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Abstract
Background: Shannon entropy applied to columns of multiple sequence alignments as a score of
residue conservation has proven one of the most fruitful ideas in bioinformatics. This
straightforward and intuitively appealing measure clearly shows the regions of a protein under
increased evolutionary pressure, highlighting their functional importance. The inability of the
column entropy to differentiate between residue types, however, limits its resolution power.

Results: In this work we suggest generalizing Shannon's expression to a function with similar
mathematical properties, that, at the same time, includes observed propensities of residue types to
mutate to each other. To do that, we revisit the original construction of BLOSUM matrices, and
re-interpret them as mutation probability matrices. These probabilities are then used as
background frequencies in the revised residue conservation measure.

Conclusion: We show that joint entropy with BLOSUM-proportional probabilities as a reference
distribution enables detection of protein functional sites comparable in quality to a time-costly
maximum-likelihood evolution simulation method (rate4site), and offers greater resolution than
the Shannon entropy alone, in particular in the cases when the available sequences are of narrow
evolutionary scope.

Background
As a groundwork for the mutational study of a protein,
many researchers will choose the comparative analysis of
the protein homologues. Column entropy in the multiple
sequence alignment [1,2] has proven over time as a work-
horse of such endeavors, giving an excellent estimate of
residue variability, and proving difficult to beat in terms
of its prediction power. One of its limitations, which we
address in this paper, is its inability to differentiate
between amino acid residue types. For example, its
straightforward application proves blind to the fact that
an isoleucine, a residue of a type that mutates easily, when

found conserved over a large evolutionary distance,
should appear more conspicuous than a conserved pro-
line. Shannon's entropy is unable to distinguish between
the two cases, and thus its resolution stops at the level of
residues which are completely conserved across the
aligned homologue set.

This is illustrated in Figure 1 where entropy (green dashed
line) is compared with a prediction from a detailed simu-
lation of evolutionary events, provided by rate4site pro-
gram [3] (red thick full line; the thin line gives a preview
of the method described in this work). The most promi-
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nent feature of the simulation result is that the simulation
can differentiate among the 35% of residues which are
invariant in this alignment. This capability can be traced
back to the fact that the mutation rates used in the simu-
lation are residue type-dependent – a distinguishing capa-
bility that Shannon's entropy lacks. This shortcoming
makes application of Shannon's entropy particularly awk-
ward in the cases where the available homologues are few
and closely related to the query.

While the entropy is by no means the only method to esti-
mate residue conservation ([4-7] and references therein),
and is not suitable for the identification of functional
determinants [8], we leave it as a focus of our attention for
its central role in the existing research (for example, [9]),
and its potential as a building block for more elaborate
methods [10].

In order to introduce mutational preferences of different
residue types into the analysis, we turn to joint entropy
with Kullback-Leibler-like [11] background frequencies.
The joint entropy allows consideration of mutational
events in terms of residue pairs (x1, x2) (for mutation from

x1 to x2, or vice versa), whereas the background frequen-
cies enable the estimate of the statistical (im)probability
of an observed mutation occurring at random. The back-
ground frequencies, we suggest, are already available in
terms of BLOSUM matrices, even though some adjusting
is needed to turn them into matrices of transition proba-
bilities. In distinction from earlier works using joint
entropy with Kullback-Leibler background distribution to
detect co-evolution across multiple alignment columns
(e.g [12]), we propose, closer in spirit to BLOSUM itself,
considering joint entropy for a single alignment column
(a "sum-of-pairs" type of score [4]). To establish the rea-
sonableness of the approach, we first argue that the
expression for joint entropy, when applied to a single dis-
tribution, has the properties of entropy in the general
Shannon sense, but at the same time allows introduction
of a phenomenological (Kullback-Leibler [11]) term
describing the difference in residue types and in their
mutational preferences. We then turn the raw set of data,
from which the BLOSUM matrices were derived, into a
mutation probability matrix, and then apply the resulting
formula to the detection of a set of protein interfaces. The
method shows a significant improvement in the specifi-
city of detection of functional surfaces starting from a
small set of close homologues, as illustrated on a test set
of 18 transiently interacting homodimers.

Method
A column in a multiple sequence alignment can be
thought of in the following way: If the sequence set were
a fair sample of all possible orthologs, and the variability
of each residue depended only on its type, the amino acid
population in each column would reflect the ease with
which they are exchangeable in a general case. Setting
aside the problem of the fairness of sample, which we do
not attempt to address here, the difference from the
expected distribution is a result of the particular evolu-
tionary forces on the residue, or the lack thereof.

The Shannon entropy of an alignment column – repre-
sented by a distribution of residue types X – is evaluated as

where x is one of 20 residue types, and the probability of
occurrence of x, P(x), is estimated by f(x), the frequency of
the appearance of residue type within the alignment col-
umn:

where N(x) is the number of appearances of residue type
x, and L is the length of the column. To find an expression
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Methods comparison, using rabphilin-3a as an exampleFigure 1
Methods comparison, using rabphilin-3a as an exam-
ple. The ability of three different methods to detect the 
interacting surface of the small G protein rab3a with the 
effector domain of rabphilin-3a (PDB [27] identifier 1zbd, 
chain A). Horizontal axis: fraction of surface appearing among 
the top scoring residues (surface coverage). Vertical axis: 
fraction of interface detected. Thin red line: rate4site; green 
dashed line: column entropy; thick red line: joint entropy 
with BLOSUM background frequency, described in the text.
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which will incorporate residue mutation propensity, we
first look at the expression for joint entropy of two distri-
butions

and apply it to a single distribution, X:

P(x1, x2) is now estimated by the frequency of residue type
pairs which can be formed from the residues in the col-
umn:

where N(x1, x2) is the number of unordered pairs (x1, x2),
which can be formed by taking both x1 and x2 from the
distribution X, and L is the column length. The quantity
P(x1, x2) behaves the same way as the Shannon entropy, as
illustrated in Figure 2, for the case of a set of 30 elements

of types A and B. This corresponds to a case of a column
taken from an alignment of 30 sequences, and which hap-
pens to contain only two residue types. Just as in the case
of Shannon's entropy (dashed line), the entropy function
defined in Eq. 4 is zero when the set contains only one
type of element (i.e. only one residue type), and maximal
when the two types are equally represented.

The joint entropy also has the advantage that it allows for
easy incorporation of information about mutational pref-
erence of amino acids, following the approach of Kullback
and Leibler:

Q(x1, x2) here plays the role of the "background" mutation
propensity. In particular, P(x1, x1) which is greater than
Q(x1, x1) will result in negative HBB, indicating that the
residue is more conserved than its average mutation pro-
pensity would dictate (see also the example below). The
most conserved residue still has the minimal score (as in
the case of Shannon entropy) which can in this case be
less than zero. To estimate Q, we take a matrix of raw pair
frequencies originally assembled for the calculation of
BLOSUM matrices [13,14]. These matrices are not proba-
bilities, but counts of pairs of different amino acid types
appearing in the same alignment column. Thus, we first
normalize each row to unity. The distribution P described
in Eq. 5 and used in Eq. 6 has no way of distinguishing
between the two possible orderings of its arguments; that
is, in this model we do not know which residue type was
"earlier" and which one was "later" – mutations in both
direction are equally probable (for a model aimed at cap-
turing the difference, see [15]). Therefore, we need the ref-
erence distribution Q which possesses the same
symmetry. The matrix obtained by normalizing the rows
in the raw BLOSUM table is no longer symmetrical, so we
approximate it with a nearest (in terms of the average
root-mean-square distance between the elements) sym-
metric matrix whose rows and columns sum up to 1. To
find Q we use a Monte Carlo procedure: starting from 20
× 20 identity matrix, we subtract (add) a small quantity
from a randomly chosen off-diagonal element, and add
(subtract) it from the two corresponding diagonal ele-
ments.

The optimized (minimized, in this case) quantity is root-
mean-square distance of matrix elements to the starting
(BLOSUM frequency) matrix. The Q matrix used in this
work was derived from the frequencies in 35% clustering
blocks, and can be found in Additional file 1.

H X Y P x y P x y
yx

( , ) ( , )ln ( , ),= − ∑∑ (3)

H X X P x x P x x
x xx

( , ) ( , )ln ( , ).= −
≤

∑∑ 1 2 1 2

2 11

(4)

P x x
N x x
L L

( , )
( , )

( )/1 2
1 2
1 2

≈
−

(5)

H X X P x x
P x x
Q x xBB

x xx

( , ) ( , )ln
( , )
( , )

.= −
≤

∑∑ 1 2

2 11

1 2
1 2

(6)

Shannon and joint entropiesFigure 2
Shannon and joint entropies. Comparison between Shan-
non and joint entropies, in the hypothetical case of a set of 
30 elements of type A or B. Red line: joint entropy, evaluated 
according to Eq. 4. Green line: Shannon entropy (Eq. 3).
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To illustrate the way HBB scores residue columns, we look
at two simple examples. First we compare the scoring of
two completely conserved columns, one with isoleucines,
and one with prolines:

Since Q(I, I) = 0.14, and Q(P, P) = 0.29 (see Additional file
1; P(x1, x2) is equal to 1 for any conserved column), the
value of HBB for the first column is -1.9, and for the second
-1.2. Remembering that, just as in the case of Shannon
column entropy, the lower number indicates higher
degree of conservation, the isoleucine column is by this
reasoning under higher evolutionary pressure than pro-
line. That is, since isoleucine is quite prone to mutation
(to a valine, for example), we find it as an element of sur-
prise that it is completely conserved, and attribute this to
a special role alanine plays at this particular position in
the protein.

In a slightly more complex example we compare two col-
umns with two values of amino acid types each:

Perhaps counterintuitively, the second column scores bet-
ter (HBB = -1.4, compared with HBB = -1.1 for the first col-
umn), largely because of the contribution of Q(I, P) = 0.04
(as opposed to common substitution I ↔ V with Q(I, V)
= 0.12). If it is true that in the evolutionary history of our
hypothetical protein the isoleucine at this position was
replaced by a proline, then this position must be very spe-
cial, claims this model, perhaps conferring specificity to
the proteins function. (As a corollary, the whole process
depends critically on reliability of the alignment. We
therefore expect this approach to become problematic for
very distant homologues, as the alignments become unre-
liable – a common problem in comparative analysis of
proteins.)

The test set
The test set used here consists of 18 transiently interacting
heterodimers, a subset of the set originally published by
Nooren and Thornton [16,17], resulting in 36 interfaces.
Out of 36 protomers in this set, 10 are classified as all a-
helix in the SCOP [18] scheme, 5 as all β-sheet, 15 as α/β,

4 as α + β, and 2 simply as "small proteins" (see Addi-
tional file 1). The interface residues are defined as the set
of residues which upon complexation become completely
isolated from the water molecules, or can be found in the
vicinity of coordinated water molecule(s). Such regions
are either in close contact with the interacting partner,
enabling short range interactions (perhaps mediated by
coordinated waters), or functioning as hydrophobic "suc-
tion pumps;" in either case they are expected to be respon-
sible for the interaction strength and specificity, and thus
under increased evolutionary pressure. [17]

The HSSP [19] alignment was used as the initial align-
ment in all cases presented. Sequences aligning with less
than 75% of the query length were removed from the
alignment. For each pair of sequences more than 98%
identical, the shorter sequence was discarded. If the aver-
age identity of any two sequences, measured by an average
over all windows 20 residues long, was below 50%, the
sequence with the smaller percent identity to the query
was discarded. In the same way, all sequences were
required to have at least 70% identity. These strict require-
ments were used precisely to illustrate the point that the
presented method can extract interesting information
even from very closely related sequences.

For comparison, the results are also shown for the same
set of proteins, but using a set of more distant homo-
logues for each family – sequences at least 15% identical
to the query and among themselves. In some cases
(1a0oF, 1c1yB, 1ceeB, 1cxzB, 1foeA, 1he1A, 1lfdA, 1rrpA,
1wq1G, 1zbdB and 2trcP) this procedure – using the
HSSP alignment as a starting point – still resulted in a set
of very similar homologues. In these cases we resorted to
4 iterations of PSIBlast [20] search on the NCBI non-
redundant database of protein sequences [21], with the
cutoff E-value of 0.05, followed by alignment using Mus-
cle [22], and pruning of (dis)similar sequences as
described above for the HSSP case.

Results and discussion
Figures 3 and 4 show the performance of HBB (Eq. 6; red)
in detecting protein interface, compared with the column
entropy (green) and rate4site (blue). The results are pre-
sented in terms of sensitivity versus surface coverage
curves. Definitions of sensitivity and coverage stem from
our use of methods which, in one way or another, rank
residues by the evolutionary pressure they experience.
Coverage in this context refers to the fractional overlap of
certain percentage of top ranking residues with the set of
surface residues, while sensitivity is the overlap of the same
top ranking residues with the target set of interface resi-
dues. The question of the optimal choice of coverage (or
of the underlying HBB value) is left open, with the under-
standing that a higher coverage choice detects a larger
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Testing the performance of HBB on several protein-protein interfacesFigure 3
Testing the performance of HBB on several protein-protein interfaces. Sensitivity as a function of surface coverage for 
alignments of close homologues. Protein Databank Identifier of each protein is indicated in the corner of each panel. The 
results are based on sets of homologues very close to each query. In each case, all methods were applied to the same align-
ment. Full red line: joint entropy, evaluated according to Eq. 4; dashed green line: Shannon entropy; dashed blue line: rate4site.
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Testing the performance of HBB: broad evolutionary sampleFigure 4
Testing the performance of HBB: broad evolutionary sample. The same as Figure 3, using alignments encompassing 
more distant homologues.
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number of test residues, but also leads to a larger number
of false positives. The quality of any method consists pre-
cisely of its ability to maximize this hit-to-miss ratio.

The results in Figure 3 refer to a hypothetical and espe-
cially stringent case, in which only very close homologues
(no less than 70% identity to the query) are available for
the analysis. For the proteins in our test set this is not nec-
essarily the case, but we limit the sequence selection to
close homologues to illustrate our claim that HBB is then
still able to extract information beyond the reach of Shan-
non's entropy. As shown in Figure 3HBB is capable of
detecting parts of the interface down to one percent cover-
age of the entire surface, even using an evolutionarily nar-
row selection of sequences. At the same time, the results
are quite comparable to the results obtained using a full-
blown simulation of evolutionary events (rate4site; thin
line). Taking the area under the sensitivity vs. coverage
curve as an indicator of the prediction quality (the value
of 1 is the maximal attainable), in a Wilcoxon signed-rank
test [23], the areas resulting from the use of HBB are indeed
different from those using entropy with the p-value <6 ×
10-5. Using the same test, the quality of the predictions by
HBB and rate4site are statistically indistinguishable (p-
value of 0.4). Rate4site and HBB average the area of 0.73
and 0.72 respectively for this selection of sequences, while
the entropy averages 0.62, thus indicating that both HBB
and rate4site move the prediction toward more reliable.
The last result is the consequence mostly of the inability
of the entropy to achieve resolution at small coverage,
thus decreasing the area under the curve.

In the following figure, Figure 4 we note that for a broader
evolutionary coverage (sequences at least 15% identical to
the query and among themselves), entropy becomes com-
petitive again. However, HBB still performs comparably to
rate4site, and even somewhat better than the column
entropy. The average areas under the sensitivity-coverage
curve are 0.74, 0.73, and 0.77 for HBB, entropy and
rate4site respectively. On the Wilcoxon test, in this case of
a sequence sample with lower homology, the results by
HBB are more similar to those produced by column
entropy (p-value 0.5) than by rate4site (p-value 0.01).

Information analogous to Figures 3 and 4, using Mat-
thews correlation coefficient, is presented in Additional
file 1: the success of the method varies from case to case,
but it achieves the values of Matthews coefficient of up to
0.5.

The usefulness of the method is not limited to protein
interfaces – it works as well as rate4site, and better than
entropy in detection of catalytic sites for enzymes (see
Additional file 1).

The model behind this approach acknowledges that start-
ing from the the alignment column alone it is not possible
to establish the residue type in the ancestral allele.
Instead, the reasoning goes, in the lack of evolutionary
pressure, the observed distribution should reflect the sta-
tistical propensity of residues to mutate to each other: if a
residue type A is just as likely to mutate to type B as not to
mutate at all, and vice versa, we expect to find the two
types equally represented in a fair sample of existing alle-
les. A deviation from the uniform distribution, then,
points to an external pressure to maintain a particular
type, calling attention to the corresponding position in
the protein sequence. This interpretation of the model
makes its pitfalls obvious: a sequence sample produced
automatically from currently available protein sequence
databases is highly unlikely to be fair. (Valdar's method
[4,24], for example, deals with the problem of fairness of
sampling. For comparison, see Additional file 1.) Also,
even though it tolerates small evolutionary breadth, since
the method is inherently statistical, it requires a sizable
number of sequences, a requirement shared with Shan-
non's entropy, but not with maximum likelihood meth-
ods (such as rate4site). Finally, and this is the problem
common to all three methods discussed here, the pressure
to conserve a particular physicochemical characteristic
(such as acidity or aromaticity) goes undetected by HBB.
However, with all of its shortcomings, the model immedi-
ately proves to be more useful (at least in the case of lim-
ited homology span) than the one oblivious to amino
acid type, as indicated in Figure 3.

Consideration of the inherent problems may yet lead us to
an improved approach.

Conclusion
We have shown that a simple heuristic modification of
Shannon entropy can match the prediction power of an
elaborate evolution simulation. It is worth noting the
advantages this brings: HBB is simple, which makes it
applicable as a part of a more complex approach [10], and
its speed (calculating a column score is several orders of
magnitude faster than performing a simulation) makes it
useful in repetitive tasks, such as optimization schemes
[25]. In practical applications, the presented method can
tackle much larger alignments, in terms of both number
of sequences and their length, than an evolutionary simu-
lation; in the opposite extreme (and contrary to the case
of Shannon's entropy), the presented method can extract
information from a very narrow evolutionary sample.

The data set used in this work is available at the Lichtarge
Lab website [26].
Page 7 of 8
(page number not for citation purposes)



BMC Bioinformatics 2007, 8:488 http://www.biomedcentral.com/1471-2105/8/488
Publish with BioMed Central   and  every 
scientist can read your work free of charge

"BioMed Central will be the most significant development for 
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central 

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

Authors' contributions
IM conceived of the study and implemented necessary
software. The method was developed and the manuscript
written through collaborative work of all authors. All
authors read and approved the final manuscript.

Additional material

Acknowledgements
The authors thank Tuan A. Tran and R. Matthew Ward for critical reading 
of the manuscript. Support from NIH GM079656, NIH GM66099, NSF 
DBI-0547695, March of Dimes (1-FY06-371) to OL, as well as partial sup-
port to IM by Biomedical Research Council of A*STAR, Singapore is grate-
fully acknowledged.

References
1. Shannon C, Weaver W: The Mathematical Theory of Communication

Urbana: University of Illinois Press; 1949. 
2. Shenkin P, Erman B, Mastrandrea L: Information-Theoretical

Entropy as a Measure of Sequence Variability.  Proteins Struct
Funct Genet 1991, 11:297-313.

3. Pupko T, Bell RE, Mayrose I, Glaser F, Ben-Tal N: Rate4Site: an
algorithmic tool for the identification of functional regions in
proteins by surface mapping of evolutionary determinants
within their homologues.  Bioinformatics 2002, 18:S71-S77.

4. Valdar W: Scoring Residue Conservation.  Proteins Struct Funct
Genet 2002, 48:227-241 [Http://www.ebi.ac.uk/thornton-srv/data
bases/cgi-bin/valdar/scorecons_server.pl].

5. Jones S, Thornton J: Searching for functional sites in protein
structures.  Curr Opin Chem Biol 2003, 8:3-7.

6. Lichtarge O, Bourne H, Cohen F: An Evolutionary Trace Method
Defines Binding Surfaces Common to Protein Families.  J Mol
Biol 1996, 257:342-358.

7. Pei J, Cai W, Kinch L, Grishin N: Prediction of functional specifi-
city determinants from protein sequences using log-likeli-
hood ratios.  Bioinformatics 2006, 22:164-171.

8. Donald J, Shakhnovich E: Predicting specificity-determining res-
idues in two large eukaryotic transcription factor families.
Nucl Acids Res 1996, 93:11628-11633.

9. Atchley W, Fernandes A: Sequence signatures and the probabi-
listic identification of proteins in the Myc-Max-Mad network.
Proc Natl Acad Sci USA 2005, 102:6401-6406.

10. Mihalek I, Reš I, Lichtarge O: A Family of Evolution-Entropy
Hybrid Methods for Ranking Protein residues by Impor-
tance.  J Mol Biol 2004, 336:1265-1282.

11. Kullback S, Leibler R: On information and sufficiency.  Annals of
Mathematical Statistics 1951, 22:79-86.

12. del Sol Mesa A, Pazos F, Valencia A: Automatic Methods for Pre-
dicting Functionally Important Residues.  J Mol Biol 2003,
326:1289-1302.

13. Henikoff S, Henikoff J: Amino acid substitution matrices from
protein blocks.  Proc Natl Acad Sci USA 1992, 89:10915-10919.

14. NCBI Repository; the matrices used are therein named blo-
sum*.out   [ftp://ftp.ncbi.nih.gov/repository/blocks/unix/blosum/blo
sum.tar.Z]

15. Veerassamy S, Smith A, Tillier E: A transition probability model
for amino acid substitutions from blocks.  J Comput Biol 2003,
10:997-1010.

16. Nooren I, Thornton JM: Structural Characterisation and Func-
tional Significance of Transient Protein-Protein Interactions.
J Mol Biol 2003, 325:991-1018.

17. Mihalek I, Reš I, Lichtarge O: On itinerant waters and detectabil-
ity of protein-protein interfaces through comparative analy-
sis of homologues.  J Mol Biol 2007, 369:584-595.

18. Murzin AG, Brenner SE, Hubbard T, Chothia C: SCOP: a structural
classification of proteins database for the investigation of
sequences and structures.  J Mol Biol 1995, 247:536-540.

19. Sander C, Schneider R: Database of homology derived protein
structures and the structural meaning of sequence align-
ment.  Proteins 1991, 9:56-68.

20. Altschul S, Madden T, Schaffer A, Zhang J, Zhang Z, Miller W, Lipman
D: Gapped BLAST and PSI-BLAST: a new generation of pro-
tein database search programs.  Nucl Acids Res 1997,
25:3389-3402.

21. Pruitt K, Tatusova T, Maglott D: NCBI reference sequences (Ref-
Seq): a curated non-redundant sequence database of
genomes, transcripts and proteins.  Nucl Acids Res 2007,
35:D61-D65.

22. Edgar R: MUSCLE: multiple sequence alignment with high
accuracy and high throughput.  Nucl Acids Res 2004, 32:1792-97.

23. R Development Core Team: R: A Language and Environment for Statis-
tical Computing 2007 [http://www.R-project.org]. R Foundation for
Statistical Computing, Vienna, Austria [ISBN 3-900051-07-0]

24. Valdar W, Thornton J: Protein-protein interfaces: Analysis of
amino acid conservation in homodimers.  Proteins Structure
Function and Genetics 2001, 42:108-124.

25. Mihalek I, Reš I, Lichtarge O: A structure and evolution guided
Monte Carlo sequence selection strategy for multiple align-
ment-based analysis of proteins.  Bioinformatics 2006,
22:149-156.

26. Lichtarge Lab   [http://mammoth.bcm.tmc.edu]
27. Berman H, Westbrook J, Feng Z, Gilliland G, Bhat T, Weissig H,

Shindyalov I, Bourne P: The Protein Data Bank.  Nucl Acids Res
2000, 28:235-242.

Additional file 1
Background frequencies for residue variability estimates: BLOSUM revis-
ited – Supplementary Material. The supplement contains the reference 
distribution Q, structural classification of used proteins according to 
SCOP, and additional comparative analysis of the method presented here 
with methods already available in the literature.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-8-488-S1.pdf]
Page 8 of 8
(page number not for citation purposes)

http://www.biomedcentral.com/content/supplementary/1471-2105-8-488-S1.pdf
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1758884
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1758884
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12169533
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12169533
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12169533
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12112692
Http://www.ebi.ac.uk/thornton-srv/databases/cgi-bin/valdar/scorecons_server.pl
Http://www.ebi.ac.uk/thornton-srv/databases/cgi-bin/valdar/scorecons_server.pl
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8609628
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8609628
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16278237
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16278237
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16278237
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15851686
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15851686
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15037084
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15037084
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15037084
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12589769
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12589769
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1438297
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1438297
ftp://ftp.ncbi.nih.gov/repository/blocks/unix/blosum/blosum.tar.Z
ftp://ftp.ncbi.nih.gov/repository/blocks/unix/blosum/blosum.tar.Z
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14980022
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14980022
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12527304
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12527304
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17434530
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17434530
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17434530
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7723011
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7723011
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7723011
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2017436
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2017436
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2017436
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9254694
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9254694
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17130148
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17130148
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17130148
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15034147
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15034147
http://www.R-project.org
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16303797
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16303797
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16303797
http://mammoth.bcm.tmc.edu
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10592235
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Method
	The test set

	Results and discussion
	Conclusion
	Authors' contributions
	Additional material
	Acknowledgements
	References

