, because the presence of
the regulator at a promoter region indicates binding but
not necessarily function. The environment conditions
under which these TFs will interact with the cis-elements
(DNA-binding motifs) are still not clear. The regulator
may act positively, negatively or not at all [12].

Elucidating the regulation of genes and eventually deci-
phering the entire gene regulatory network will reveal the
functions of genes during internal transcriptional proc-
esses and responses to external environmental stimuli.
However, in order to analyze the functions of a target gene
of interest, one first needs to understand the gene regula-
tion network, which is a formidable task by conventional
methods. The initial step towards the goal of understand-
ing gene regulation is to identify the relationship between
a TF and its target genes. Many TFs bind to specific sites in
the genome to regulate gene expression. For example, they
bind to specific motifs on promoter sequences and recruit
chromatin modifying complexes and the transcription
apparatus to initiate RNA synthesis [13-15]. The repro-
gramming of gene expression that occurs as cells move
through the cell cycle, or when cells respond to changes in
their environments, is effected in part by changes in the

DNA binding status of trans-acting activators. Recently,
the databases such as SCPD [16] and TRANSFAC [17]
have been established to collect information from the lit-
erature about TFs with regard to their target genes and
binding sites. However, experimental identification of TFs
and their functions is slow and laborious. Therefore, pre-
diction methods have become increasingly important,
especially after the emergence of high throughput tech-
nologies, such as DNA microarrays, and binding site
motif information [10,11]. Nguyen and D'haeseleer [18]
have integrated genome-wide location data and motif
binding sequence to infer the strength dependency of
motif position and orientation and then focus on individ-
ual motif regulatory ability of the target gene. In this
study, our goal is to develop an efficient systematic
method that can integrate these data sources to detect TFs
and their synergistic activities to gain more insight into
the mechanism via constructing trans-regulatory networks
of TFs responding to an environmental change.

Recently, Bussemaker et al. [19] proposed to use a linear
regression model to identify binding motifs correlated
with gene expression. Although this method successfully
discovered some motifs corresponding to known binding
sites and predicted some new motifs, they did not find
their TF functions and interactions in diverse environ-
ments. The ability to adapt to osmotic changes in the sur-
rounding medium and the heat shock due to sudden
environmental temperature change is fundamental to life.
To properly control gene expression, the cell has to sense
osmotic or thermal changes and transmit the signal to the
nucleus. Recently, TFs that are required for the stimulation
of gene expression after the osmotic and heat shock have
been described [20]. In recent studies, systems biology
method and computational systems biology schemes
have been widely used to construct dynamic models for
gene regulatory networks [2-5,21-24]. In this study, utiliz-
ing the binding site motif information [10,11] and the
microarray data [25,26] of different environmental
stresses, we detect the activities of TFs under different
stresses by quantifying their regulatory abilities and inter-
active activities. From the systems biology perspective, the
TFs that are active under multiple environmental stresses
can also be detected by a cross identification method. We
can not only identify the individual interaction TF
strength but also rank the TFs which are responsible to the
specific stress. In addition, we can also estimate the cross-
talk relationships among different pathways responsible
to specific environmental stresses.

Results
In this study, we consider seven different environmental
or physiological conditions on yeast to demonstrate the
performance of our method; the major conditions are
osmotic stress, heat shock stress, hydrogen peroxide treat-
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ment, and cell cycle. TF activities are recognized by con-
structing an interactive dynamic model among the target
genes and candidate TFs via a set of yeast DNA-binding
motif information and microarray data. Because the tem-
poral microarray data can be represented as a result of the
interactive dynamic modeling, it is easy to discern the
stress-specific TFs and the role of activator or repressor by
estimating the regulatory abilities and interactive activities
by the maximum likelihood estimation. The significant
TFs responsible for a specific environmental stress is also
detected for a target gene by minimizing the Akaike Infor-
mation Criterion (AIC) to achieve the real order of the
interactive dynamic model via the system identification
method.

In this work, the detected TFs are divided into two parts:
(1) the stress-specific TFs, which are based on the statisti-
cal results in Figure 1, and (2) the common transcrip-
tional activators in Table 1. Furthermore, the detected
interactive activities among these TFs are presented in
Table 2. In this study, we focus on detecting the stress-spe-
cific TFs and the common transcriptional activators that
are always activative in the gene transcription process even
in the absence of any specific stress; these common TFs
can also be easily found by the conventional statistical
method. For example, our proposed method can easily
find the common TFs Abf1, Rap1, Cin5, Fhl1 and Reb1
[27-31] in osmotic shock, heat shock, hydrogen peroxide
treatment and cell cycle in Table 1. The interactive activi-
ties of these TFs under different environmental conditions
are ranked in interactive activities matrices in Table 2. In
addition, our method also can order the relative roles of
the TFs in stress-specific genes of the transcriptional regu-
latory system. In the following, we will analyze the stress-
specific TFs in response to seven different stresses.

Significant TFs under different environmental changes
Under osmotic stress
Our study indicates that the yeast genes that respond to
hyper- and hypo-osmotic shock are regulated by the
major TFs listed in Table 1. Skn7 has a high detected fre-
quency under an osmotic stress, implying that Skn7 is a
strong regulator for osmotic stress. Experimental evidence
suggests that Skn7p is controlled by the Sln1p-Ypd1p
osmosensing phosphorelay system and osmotic signals
[32]. The function of Skn7p is opposite to the pathway
responding to high osmolarity but is in parallel to a path-
way responding to low osmolarity. The Sln1p-Ypd1p-
Skn7p system is a genuine two-component (or phos-
phorelay) system mediating osmotic responses to a tran-
scriptional regulator [32]. Skn7 appears to function as a
TF, because it can bind to promoter elements [33] and can
activate the transcription of reporter genes [34]. This abil-
ity to activate transcription is influenced by mutations at
the phosphorylation site (D427) of the Skn7 receiver

domain, and this finding leads to the prediction that a his-
tidine protein kinase directs the phosphorylation of Skn7
[34,35]. However, the identity of this kinase remains to be
confirmed.

Smp1 is the second most important TF in response to the
hyper-osmotic stress (Table 1). Exposure of S. cerevisiae to
strong extracellular osmolarity activates the stress-acti-
vated high-osmolarity glycerol (HOG) in mitogen-acti-
vated protein kinase (MAPK) pathway, which is essential
for cell survival upon osmotic stress. Yeast cells respond to
osmotic stress by inducing the expressions of a very large
number of genes, in which TF Smp1 binds to Hog1, under
the control of MAPK. Experimental results confirm that
the relevant Hog1 phosphorylation sites in Smp1 have an
obvious effect on stress-regulated gene expression [36].
Hence, Smp1 also plays an important role in osmotic-
stress responses.

Similarly, Yap6, a member of the yeast activator protein
(YAP) family, and Hsf1, Phd1, Mbp1, etc. also have indi-
rect experimental evidence to confirm that they are related
to osmotic stress [30,37]. Hence, in the osmotic-stress
environmental stimulation, our proposed method is very
efficient to detect significant TFs.

Under heat shock stress
The heat shock stress is another external environment
stimulus in general. In Table 1, Hsf1 is found in front of
other TFs, indicating that Hsf1 is the most significant TF in
response to heat shock stress. This prediction is in agree-
ment with the experimental evidence that the expression
of the major heat shock proteins (Hsps), which have been
classified according to their molecular mass as Hsp104,
Hsp90, the Hsp70 family, Hsp60, Hsp26, and Hsp12
[38], is controlled by Hsf1, which binds to cis-acting heat
shock control elements (HSE) present in the promoters of
these genes [39].

Similarly, Skn7 has previously been shown to play a role
in the induction of heat stress-responsive genes in yeast.
Hsf1 and Skn7 share certain structural similarities, partic-
ularly in their DNA-binding domains and at the adjacent
regions of coiled-coil structure, which are known to medi-
ate protein-protein interactions [40].

In addition, we find another TF Mac1 in Table 1, whose N-
terminal region is highly similar to the copper and DNA
binding domains of ACE1 and AMT1. Loss-of-function
mutants of MAC1 have a defect in the plasma membrane
Cu(II) and the reductase activity Fe(III), which are slow
growing, respiratory deficient, and hypersensitive to heat
[41]. Moreover, we can also find that the significant TF
Gcn4 is also considered as a stress-responsive TF [42].
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The statistics of frequencies of significant transcription factors (excluding the common transcriptional activators) are detected by the normalized frequencies of all target genes via our methodFigure 1
The statistics of frequencies of significant transcription factors (excluding the common transcriptional activators) are detected 
by the normalized frequencies of all target genes via our method. The results are from seven types of environmental or physi-
ological stresses in S. cerevisiae.
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Obviously, these significant stress TFs can be detected by
our method.

Under mixed stresses
We also investigated TFs under other stress conditions,
including mild heat shock at variable similarity and
hydrogen peroxide treatment. Using our method, we can
easily find a very significant TF Skn7. Further, in the
hydrogen peroxide (H2O2) treatment, we can also find
Hsf1. These two TFs are always ranked as the first or the
second in Table 1. Cells must survive under challenges
from the environment with regard to heat and hydrogen
peroxide. Skn7 has previously been shown to play a role
in the induction of stress-responsive genes in yeast, e.g., in

the induction of the thioredoxin gene in response to
hydrogen peroxide [40]. These two regulatory trans-activa-
tors, Skn7 and Hsf1, share certain structural similarities,
particularly in their DNA-binding domains and in the
presence of adjacent regions of the coiled-coil structure,
which are known to mediate protein-protein interactions
[40]. Furthermore, Raitt et al . [40] showed that Skn7 can
bind to the same heat shock regulatory sequences as Hsf1,
and that Skn7 and Hsf1 cooperate to achieve a maximal
induction of heat shock genes in response specific to oxi-
dative stress and interact with each other in the nucleus
under normal growth conditions as well as during oxida-
tive stress.

Table 2: The ranked cooperativities of transcription factors under different environmental conditions: The number l denotes the l-th 
significant cooperation among these transcription factors. In this table only cooperative activities of the cell cycle are ranked.

Cooperativity ranking matrix of cell cycle

Cell Cycle Fkh2 Mbp1 Mcm1 Msn4 Ndd1 Pho2 Rap1 Swi4 Swi6 Yap5

Fkh2 - - - 2* - - - - -
Mbp1 7 - - - - 6* 4* -
Mcm1 - 1* - - - - -
Msn4 - - 9 - - -
Ndd1 - - 5 - -
Pho2 - 10 - -
Rap1 - - 8
Swi4 3* -
Swi6 -
Yap5

* The interactivities confirmed by the literature or experimental results.

Table 1: The significant transcription factors in order by detected frequencies via our method under different environmental stresses 
in S. cerevisiae.

1 2 3 4 5 6 7 8 9 10 Common transcriptional 
activators

Hyper-osmotic 
Shock

Skn7* Smp1* Fkh2 Fkh1 Hsf1* Mbp1* Phd1* Gcn4 Yap6* Mth1* Abf1* Fhl1* Cin5* Rap1* Reb1*

Hypo-osmotic 
Shock

Swi6 Ino4 Phd1* Swi5 Bas1* Skn7* Mth1* Fkh2 Ixr1 Hap4 Abf1* Fhl1* Cin5* Rap1* Reb1*

Heat Shock from 
25°C to 37°C

Swi4 Hsf1* Phd1* Gcn4* Sum1* Pho4 Skn7* Fkh2 Fkh1 Swi6 Abf1* Fhl1* Cin5* Rap1* Reb1*

Temperature 
Shift from 37°C 
to 25°C

Hsf1* Mcm1* Gat3 Stb1 Mbp1* Gcn4* Hap4 Cbf1 Ndd1* Skn7* Abf1* Fhl1* Cin5 Rap1* Reb1*

Mild Heat Shock 
at Variable 
Osmolarity

Hsf1* Skn7* Swi6 Ino4 Mbp1* Hap4 Swi5 Fkh1 Dot6 Swi4 Abf1* Fhl1* Cin5* Rap1* Reb1*

Hydrogen 
Peroxide 
Treatment

Mcm1 Gcn4 Skn7* Hsf1* Fkh1 Hap4 Cbf1 Sum
1

Swi6 Mbp1 Abf1* Fhl1* Cin5* Rap1* Reb1

Cell cycle Mcm1
*

Swi4* Phd1 Mbp1
*

Swi5* Fkh2* Fkh1* Yap5 Stb1 Skn7* Abf1* Fhl1* Cin5* Rap1* Reb1*

* The transcription factors confirmed by the literature or experimental results.
Common transcription activators are TFs that always activate without any specific stress induction and are also ordered by their regulatory 
significance.
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Under cell cycle
Our method identified several TFs that have previously
been identified as major cell cycle controlling TFs, includ-
ing Mcm1, Swi4, Mbp1, Swi5, Fkh1, and Fkh2 [43-47].
These TFs are activators in the cell cycle. Besides, we also
find the common transcriptional activators Abf1, Rap1

and Reb1, which also play important roles in the tran-
scription of genes in the cell cycle of yeast [1]. For exam-
ple, Abf1 has a positive regulation of the genes that are
involved in protein synthesis and transport, glycolysis, fer-
mentation, energy pathways and cell wall organization
[16,48,49]. This Abf1 function was also inferred by Wei

Table 3: The confirmed TFs, false positives and false negatives of the estimated 10 significant TFs in the cell cycle and the hyper-
osmotic stress.

Conditions Confirmed number False positive number False negative Number Reference from Saccharomyces Genome Database 
(SGD), Lee et al. [11] and Gat-Viks et al. [57].

cell cycle 8 TFs 2 TFs 4 TFs 12 TFs.
hyper-osmotic 7 TFs 3 TFs 9 TFs 16 TFs.

The interactions and cross-talks among significant TFs responding to different environmental stresses in the yeastFigure 2
The interactions and cross-talks among significant TFs responding to different environmental stresses in the yeast. TFs in 
orange color have been shown to have cross-talks or interactions under different environment stresses; for example, Skn7 and 
Hsf1 are found to cooperate to achieve a significant induction of heat shock genes and hydrogen peroxide stress, respectively. 
Other TFs (pink color) play only the roles of controlling stress-specific genes, and the predicted TFs (dotted lines) are those 
genes which have not been experimentally confirmed yet.
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and Kaznessis [50]. On the other hand, Reb1 is an essen-
tial transcription factor that interacts with the CLB2
upstream regulatory sequence (URS) outside the G2/M
control region [29]. Obviously, these cell cycle controlling
TFs can be detected by our method.

Synergistic TF pairs under specific environmental changes
We now consider the interactivities of these significant TFs
in the cell cycle (Table 2). The interactivity between Mcm1
and Ndd1 has the strongest regulatory ability in the cell
cycle. According to experimental data, Mcm1, together
with Fkh2, recruits Ndd1 in late G2 and controls the tran-
scription of G2/M genes [1,47]. The interaction between
Fkh2 and Ndd1 has the second strongest regulatory ability
according to our results. Furthermore, we also find strong
interactivities between Swi4 and Swi6, and between Mbp1
and Swi6 (Table 2). According to the conventional results
in the yeast cell cycle, complexes of Swi4 and Swi6 (SBF)
as well as Mbp1 and Swi6 (MBF), both of which are het-
erodimers, are active during the G1/S phase [47,51]. Thus,
the interactivity of TFs can be accurately detected by our
method.

Cross-talks and interactions
From the results in Table 1, we can find that many TFs are
detected in different environmental conditions, including
Skn7, Hsf1, Phd1, Hap4, Gcn4, Mbp1, etc. (Figure 2). It
implies that they may be cross-talks or interactions among
the stress response pathways, such as the high osmolarity
glycerol (HOG) pathway and the heat shock response
pathway. Although they respond to different conditions,
they may be induced by the same TFs. This cross-talk phe-
nomenon may imply interactions among TFs. In Table 1,
we find that Skn7 and Hsf1 are detected in the heat shock
stress and hydrogen peroxide treatment; a previous study
[33] showed that Skn7 and Hsf1 cooperate to achieve the
maximal induction of heat shock genes in response to
hydrogen peroxide stress specifically. In addition, Skn7
and Hsf1 share certain structural similarities in their DNA-
binding. Therefore, from Tables 1 and 2, we can infer that
several TFs may have cross-talks and interactions in differ-
ent pathways induced by environmental stresses (Figure
2).

Discussion
In contrast to current methods, our new method is capa-
ble of extracting significant regulatory abilities and inter-
activities of TFs under different environmental
conditions. For this reason, the analysis and interpreta-
tion of output expression profiles become straightfor-
ward, so that our method has a high potential for
application. It may also be useful for studying the cross-
talks between pathways controlled by the same regulatory
TFs.

The contributions of this study include the followings: (1)
a nonlinear dynamical model is developed for a transcrip-
tion regulatory system in terms of regulatory abilities and
interactivities among TFs, (2) a systematic identification
method is proposed to detect the specific-stress regulation
TFs and their interactivities, (3) a searching method for
TFs is developed by the proposed dynamic transcriptional
regulatory system, (4) the proposed method can rank the
frequencies of TFs that correspond to a specific stress and
thus can identify the major TFs. Similarly, it can rank the
frequencies of interactions between TFs and thus identify
the major TF pairs, and (5) cross-talks and interactions
among different environment-stress inducing pathways
can also be estimated by detecting the regulatory TFs. The
main advantage of our method over current methods is
that the transcriptional regulatory system is constructed
with the genome-wide structure using the expression pro-
files and ChIP-chip data, and the gene regulatory system
can obtain extra dynamic information to meet the
dynamic regulations and interactivities of genetic net-
works under environmental stresses.

However, we have weaknesses or poor results in some
cases. For example, in Table 1, we find TFs Ixr1 and Dot6.
These detected specific-stress TFs cannot be confirmed by
current experimental data to validate the function annota-
tion. A possible reason may be that the use of both cubic
spline interpolation to avoid overfitting and linear trans-
formation of microarray data in our scheme has intro-
duced new noises and distortions. Furthermore, some
estimated TFs and their interactivities may influence the
specific-stress pathway indirectly but cannot be detected
by experiment directly. In addition, the binding motif
information might be incomplete, and the TF-binding site
number and location are not sufficient to construct the
complete transcriptional regulatory system with regard to
the genes under study. Therefore, the lack of complete TF
binding site information makes it difficult construct an
accurate dynamic interactive equation to estimate TF
activities. The estimated false positive and false negative
rates of these first 10 TFs for specific environmental
stresses are given in Table 3. Since the TFs of the cell cycle
and hyper-osmotic shock are better known at present, the
estimates of their TFs can be evaluated. From Table 3, we
find a small false positive rate and a larger false negative
rate. The performance may be improved by finding more
TFs in the literature or/and by increasing the estimate of
significant TFs. On the other hand, the current literature
and experimental data are not sufficient to confirm our
results by the proposed method. At present, we only pro-
vide the prediction results of the TFs' interaction for future
research.

In the future, if more complete binding motif data and
more accurate and longer gene expression profile data
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become available, we will be able to improve the con-
struction of the transcription regulatory system and get
more interactive information of TFs under different envi-
ronmental conditions. Also, our approach may be
extended to constructing transcriptional regulatory sys-
tems in more diverse conditions and more complex
eukaryotes. After transcription factors and their interactiv-
ities are accurately detected by explicit dynamical equa-
tions, some applications will become straightforward.

Conclusions
In this study, a dynamic system model is developed to
describe the regulatory ability and interactivity of TFs for
each gene expressed in a specific stress due to environ-
mental changes. Based on the proposed dynamic system
model and microarray data as well as information of all
possible binding sites, we could find significant stress-spe-
cific and cell cycle-controlled TFs through ranking the fre-
quencies of TFs of all genes, which are expressed under a
specific stress. Similarly, the significant interactivities of
TFs under a specific stress are also found by ranking the
frequencies of interactions of all TFs. Most of the results
are confirmed by the literature. Further, the cross-talks of
TFs among different stresses are also detected, which
deserve further research. The proposed TF detection
method is a systems biology approach because all possi-
ble TFs of all genes are considered through microarray and
ChIP-chip data and a system identification method is
used to estimate the parameters of the dynamic system
model. The results of our proposed approach are suitable
for deciphering regulatory functions, interactivities and
cross-talks of TFs that respond to different environmental
stresses.

Methods
The dynamics of a cis-regulatory circuit of target genes can
be modeled by a differential equation, which is well estab-
lished and analyzed [52-55]. The TFs' responses to a spe-
cific environmental or physiological change are detected
by our method through the modeling of the trans/cis reg-
ulatory network of target gene expressions. The approach
is divided into two steps. The first step is to find the gene
expression profiles of microarray data [25,26] for the
genes that respond to the specific environmental change.
The main DNA binding site information was compiled
from the data set of Lee et al. [11] with a P-value ≤ 0.0015.
In these ChIP-chip data, for a P-value of 0.001 the fre-
quency of the false positives is 6% to 10%, but the fre-
quency of false negatives is 33%. Combining with binding
site motif information, we can construct dynamic equa-
tions of the stress-perturbed transcriptional regulatory sys-
tem. In order to find the TFs that respond to a specific
environmental stress, we need to prune the transcription
regulatory system by fitting the dynamic equations with
microarray data. In the second step, the coefficients of the

dynamic equations can be identified by the maximum
likelihood estimation (MLE) algorithm to represent the
regulatory abilities and interactivities of TFs of the stress-
induced target genes. Based on the AIC order detection,
TFs with significant coefficients in the dynamic equation
of a target gene are considered significant TFs of the target
gene. However, the significant TFs responding to a specific
environmental stress need to include all significant TFs of
all target genes responding to the specific stress. In this sit-
uation, the statistics of the frequencies of significant TFs
are necessary for all target genes that respond to the spe-
cific environmental stress. Therefore, we calculate the sta-
tistical frequencies of the significant coefficients which are
identified from all target genes responding to a specific
environmental stress or physiological change. Then the
TFs with high frequencies of significant coefficients of all
target genes represent the significant TFs to the specific
environmental stress. The detail is given in the following
section.

Dynamic modeling of a transcriptional regulatory system
The dynamic model of the transcription regulatory system
of target gene i under a specific environmental stress is
modeled by the following interactive dynamic equation

where Yi (t) represents the mRNA expression level of target

gene i at time point t,. Xp (t), p ∈ {1, 2,..., v}, represents the

input regulation functions of v candidate TFs binding to
the target gene, i.e., the v TFs that can bind to the binding
sites of target gene i via ChIP-chip data are considered as
the candidate TFs of target gene i in the dynamic Equation

(1).  indicates the possible regulatory ability or kinetic

activity of the p-th TF in target gene i. Xp, q (t) is the possible

regulatory function of cooperative TFs, and is described by
the following nonlinear equation of interactivities
between TFs p and q

and  denotes the regulatory ability (or kinetic activ-

ity) of the cooperative TFs p and q. The parameter λi indi-
cates the degrading effect of the present state value Yi (t)

on the next state value Yi (t + 1), and εi (t) denotes a sto-
chastic noise owing to model uncertainty and fluctuation
of mRNA microarray data in the target gene. In this study,
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we assume εi (t) is a Gaussian white noise with zero mean

and unknown variance .

The v TF-DNA interactions in Equation (1) are based on
the main binding sites (P-value ≤ 0.0015) of ChIP-chip
data of the target gene. Since CHIP-chip data only indi-
cates the promoters to which the TFs putatively bind, the
v TFs in the dynamic Equation (1) are only the candidate
TFs of gene i . These v candidate TF-DNA interactions
should be detected by mRNA microarray data via the AIC
model order detection through the system identification
method below. Only the significant TF-DNA interactions
are considered in the dynamic equation after system iden-
tification and the insignificant TF-DNA interactions will
be deleted from the dynamic model. Then the refined
dynamic model will represent the TF regulations in gene
expressions under the specific environmental stress.

For example, the transcription regulatory system of target
gene i under a specific environmental stress is illustrated
in Figure 3, including the possible regulatory functions
and interactivities of its TFs. The trans/cis regulatory sys-
tem in Figure 3 is modeled by the following interactive
dynamic equation

Y (t +1) = αA XA (t) + αB XB (t) + αC XC (t) + βA, B XA, B (t) + 
β A, C XA, C (t) + βB, C XB, C (t) - λY (t) + ε (t) (3)

XA (t), XB (t) and XC (t) are the incident regulations of TFs
A, B, C, respectively. Interactivities XA, B (t), XA, C (t) and XB,

C (t) denote the interactivities among TFs A, B and C.

The biological meaning of Equation (1) is that the next
mRNA expression level of the target gene is due to the
result of the productions of the present transcriptional
regulatory functions αA XA (t) + αB XB (t) + αC XC (t) + βA, B
XA, B (t) + βA, C XA, C (t) + βB, C XB, C (t).

Remark 1
The possible combinations or cooperation of 3 TFs or
more in dynamic Equation (1) will increase the difficulty
in the parameter estimation process, especially, in the case
of a large number of TFs. Therefore, they are not included
directly in our dynamic model. However, if the coopera-
tion of 3 TFs exists, it will be expressed by the following
three cooperative 2 TFs simultaneously, i.e., XA, B (t), XA, C
(t) and XB, C (t) in the case of Equation (3).

According to Lee et al. [11], there are 106 possible TF can-
didates to be considered in Equation (1). For the tran-
scriptional regulatory systems in Equation (1), because of
multiple regulatory inputs Xp (t) and a large number of
interactivities Xp, q (t), one can estimate the regulatory abil-
ities of the corresponding transcription factors by con-
structing the complete system dynamic model for each
target gene with environmental and physiological
changes. By integrating the dynamic equations of time-
series transcriptional regulatory systems for n time points
t = 1, 2, ≡, n in response to certain environment condition
(stress), we obtain the following array dynamic matrix
form for target gene i

Yi = Φ·Θi + E (5)

where
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Dynamic model of the transcriptional regulatory system of a target geneFigure 3
Dynamic model of the transcriptional regulatory system of a 
target gene. The candidate regulatory TFs of the target gene 
were obtained from the genome-wide TF binding location 
data by chromatin immunoprecipitation [10,11]. A binding 
transcription factor p has a regulatory ability αp and interac-
tivities with TF q to produce the regulatory ability βp, q. The 
microarray data for these TFs provide the inputs Xp (t) of the 
transcriptional regulatory system and produce the output Y 
(t) of the target gene.
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Y and Φ can be obtained from the microarray data of gene
i and the other possible genes under a specific environ-
mental stress. Equation (1) can then be used to estimate
the transcription factors' regulatory abilities and interac-

tivities Θi and the noise variance  for target gene i by

the following Maximum Likelihood Estimation Algorithm
[56]:

Remark 2
Although the maximum likelihood estimation method
can help us quantify the regulatory abilities of all the pos-
sible regulatory TFs on target genes, we still don't know
exactly how significant an estimated regulator can be
regarded as a true regulator. In order to achieve the goal
for determining whether a regulator is significant or not, a
statistical approach based on model validation is pro-
posed for evaluating the significance of our model param-
eters to prune the rough v TFs identified from ChIP-chip
data. In this study, a statistical approach, namely the
Akaike Information Criterion (AIC), is employed to vali-
date the model order (or the number of TFs) to determine
the significant TFs of our dynamic equation in (1).

The Akaike Information Criterion (AIC), which attempts

to include both the estimated residual variance  and
model complexity v in one statistics, decreases as the

residual variance  decreases and increases as the
number v of TFs increases. As the expected residual vari-
ance decreases with increasing v for nonadequate model
complexities, there should be a minimum AIC around the
correct number v of TFs. For a dynamic model with v
parameters to fit with data from n data samples, the AIC
can be written as follows [56]

After the statistical selection of v = si TFs minimizing the
AIC in (8) (i.e., v = si achieves the minimization in (8)), we
can choose these si TFs as significant TFs for target gene i
and the remainders are false positives.

In order to avoid the overfitting in the parameter estima-
tion in Equation (1), the cubic spline method is employed
in this study to interpolate data points n which should be

much larger than the number of parameters to be esti-

mated. After  is estimated from Equation (6), the regu-
latory abilities and interactivities can be identified for the
corresponding transcriptional regulatory system under a
specific environmental or physiological change. Then,

one chooses the largest s parameters  of the significant

regulatory abilities in absolute value with regard to the i-
th target gene, in the following order

Then the corresponding significant transcription factors
for target gene i are given by the set

where the first element represents the TF that has the most
significant regulation to the target gene expression under
the specific environmental or physiological condition. If
there are W target genes in response to the specific envi-
ronmental or physiological changes, we can get a set of
significant TFs for this specific condition by counting the

frequencies of  which appear in the set in Equation

(10) for W target genes responding to the same environ-
mental condition, i.e., the distribution of significant TFs
of W genes is given by the following frequency matrix

The i-th row in the above matrix denotes the distribution
of si significant TFs of the i-th target gene that is expressed
under the specific environmental conditions. We count
the numbers in each column to find the frequencies of
their corresponding TFs to W target genes in response to
this environmental condition. The normalization of the
frequencies of TFs is shown in Figure 1 for seven types of
environmental or physiological stresses in S. cerevisiae. In
the results, the first s TFs with maximum frequencies in
each column of Equation (11) are considered as the most
significant transcription factors in response to the specific
environmental condition. The significance of each TF is
according to the frequency of appearance in each column
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of the frequency matrix in Equation (11). In this study, for
the convenience of table listing, only 15 significant tran-
scription factors are listed for a specific environmental or
physiological condition, i.e., s = 15. In other words, we
can detect the significant TFs active at different environ-

ment conditions. The flowchart for modeling, statistics of
frequency and significant TFs finding is shown in Figure 4.

For the same reason, in order to detect interactivities of
cooperative TFs under a specific environmental or physio-

The overall flowchart of the modeling, identification and finding the significant TFs of a dynamic transcriptional regulatory sys-temFigure 4
The overall flowchart of the modeling, identification and finding the significant TFs of a dynamic transcriptional regulatory sys-
tem.
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logical change, the interactivities  between TFs p and

q of the i-th target gene in Equation (1) among the si sig-

nificant TFs are described in order as follows

where  denotes the estimate of interactivity from

Equation (6) between TFs p and q in the promoter region
of target gene i under a specific environmental condition.
Then the corresponding significant interactivities among
cooperative TFs of target gene i are given by the set

where the superscript int denotes the interactivity of TFs k

and j, and the first  has the most interactive regula-

tion contribution to the target gene expression under the
specific environmental or physiological condition.

Suppose only the m significant interactivities among
cooperative TFs are chosen for this specific environmental
or physiological condition. Then the interactivity matrix
for the cooperative TFs of W target genes responsible to a
specific environmental stress is given as follows

Each row in the above matrix denotes the distribution of
W significant interactivities among TFs of one gene that is
expressed under the specific environmental or physiolog-
ical condition. In the results, the first m significant inter-
activities among cooperative TFs with maximum
frequencies in each column of Equation (14) are consid-
ered as the significant cooperative TFs in response to the
specific environmental or physiological condition. The
significance of each interaction among cooperative TFs is
according to the frequency of appearance in each column
of the matrix in Equation (14). In the interactivity case, for
convenience, we choose only 10 significant cooperations
among TFs that are listed for a specific environmental con-
dition, i.e., m = 10 (see Table 2 in the cell cycle case). In
this study, for the convenience of table listing, we choose

s = 15 and m = 10 in Equation (11) and Equation (14),
respectively.

From the systematic analysis above, we can detect s signif-
icant transcription factors and m significant cooperative
TF pairs from microarray data for yeast under different
environmental stresses. From these significant transcrip-
tion factors and their significant cooperation, we can con-
struct different stress-induced pathways and cross talks in
Figure 2 to gain much insight into protective mechanisms
of yeast under different environmental and physiological
changes.
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