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Abstract

Background: Annotation of protein functions is an important task in the post-genomic era. Most
early approaches for this task exploit only the sequence or global structure information. However,
protein surfaces are believed to be crucial to protein functions because they are the main interfaces
to facilitate biological interactions. Recently, several databases related to structural surfaces, such
as pockets and cavities, have been constructed with a comprehensive library of identified surface
structures. For example, CASTp provides identification and measurements of surface accessible
pockets as well as interior inaccessible cavities.

Results: A novel method was proposed to predict the Gene Ontology (GO) functions of proteins
from the pocket similarity network, which is constructed according to the structure similarities of
pockets. The statistics of the networks were presented to explore the relationship between the
similar pockets and GO functions of proteins. Cross-validation experiments were conducted to
evaluate the performance of the proposed method. Results and codes are available at: http:/
zhangroup.aporc.org/bioinfo/PSN/.

Conclusion: The computational results demonstrate that the proposed method based on the
pocket similarity network is effective and efficient for predicting GO functions of proteins in terms
of both computational complexity and prediction accuracy. The proposed method revealed strong
relationship between small surface patterns (or pockets) and GO functions, which can be further
used to identify active sites or functional motifs. The high quality performance of the prediction
method together with the statistics also indicates that pockets play essential roles in biological
interactions or the GO functions. Moreover, in addition to pockets, the proposed network
framework can also be used for adopting other protein spatial surface patterns to predict the
protein functions.
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Background

It becomes an increasingly important task to annotate
protein functions when more and more protein sequences
and three dimensional structures become available [1]. A
fundamental axiom of biology is the cascade that an
amino-acid sequence determines a protein structure, and
in turn a protein structure determines protein function
[2]. Traditionally, functional relationships among pro-
teins are inferred based on the similarities of conserved
sequences. However, sequence-based methods have their
limits for those proteins with similar structures but distant
sequences, in particular they are generally unable to detect
protein similarities with convergence evolution or distin-
guish distant relationships with divergence evolution [3].
High-throughput technologies on structural genomics
have produced a large amount of three dimensional pro-
tein structure data, which provide valuable complemen-
tary information for analyzing ancient relatives situation
such as the case that protein folds remain similar after all
traces of sequence similarity disappear during evolution
[4-7]. However, similarity measure of primary backbone
or global folding analysis also fails sometimes, especially
when only overall structure information is considered
[8,6]. Therefore, methods purely relying on sequence and/
or global structure comparison may lead to inaccurate
function-related annotation in cases where few residues
are responsible for the specificity of functions [9,10].

It is well known that protein functions are mostly deter-
mined by physical, chemical and geometric properties of
protein surfaces [11], because the surfaces are places
where proteins interact with other biological molecules,
protein binding and catalytic activities take place. Surface
patterns and local spatial distribution of residues are the
key to facilitate the function of a protein although they
seem to be unrelated with total sequence and global struc-
ture of the protein [12-15]. Structural information of pro-
tein surface regions enables detailed studies of
relationship between a protein structure and its function
[16-18]. Identifying similar surfaces between proteins can
be useful for understanding biological roles and annotat-
ing protein functions. So far there are a number of studies
on the computational analysis of protein surface, such as
SURFNET [19], LIGSITE [20], CASTp [13,21], eF-Site [22],
Cavbase [11], PINTS [23], SURFACE [9], Q-SiteFinder
[24], and SCREEN [25]. Some of them have been already
used to build comprehensive databases of the identified
surface structures.

In this paper, to develop a new method to predict protein
functions, we aim to exploit the surface structure informa-
tion by constructing a pocket similarity network. We
choose the CASTp [21] database as our initial source of
protein surface patterns. CASTp provides identification
and measurements of surface accessible pockets as well as
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interior inaccessible cavities. In CASTp, a pocket, which is
alocal spatial surface pattern, is regarded as an empty con-
cavity on a protein surface into which solvent can gain
access. The pockets are obtained by a geometric computa-
tion method, which can capture the physicochemical tex-
ture and the shape of a surface around functional residues,
from the protein structures in PDB [26]. As geometrically
defined surface patterns, the pockets are believed to have
rather strongly clue to protein functions [27,28], and
thereby are adopted as basic elements to construct the
structure similarity network in this paper.

For the protein functions, we focus on the prediction of
Gene Ontology (GO) terms [29]. GO is a functional clas-
sification system of gene products and was developed to
address the need for consistent descriptions of gene prod-
ucts in different databases. GO organizes biological terms
assigned to one of the three controlled vocabularies
(ontologies): molecular functions, biological processes
and cellular components. GO also includes relationships
between terms such as specialization or past-whole rela-
tions. GOA is a database to provide high-quality GO
annotations to proteins [30]. In this paper, the GO terms
of a protein is predicted, based on the pocket similarity
network constituted from a set of annotated proteins in
GOA database. A pocket similarity network is a network
with its nodes representing pockets and edges indicating
the similarities of each pair of pockets. We assume that the
functions of a protein are mainly determined by the pock-
ets it contains. If two pockets are similar enough, the cor-
responding proteins maybe share some common
functions. In other words, if one pocket in a protein is
similar to many pockets in different proteins which share
some GO terms, the protein is related to the same GO
terms with a high probability. Based on the pocket simi-
larity network, the proposed procedure of the prediction
is implemented in the following way. That is, every pro-
tein is simply considered as a set of pockets, and the GO
terms annotated to a protein are attributed to each of its
pockets. Then based on the correspondence scores
between pockets and GO terms in the annotated proteins,
the scores between a new protein and GO terms are
obtained by comparing all pockets of this new protein
with other pockets.

Cross-validation experiments are conducted to evaluate
the performance of the proposed method. Numerical
results are demonstrated in the recall-precision graphs,
which verify high effectiveness of the proposed method
for both prediction accuracy and computation efficiency.
Such computational results together with statistical analy-
sis also reveal that similar surface pockets in proteins are
essential to biological activities and are strong clues to
similar GO functions. In contrast to the existing
approaches which are mainly suitable for homologous
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proteins, the proposed method is not only effective for the
proteins with distant relationships or with convergent
evolution, but also can further reveal direct links between
small surface patterns and GO functions, which actually
can be explored to identify active sites or functional
motifs.

Results

Data Sets

As well known, there are many redundant (due to differ-
ent experiments) or similar (due to same protein family)
structures in PDB, which result in biased statistics. In
order to eliminate the unexpected side effects, the
PDB_SELECT 25 [31] was chosen in this study. The
PDB_SELECT database is a subset of the structures in the
PDB that does not contain highly homologous sequences.
In the PDB_SELECT 25, no two proteins have more than
25% sequence identity for alignments of length 80 or
more residues. Note that PDB_SELECT 25 only contains
individual chains of proteins, while all chains of each pro-
tein are used in the experiments.

For each protein in the dataset, we retrieved all of its pock-
ets from CASTp [21] when available. Then the surface
pocket similarity network was constructed according to
the given parameters (see Methods for details). Each node
in the network represents a pocket. The edge between two
nodes means that the similarity of the corresponding two
pockets are beyond a given threshold.

The similarity of two pockets was evaluated by pvSOAR
server [28]. An example of searching results is illustrated
in Additional File 1. Some proteins that not covered by
pvSOAR database are discarded. According to the different
similarity thresholds, several pocket similarity networks
were obtained and used in the experiments. Obviously,
the tighter the threshold is, the less the edges in the net-
work are. Some nodes become isolated when the thresh-
old is tight enough, which means that no similar pocket
can be found for the given threshold. The isolated nodes
were deleted from the network since they are useless for
the following study. An example of the pocket similarity
network with detail descriptions is also given in Addi-
tional File 1.

In the pocket similarity network, a node or pocket is called
GO annotated node if the pocket is from a GO annotated
protein. Similarly, an edge is called GO annotated edge if
two endpoints of the edge are both annotated. An anno-
tated edge is called a GO related edge if two endpoints of
the edge are annotated by at least one common GO term.

All data used in the experiments were retrieved from the
related websites, and the versions of databases are as fol-
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lows: CASTp (2006-01-20), pvSOAR (2006-07-13), GO
(2006-09-01) and GOA (2006-05-31).

Statistics Results

In order to explore the relationship between the pocket
similarity and the GO terms similarity, we calculated the
percentage of the GO related edges, i.e., the percentage of
the pocket pairs of which the two corresponding proteins
have at least one common GO term. The results in several
pocket similarity networks constructed by different
thresholds are listed in Tables 1, 2, 3, 4. Table 1 shows the
results by using the E-value of sequence similarity as the
threshold. Table 2 shows the results by using the p-value
of structure cRMSD similarity as the threshold. Table 3 is
the results by taking the p-value of structure oORMSD sim-
ilarity as the threshold. Table 4 uses the combination of E-
value of sequence similarity and p-value of cRMSD simi-
larity, i.e. both the E-value and p-value are required to sat-
isfy the given threshold. The cRMSD is calculated by
original coordinates of atoms, and the oRMSD is an alter-
native measure of dissimilarity which is developed based
on the unit vector RMSD. Namely, the method first
projects each residue onto the unit sphere and then calcu-
late the discrimination by RMSD [27,21].

In these tables, the first row gives the similarity thresholds,
which are ranged from 1.0 x 10-1 (loosest) to 1.0 x 10-5
(tightest) from left to right. The second row indicates the
numbers of pocket pairs that satisfy the given threshold,
i.e. the numbers of edges in the pocket similarity network.
The third row lists the GO annotated edges, i.e. the pocket
pairs which are both from GO annotated proteins. Some
of the edges are not GO annotated edges, and therefore
removed in the next experiments. The fourth row shows
how many GO annotated edges in the given pocket simi-
larity network are GO related, i.e. the corresponding pro-
teins of such an edge have at least one identical GO
function. The last row is the percentages of GO related
edges, which are obtained by dividing the corresponding
numbers in the fourth row by the numbers in the third
row. The percentage is the statistical significance of the
pocket pairs with at least one identical GO function in all
GO annotated pocket pairs.

Table I: The percentage of the edges (pocket pairs) related to
similar GO terms in pocket similarity network which is
constructed by using the E-value of sequence similarity between
two pockets as the threshold.

Threshold 1.0x 10" 1.0x102 1.0x103 1.0x 104 1.0x (0%

Pocket pairs 3178 1460 652 320 219

GO annotated 2359 1086 492 241 160

pairs

Similar pairs 581 375 252 178 126

Percentage 24.63% 34.53% 51.21% 73.85% 78.75%
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Table 2: The percentage of the edges (pocket pairs) related to
similar GO terms in pocket similarity network which is
constructed by using the p-value of structure cRMSD similarity
between two pockets as the threshold.

Threshold 1.0x 10" 1.0x102 1.0x103 1.0x104 1.0x 05
Pocket pairs 1002 602 521 481 468
GO annotated 778 501 437 405 397
pairs

Similar pairs 508 464 430 403 396
Percentage 65.29% 92.61% 98.40% 99.50% 99.75%

Obviously, when the thresholds become tighter, i.e. two
pockets in an edge become more similar, the probability
of the corresponding proteins with at least one identical
GO term increases. The tendency becomes more signifi-
cant when the structure similarities such as cRMSD and
oRMSD are used instead of the sequence similarity as the
threshold, which are illustrated in Tables 2 and 3.

Figure 1 shows the percentage of GO related edges in the
pocket similarity network with different thresholds, com-
pared with the number of GO annotated edges. As shown
in Figure 1, with the same number of GO annotated
edges, clearly the pocket similarity network using struc-
ture similarity has more GO related edges, comparing
with the network based on sequences, which provides the
evidence that the structure similarity can determine pro-
tein functions more precisely than sequence similarity.
This is consistent with the common recognition in biol-

ogy.

We also computed the frequencies of GO functions in the
GO related edges. The GO functions in a GO related edge
are the common GO functions of two proteins corre-
sponding to the edge. The top 15 functions found from a
pocket similarity network (see Additional File 1) are
mostly binding and catalytic activity functions, which are
consistent with the existing results in the literature that the
pockets or clefts on protein surface play important roles,
such as binding [32,17].

Table 3: The percentage of the edges (pocket pairs) related to
similar GO terms in pocket similarity network which is
constructed by using the p-value of structure oRMSD similarity
between two pockets as the threshold.

Threshold 1.0x 10" 1.0x102 1.0x103 1.0x104 1.0x 05
Pocket pairs 2354 1182 757 618 567
GO annotated 1786 922 617 516 483
pairs

Similar pairs 626 564 515 491 475
Percentage 35.05% 61.17% 83.47% 95.16% 98.34%
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Table 4: The percentage of the edges (pocket pairs) related to
similar GO terms in pocket similarity network which is
constructed by using the combination of E-value of sequence
similarity and p-value of structure cRMSD similarity between
two pockets as the threshold.

Threshold 1.0x 10" 1.0x102 1.0x103 1.0x104 1.0x105
Pocket pairs 711 360 257 189 145
GO annotated 551 293 203 148 109
pairs

Similar pairs 402 287 203 148 109
Percentage 72.95% 97.95% 100% 100% 100%

We also analyzed the relationships between functions
annotated to a node and the most frequent GO functions
in its closest neighbors. The results (see Additional File 1)
show that the more frequently a GO term occurs in the
closest neighbors of a pocket, the higher probability of
this GO term the protein containing this pocket has. This
motivates a straightforward prediction method to predict
protein GO functions.

These statistics results give the strong implications that
proteins with similar pockets may share some common
GO terms and the high correlation between the pocket
similarity and GO annotations. The pocket similarity can
be used to predict protein functions, even when no global
sequence or structure similarity is available. The tendency
that more similar pockets would have more similar func-
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Similar pockets imply similar functions. The relationship
between pocket similarity and functional similarity. The graph
summarizes the results in Tables [-4. We use four statistical signif-
icance measurements as the thresholds to construct the similarity
network, that is E-value of the sequence similarity, p-value of
structure similarity cRMSD, p-value of structure similarity
oRMSD, and the combination of E-value and p-value of cRMSD.
The horizontal axis represents the number of GO annotated
edges (i.e. pocket pairs) found by given thresholds. The vertical
axis denotes the percentage of GO annotated edges with at least
one identical GO term between two end nodes. The graph shows
that the structure-based threshold is better than the sequence-
based threshold.
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tions is also a clue, that is, protein surface pockets play key
roles in facilitating protein functions.

Prediction Results

According to the statistics results (see Tables 1, 2, 3, 4), the
pocket similarity network constructed by using p-value
10-2 of the structure similarity cRMSD as the threshold was
used in prediction experiments. This network consists of
831 nodes and 602 edges, in which 501 edges are anno-
tated. In the network, the pockets belong to 397 proteins
from different families, in which 316 proteins are GO
annotated.

The leave-one-out cross-validations were conducted to
evaluate the performance of the proposed method. That
is, in each validation a protein was selected as a target pro-
tein from 316 GO annotated proteins. The correspond-
ence scores between each pocket of the target protein and
GO terms were calculated from the annotated closest
neighbors (not in the target protein) according to the
score scheme presented in section Methods. Then the cor-
respondence scores between the target protein and GO
terms were inferred based on the scores of its pockets.

The recall-precision graph of the prediction is shown in
Figure 2. To draw the recall-precision graph, we sorted the
correspondence scores between every pair of target pro-
tein and GO term, and then used these scores as a thresh-
old to filter the original predicted result. Every threshold
generates a recall value and a precision value, which is
plotted as a point in the recall-precision (RP) graph. The
high position of the RP curve shows that presented predic-
tion method is effective. The maximum F-measure is
0.756.
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Recall-precision graph. Recall-precision relationship graph for
the prediction result.

The original (i.e. unfiltered) predicted result has recall
value 0.774 and precision value 0.706. In the 316 testing
proteins, there are 267 proteins, each of which has at least
one GO term predicted in the experiments. The prediction
method does not hit any GO term of the rest 49 proteins.
The coverage is 84.50%, which is considerably high and
quite efficient for predicting protein functions. The result
illustrates that the presented method can rather correctly
predict GO functions for most proteins, even if they come
from different protein families, or there is no homologous
information available.

For the prediction results of individual proteins, most pro-
teins have high recall and precision values as shown in
Figure 3. The distribution of 316 proteins with regard to
different recall values is drawn in Figure 3(a), while the
distribution with regard to precision values is in Figure
3(b). In the 316 GO annotated proteins, 267 proteins
have non-zero recall values, i.e. at least one GO term of
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Statistics of individual predictions. The distributions of proteins with respect to different (a) recall and (b) precision values. The con-
crete numbers of proteins are shown on each bar individually. Most of the 316 proteins have high recall and precision values, which mean
that their functions are almost covered by prediction results and the false positive is low. (c) is the percentages of proteins with both
recall and precisions higher than the given thresholds. 156 proteins can be predicted with recall value | and precision value |.
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each protein is predicted correctly. And in these 267 pro-
teins, 216 proteins have recall value 1, which means that
all GO terms associated with them are predicted correctly.
Considering the precisions, 179 proteins have precision
value 1, i.e. all predicted GO terms of these proteins are
correct. The percentages of the proteins with both recall
and precision higher than the given thresholds are shown
in Figure 3(c). There are 156 proteins with both recall
100% and precision 100%. Figure 3 further illustrates the
high performance of the presented prediction method in
terms of effectiveness and accuracy.

Since Gene Ontology is composed by three relatively
independent ontologies, the prediction results on the
three ontologies are summarized respectively. The three
recall-precision graphs are shown in Figure 4 and the
details are listed in Table 5. These results are similar to the
integrated version described above.

We also did computational experiments on the pocket
similarity networks featured by different thresholds. The
results are similar to those in this section. When the
threshold of the pocket similarity network becomes
tighter, e.g. from 103 to 105, the recall-precision curve
moves to a higher position, and the prediction coverage
and accuracy also increase simultaneously. For instance, if
the threshold is 10-3, the maximum F-measure increases
to 0.875, the recall is 0.888 and the precision is 0.839.
One obvious disadvantage for a tight threshold is that the
number of proteins involved in the pocket similarity net-
work is fewer than that with a loose threshold. Such a
tradeoff between performance and scale is shown in Table
6. The other prediction results of the pocket similarity net-
works by using different p-value of structure similarity
cRMSD as the threshold can be found in Additional File 1.

We also predicted the GO terms for the 81 un-annotated
proteins and verified the predicted results by the func-

(@)
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tional information from other sources such as PDB and
literature. The predicted results are almost consistent with
the existing knowledge. Some results for un-annotated
proteins are listed in Table 7 and the full list can be found
at our website.

Results by Protein Similarity

In order to evaluate and justify the significance of pocket
similarity, we constructed the protein similarity network
by using a similar method as that used in the construction
of the pocket similarity network. The proteins in the same
dataset were compared all-against-all using CE algorithm
[33]. In the protein similarity network, a node represents
a protein, while the edge is created if the CE Z-Score of two
linked proteins exceeds a given threshold. Then the leave-
one-out prediction tests were conducted in the protein
similarity networks with different Z-Score thresholds. The
prediction results of the Z-Score thresholds 3.8, 4.8 and
5.8 can be found in Additional File 1, with the statistics of
prediction status.

Figure 5 shows the comparison between the RP curves and
corresponding coverage by different thresholds of pocket
similarity (pvSOAR cRMSD p-value) and protein similar-
ity (CE Z-Score). The RP curves are drawn in the proteins
that both two methods can predict. Figure 5(a) is the com-
parison of RP graphs between the cRMSD p-value 10-2and
the Z-Score 4.8, while Figure 5(b) is the coverage. Simi-
larly, Figure 5(c) and 5(d) are the comparison between
the cRMSD p-value 10-3 and the Z-Score 5.8. Additional
comparisons between different cRMSD p-values and Z-
Scores can also be found in Additional File 1. There are
more proteins, which can only be predicted by pocket
similarity, than those which can only be predicted by their
global structure similarity. And the prediction quality of
pocket-based method is better than that of global-struc-
ture-based method in the common proteins. The compar-
ison results between the pocket similarity networks and
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Figure 4

Recall-precision graphs for the three ontologies. Recall-precision relationship graph of prediction for the three GO ontologies
independently. (a) cellular component ontology, (b) molecular function ontology, (c) biological process ontology.
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Table 5: The prediction results of proteins by the three GO
ontologies individually. These results are similar to the
integrated version, and show that the performance of the
proposed prediction method does not heavily depend on the
considered GO terms. For Gene Ontologies, C means cellular
component, F means molecular function, and P means biological
process. The proteins with R & P 100% mean that these proteins
can be predicted with recall value | and precision value 1.

Gene Ontology C F P
Maximum F-measure 0.823 0.778 0.772
Recall-precision (0.839, 0.805) (0.797,0.729) (0.792, 0.715)
Number of proteins 92 290 275
Predicted proteins 8l 249 233
Not predicted I 41 42
Proteins with recall 100% 74 207 202
Proteins with precision 100% 69 174 166
Proteins with R & P 100% 66 155 150

the protein similarity networks show the obvious
improvement of the prediction performance on surface
similarity in contrast to global similarity, in terms of both
prediction coverage and precision.

Results by GO Relevance Information

The GO organizes the terms as directed acyclic graphs
(DAG), where the child term is more specific and inform-
ative than its ancestors. Generic terms do have less rele-
vance for comparing the functional similarity between

http://www.biomedcentral.com/1471-2105/8/475

Table 6: Prediction results in the pocket similarity network by
using different cRMSD p-values as thresholds. The detailed
prediction results of thresholds from 10-3 to 10-5 are listed in the
Additional Files.

Threshold 102 103 10-4 105
Maximum 0.756 0.875 0.898 0.904
F-measure
Recall-precision ~ (0.774,0.706) (0.888,0.839) (0.907,0.869) (0.913,0.877)
Coverage 84.50% 96.98% 98.35% 99.16%
Number of 316 265 242 237
proteins

proteins. Therefore the presence of unspecific GO terms
may bias the statistics and prediction results. Two experi-
ments are conducted to evaluate the influence of the
unspecific GO terms. In the first experiment, the GO
semantic similarity [34-36] of each GO annotated edge is
calculated by the relevance similarity proposed in [36],
which takes into account both the relevance information
of GO terms and the functional similarity between GO
terms. The distributions of GO semantic similarity in dif-
ferent pocket similarity networks are illustrated in Addi-
tional File 1. Most of the pairs of proteins with similar
pockets in the pocket similarity network have significant
semantic similarity. This implies that the similar pockets
may correspond to similar functions in the semantic sim-
ilarity measurement.

Table 7: Some predicted GO terms of the un-annotated proteins. The predicted results are almost consistent with the existing
functional knowledge in databases and literature. The full predicted results of all un-annotated proteins in the considered pocket

similarity network can be found at our website.

Protein Predicted GO terms GO description Information

lorn GO:0003677 F DNA binding PDB Classification: Hydrolase/dna
GO:0019104 F DNA N-glycosylase activity
GO:0003906 F DNA-(apurinic or apyrimidinic site) lyase activity

llia GO:0009503 C light-harvesting complex (sensu Viridiplantae) PDB Classification: Light Harvesting Protein

GO:0015979 P photosynthesis PMID: 11134927

Idnl GO:00l10181 F FMN binding PDB Classification: Oxidoreductase
GO:0004733 F pyridoxamine-phosphate oxidase activity [source: EC:1.4.3.5] EC no.: 1.4.3.5

ljbe GO:0004871 F signal transducer activity PDB Classification: Signaling Protein
GO:0000160 P two-component signal transduction system (phosphorelay) PMID: 12270703

luap GO:0005509 F calcium ion binding PDB Classification: Protein Binding
GO:0004252 F serine-type endopeptidase activity PMID: 12670942

1fb3 GO:0016491 F oxidoreductase activity PDB Classification: Oxidoreductase
GO:0004324 F ferredoxin-NADP+ reductase activity [source: EC:1.18.1.2] EC no.: 1.18.1.2
GO:0050660 F FAD binding
GO:0050661 F NADP binding
GO:0006118 P electron transport

lgot G0O:0005834 C heterotrimeric G-protein complex PDB Classification: Complex (gtp Binding/transducer)
GO:0004871 F signal transducer activity PMID: 17036056
GO:0007186 P G-protein coupled receptor protein signaling pathway

1k8g GO:0003677 F DNA binding PDB Classification: DNA Binding Protein/dna
GO:0042162 F telomeric DNA binding PMID: 11743727
GO:0006260 P DNA replication

liis GO:0042612 C MHC class | protein complex PDB Classification: Immune System

GO:0030106 F MHC class | receptor activity
GO:0019882 P antigen processing and presentation

llug GO:0008270 F zinc ion binding PDB Classification: Lyase

GO:0004089 F
GO:0006730 P

carbonate dehydratase activity [source: EC:4.2.1.1]
one-carbon compound metabolic process

EC no.: 4.2.1.1
Chemical Component: ZINC ION
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(d)

Comparison of prediction results between methods by global and local similarity. The recall-precision graphs of the predic-
tion results by the pocket similarity network versus those by the protein similarity network in the intersection of proteins. (a) The RP
curve of the prediction results by pySOAR cRMSD p-value 10-2versus CE Z-Score 4.8. (b) The intersection illustration of the proteins that
can be predicted by the two methods. The red cycle represents the pocket similarity network and the blue cycle the protein similarity
network. The RP graph is drawn in the results of the intersection of two cycles. (c) and (d) are the similar comparison between pvSOAR

cRMSD p-value 10-3 and CE Z-Score 5.8.

In the second experiment, the unspecific GO terms are
discard from the prediction results. The relevance infor-
mation of GO terms are represented by their probability
[34] to occur in a dataset. The frequency of a GO term is
defined as

freq(c) = anno(c) + freq(h),

he children(c)

in which anno(c) is the number of proteins annotated
with the term ¢, and children(c) is the set of child nodes of
term c. The probability of the term ¢ is then defined as p(c)
= freq(c) = freq(root), where freq(root) is the frequency of
the root term [36]. The probability is monotonically
increasing when moving up on a path from a leaf to the
root. A GO term with smaller probability should be more

specific and informative. The probabilities of all GO terms
occurring in the dataset are calculated. The mean values of
the probabilities in three ontologies are 0.044 (C), 0.020
(P) and 0.015 (F) respectively. Then we discard GO terms
with probabilities larger than a given value (from 0.05 to
0.005) in the prediction to reduce the possible bias caused
by unspecific GO terms with high frequency. The recall-
precision graphs of prediction results with selected GO
terms are drawn in Figure 6(a). We also consider the depth
levels of GO terms. The recall-precision graphs of predic-
tion results with the GO terms under certain depth level
are drawn in Figure 6(b). The results show that the predic-
tion method is effective for specific GO terms and the
results are not artificially biased.
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(b)

The prediction results with selected GO terms. The recall-precision graphs of the prediction results with selected specific GO
terms by the pocket similarity network (pvSOAR cRMSD p-value 10-2). (a) The RP curves of the prediction results when the informative
GO terms are selected based on GO term probability. (b) The RP curves of the prediction results when the informative GO terms are
selected based on the depth level. The red dash line gives the original prediction results without filter.

Discussion

The protein surface patterns such as pockets have been
shown to be important to protein functions. Some func-
tions of pockets on protein surfaces were already con-
firmed [32,17]. The statistics in this paper also show that
the proteins containing similar pockets may have similar
functions. There are many approaches to predict protein
functions by global or local structure similarity [23,37].
Most of the existing methods are based on structure and/
or sequence alignments. In this paper, we proposed a
novel approach, which predicts protein functions based
on comparison of predefined local surface patterns
instead of using structure alignments to find function-
related structure motifs. It is an advantage to use the infor-
mation of multiple surface patterns instead of annotating
precisely protein functions to a single pocket because the
proposed prediction method can exploit local surface sim-
ilarity information. But the information provided by
pockets may not be in the same level, for example, some
pockets may be more closely related to particular protein
functions than others, and such difference is not consid-
ered in the current work. The introduction of informative
structure motifs such as in [23,37] to the proposed
method can also improve the results. In addition, the pro-
posed method can be straightforwardly extended to pre-
diction models with other definitions of locally structure
surface patterns as introduced in the first section.

Scoring Scheme

Although the statistics have shown that proteins with sim-
ilar pockets have high probabilities to have similar GO
functions, we do not assume that a particular pocket
determines protein functions when calculating the corre-
spondence scores between pockets and GO terms. In

other words, the score is evaluated based on the effect of
multiple pockets. The score of a pocket corresponding to
a particular GO term is the normalized frequency of the
GO term annotated to its closest neighbors. The more fre-
quently the GO term appears in the closest neighbors, the
larger the score is. This scoring scheme is very simple and
does not explicitly consider the influence of the size of
neighborhood. For example, a pocket with many closest
neighbors often has smaller scores than the pockets with
a very few neighbors. It maybe affect the final prediction
results. The scores will also be affected by the total
number of GO terms belonging to the neighboring pro-
teins. If some neighboring proteins have many GO func-
tions, the scores of the pocket will be smaller than average.
The sensitivity of prediction results to the scoring scheme
is important for the application of prediction method,
and needs to be further studied in the future. The predic-
tion accuracy may be improved if more elaborated scoring
methods are used.

Properties of Pocket Similarity Networks

In the proposed method, only the information of the clos-
est neighbors are exploited. In fact, we found that the
pocket similarity networks have many interesting proper-
ties. For example, the pocket similarity networks are
almost sparse and have some modularity. We used the
pockets in the same connected components to infer the
correspondence scores between a pocket and GO func-
tions. The prediction results are very close to those of the
closest-neighbor-based method (see Additional File 1).
Furthermore, if the edges are dense in each group and
sparse between any two groups, the pocket similarity net-
work can be partitioned into several groups (modules),
where each group can be regarded as a candidate of a
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pocket family, i.e. a classification of pockets. Then each
pocket family could be annotated with functions and used
to predict protein functions. The pocket classification will
be a further research topic of our study.

Sources of Pocket Similarity

The pvSOAR database is an important but not the only
source of pocket similarity. For example, we can compare
each pair of pockets by structure alignment tools such as
DALI [38], CE [33] and SAMO [39], and use the alignment
results as an independent or additional threshold. In the
future, we will identify tenser similar pockets by this
method and detect the physicochemical and geometric
characteristics of these functionally important surface
motifs. The works on additional pocket similarity infor-
mation and identification of biochemical features on
these spatial motifs are still ongoing and will be presented
in another paper.

GO Annotations

Some proteins are not annotated in current GOA data-
base, and their prediction results are partly shown in Table
7. The results reveal direct links between small structural
pockets and biological functions. Such information can
be further exploited to identify active sites and functional
motifs by combining with other biological datasets. We
can also predict the GO functions of un-annotated pro-
teins by using the proposed method, and then use the pre-
dicted GO terms to predict other protein with unknown
functions, as if they are already annotated. Whether or not
this method can really improve the prediction accuracy
and coverage needs further study in the future. Another
important research direction is to exploit the GO hierar-
chical structure and the semantic similarity in the predic-
tion method to improve the accuracy [40].

Detection of functional sites

The main point of this paper is utilizing local structure
information to improve the effectiveness and accuracy of
protein function prediction. It is also very interesting and
important to check those functionally similar proteins
which have local structure similarity instead of global one
to find the functional sites in detail and identify their
functions. Our main concern is current data are far from
complete to do this. Comprehensive experiments on com-
plete local structure library and larger structure databases
such as whole PDB may be necessary to archive interesting
and convincible results for detecting functional sites. Also
the prediction accuracy may be further improved. Our
future attempts will eventually take into account the
detailed local structural properties related to protein func-
tion.

http://www.biomedcentral.com/1471-2105/8/475

Conclusion

In conclusion, a novel prediction method was proposed
in this paper to predict protein GO functions from the sur-
face pocket similarity, by directly linking structural pat-
terns with biological functions. In addition to the high
coverage and accuracy of the predictions, the prediction
method is also simple and computationally efficient, and
therefore can be applied to large-scale problems. The sta-
tistics and computational experiments show the effective-
ness of the method. It is a supplement to the existing
prediction methods based on sequence and/or global
structure similarity. In contrast to the existing methods
which are mainly effective for homologous proteins in
divergent evolution, the method in this paper is also suit-
able for the proteins with distant relationship or with con-
vergent evolution.

Methods

Constructing Pocket Similarity Network

The pocket similarity network is a network in which each
node represents a pocket and each edge connects two sim-
ilar pockets. For each considered protein, all its pockets
can be obtained from CASTp database. Then an edge is
linked between a pair of nodes, if their similarity measure
satisfies the given threshold. The pvSOAR is an all-against-
all comparison database of pockets in CASTp. For each
similar pocket pair, the pvSOAR database provides three
statistical significant measurements: E-value of sequence
similarity, p-value of structure similarity cRMSD, p-value
of structure similarity oRMSD. These three measurements
are explained in [21,28] and the documentation in
pvSOAR server. We can select one of these measurements
or their combination as the threshold to build the net-
work. In detail, we query each pocket in the pvSOAR data-
base to find the similar pockets which satisfy the given
threshold, and then link an edge between the queried
pocket and the hitting pocket. After all edges are added,
the isolated nodes, i.e. nodes without any linking edge,
are removed from the network.

Scoring Pockets and Proteins for Function Prediction

The correspondence scores between a pocket and GO
terms are determined by its closest neighbors. The closest
neighbors of a pocket are those pockets directly linked to
the considered pocket. The occurrence number of each
GO term in all closest neighbors is recorded in the scoring
table, in which each row represents a considered pocket
and each column represents a GO term. Then the scores
between the considered pocket and GO terms are assigned
by the frequencies of GO terms, which are the normalized
occurrence numbers of GO terms, i.e. each number in the
scoring table is divided by the sum of elements in the row
that it is located. The scoring scheme for a pocket and GO
terms is illustrated in Figure 7. We do not use any prior
assumption that some pockets are related to particular GO
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Example of pocket scoring. An example of pocket scoring
scheme. The closest neighbors of the pocket C3 and the corre-
sponding GO terms are listed in the left box. The occurrence
numbers of GO terms in the closest neighbors of pocket C3 are
recorded in the corresponding row of the pocket-term table. For
example, the GO term T1 is annotated to 8 of the closest neigh-
bors, and the GO term T2 is annotated to 6 of the closest neigh-
bors. The score between pocket C3 and GO terms is obtained by
normalizing the row.

terms. But if the relationship between some functional
pockets and GO terms is confirmed by experiments, the
information can be easily adopted in the scoring system.

After the scores are calculated for all pockets of the target
protein, the correspondence scores between the protein
and GO terms are inferred from the scores of pockets. For
a considered GO term, the weighted sum of the corre-
spondence scores of all pockets in the target protein is the
score of the protein with regard to the GO term. An exam-
ple is illustrated in Figure 8. In this example and the cur-
rent work, all pockets have the same weight value 1. In
practice, if a pocket shows stronger relationship to protein
functions, or the pocket is thought important to the target
protein, it can be given a high weight.

Evaluating Results of Function Prediction

The prediction performance of the proposed method is
evaluated by some widely used measurements in informa-
tion retrieval research, such as recall, precision and F-
measure. The evaluation is usually displayed in a recall-
precision graph. And the F-measure can be used as a single
measure of performance of the test, which is the harmonic
mean of precision and recall. Mathematically, these meas-
urements are defined as follows.

Precision P = TP/(TP+FP)

http://www.biomedcentral.com/1471-2105/8/475

[Jessm TI T2 T3 T4 -

pockets of | pl,p2,p3,p4 ci|15| 0| 0 |2/3] ...
new protein

p»SOAR
c2(6/7| 0 |1/7| O

1 6 4
corer = Ix—+1x—+Ix—+1x0
Scorer STt

pl sl

pairs of | P2 52
similar pockets | p3 s3 3(4/9(1/3| 0 [1/6] ...

p4 s4

C4|3/4(1/5] 0 | O

C5| 0 [2/3[1/3| O

Figure 8

Procedure of protein function prediction. An example of
protein scoring scheme. The target protein is queried in CASTp
sever to obtain its pockets. Then the correspondence scores
between pockets and GO terms are inferred as shown in Figure 5.
The weighted sum of scores of all pockets with regard to a GO
term is the score of the protein with regard to the GO term.

Recall R = TP/(TP+FN)

F-measure = 2 x P x R/(P+R)
where the TP, FP and N are abbreviations of the number
of true positive, number of false positive, and number of
false negative respectively. The global performance is eval-
uated by using leave-one-out cross-validation experi-
ments. The specific evaluation of prediction performance
on each individual protein is also calculated in the similar
way.
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