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Abstract

Background: Integration of multiple results from Quantitative Trait Loci (QTL) studies is a key
point to understand the genetic determinism of complex traits. Up to now many efforts have been
made by public database developers to facilitate the storage, compilation and visualization of
multiple QTL mapping experiment results. However, studying the congruency between these
results still remains a complex task. Presently, the few computational and statistical frameworks to
do so are mainly based on empirical methods (e.g. consensus genetic maps are generally built by
iterative projection).

Results: In this article, we present a new computational and statistical package, called MetaQTL,
for carrying out whole-genome meta-analysis of QTL mapping experiments. Contrary to existing
methods, MetaQTL offers a complete statistical process to establish a consensus model for both
the marker and the QTL positions on the whole genome. First, MetaQTL implements a new
statistical approach to merge multiple distinct genetic maps into a single consensus map which is
optimal in terms of weighted least squares and can be used to investigate recombination rate
heterogeneity between studies. Secondly, assuming that QTL can be projected on the consensus
map, MetaQTL offers a new clustering approach based on a Gaussian mixture model to decide how
many QTL underly the distribution of the observed QTL.

Conclusion: We demonstrate using simulations that the usual model choice criteria from mixture
model literature perform relatively well in this context. As expected, simulations also show that
this new clustering algorithm leads to a reduction in the length of the confidence interval of QTL
location provided that across studies there are enough observed QTL for each underlying true
QTL location. The usefulness of our approach is illustrated on published QTL detection results of
flowering time in maize. Finally, MetaQTL is freely available at http://bicinformatics.org/mqtl.

Background Linkage mapping experiments now provide an efficient
In the last two decades, the advent of molecular markers  tool to identify regions of the genome where polymor-
and their use in linkage mapping experiments has tremen- ~ phism affects the variation of quantitative traits, called

dously increased the potential of quantitative genetics. ~ Quantitative Trait Loci (QTL). Although a large number of
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advanced statistical methods have been developed to
improve the localization of QTL, the limited number of
recombination events available in routinely used pedigree
designs for QTL mapping lead essentially to an approxi-
mate mapping of the QTL (see for instance [1]). This is
mainly due to both a few mating generations and a
restricted number of sampled individuals (generally a few
hundreds). From results of QTL experiments gathered
over a wide range of plant species, [2] have shown that
confidence intervals around most likely QTL positions
are, on average, approximately 10 ¢M, which usually
includes several hundreds of genes. More recent advents
in the area of molecular biology have allowed researchers
to carry out positional cloning of QTL (see for instance the
review of [3]) but this approach still remains extremely
expensive both in terms of time and resources. Also sev-
eral authors [2,4] have pointed out that QTL detection is
statistically biased both in the true number of QTL, which
is underestimated since only QTL with large effects are
detected, and in the QTL effects which are over estimated
as only significant effects are reported (a phenomenon
has commonly referred to as the Beavis effect [5]). Even
though QTL mapping experiments must be considered
with an awareness of these limitations, they have become
commonplace and have greatly improved our knowledge
about the genetic component of complex traits.

Since the first publication of a QTL localization using
molecular data [6], more and more species and traits have
been studied and many of these results has been made
available via public databases. One of the main purposes
of these databases was to help researchers to compare
results from different QTL studies, to study the congru-
ency of QTL locations in order to address the following
question: "do QTL identified for a given trait in a popula-
tion correspond to those detected in other populations ?".
In theory one would expect that the variation of a quanti-
tative trait within a species is explained by a finite number
of genes. Thus QTL congruency investigation will be a rel-
evant approach to improve knowledge on trait genetics
and several publications have pointed out its usefulness
[7-12]. Nevertheless, the combination of results from
linkage studies can be tedious since, even if several studies
focus on the same trait within the same species, family
structures, sample sizes, marker maps, or QTL detection
methods may differ between studies. Some methods have
been recently developed to tackle the issues raised by
between QTL studies heterogeneity. Integration of genetic
maps and QTL locations by iterative projections on a ref-
erence map is now widely used to position both markers
and QTL on a single and homogeneous consensus map
(see for instance [13]). However this process yields a con-
sensus marker map for which both the statistical proper-
ties and biological "reality" can't be clearly assessed, even
if a robust ordered marker map was used as reference. [14]

http://www.biomedcentral.com/1471-2105/8/49

proposed an original approach using graph theory to inte-
grate various types of maps (genetic, physical or sequence-
based) but it mainly dealt with dissection of marker order
inconsistencies between maps. From up to now it seems
that there is no efficient methodological framework to
build reliable consensus marker maps on which markers
and candidate genes from different mapping experiments
can be both ordered and positioned (except by merging
raw mapping data from multiple populations as proposed
by [15] and [16]).

In order to study QTL congruency, [17] proposed an orig-
inal approach based on a meta-analysis strategy. Meta-
analysis, which is mainly used in medical, social, and
behavioral sciences, aims to pool results across independ-
ent studies in order to combine them in a single result or
estimate. The relevance of meta-analysis investigations in
genetics and evolution has been discussed and pointed
out by several authors in the last decade (see for instance
[18-21]). More recently [22] developed another meta-
analysis based approach to overcome the between-study
heterogeneity and to refine both QTL location and the
magnitude of the genetic effects. Yet both the method of
[17] and [22] are limited to a small number of underlying
QTL positions (from one to four for the former and only
one for the later) which is a serious limitation for a whole
genome study of QTL congruency. Even if the average
number of QTL per experiment is around four in plants
[2,12], one would expect that more than four genes can be
involved in the trait variation on a single chromosome.

To remove these impediments we have developed a new
2-stage meta-analysis procedure in order to integrate mul-
tiple independent QTL mapping experiments. Our aim
was to create a global framework to evaluate the homoge-
neity of both genetic marker and QTL mapping results
from literature and public databases. The first part of our
meta-analysis procedure consists in building a consensus
genetic marker map that takes into account the statistical
properties of genetic distance estimates using a Weighted
Least Squares (WLS) strategy. Secondly, once the consen-
sus marker map has been built, the QTL locations can be
projected on to the map. We also propose a new clustering
algorithm based on a Gaussian mixture model in order to
identify the number of underlying QTL which best explain
the observed distribution of QTL positions in the map-
ping experiments. As it has been emphasized by [17], the
crucial point at this step is to find an unbiased criterion to
select the correct number of QTL. In the context of Gaus-
sian mixture, a large variety of model choice criteria have
been reported in the literature. We explore, by means of
simulations, the properties of some of these criteria for
our particular mixture model. These new methods have
been implemented into a Java package called MetaQTL.
Finally, as an example, we applied our new approach to
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QTL detection results gathered for flowering time in
maize.

Results

Meta-analysis of genetic maps

Input genetic map information

Consider a set of n genetic mapping experiments concern-
ing the same linkage group. These different experiments
may involve different kinds of population pedigree. We
consider that for each experiment i = 1, ..., n only the esti-
mated distances between ordered markers along the link-
age group are available. We use ¢;, N;, M, to denote the
population cross design, the population size and the
number or markers on the ith genetic map, respectively.
Let's suppose that two markers m; and m, have been posi-

tioned on the ith map, 7 ; ; stands for the estimated recom-

bination rate between markers m;and mj;, and d =T il
the corresponding estimated distance, where f is the map-
ping function which is assumed to be the same in the n
mapping experiments (without loss of generality). Apply-
ing the classical asymptotic Gaussian distribution of the
maximum-likelihood estimation of the parameter, we
assume that the 7 are normally distributed around the

true recombination rate r;;, between markers m; and m,,
with a variance var(7,;;) = nf,jk- This variance nizljk

depends on the cross design ¢;, the value of r; ;, the sample
size N; and the amount of information supplied by the
marker pair m; and m, sampled population (see Addi-

tional File 1 for expression of 7).

Since mapping functions are generally one to one func-
tions, the functional invariance property of the maxi-

mume-likelihood estimate can be applied. Thus d .. isalso

ijk
normally distributed around the true distance denoted d; j,
= fr;z]. To obtain the variance of d, ;, denoted Viz,jkf we

use the first term of the Taylor expansion of the inverse of
the mapping function leading to the approximation:

9 flr el Y
¥ = var(d; ) = 0 i X %

Now suppose the n experiments are consistent with the
following assumptions:

http://www.biomedcentral.com/1471-2105/8/49

e Assumption 1 : they come from independent popula-
tion samples. This implies that cov(7 3, 7;4) = 0 and

cov(d;jp, d;j) = 0 for any pair of markers m; and m,

which have been mapped in population i and i, i #i' and
(i,i") € [1..n]2.

¢ Assumption 2 : there is no interference, i.e in each map-
ping experiment the recombination events occur inde-
pendently in each marker interval. This is surely an
idealization, but presently, most of the statistical models
used to build genetic marker maps are based on this
assumption. Thus for a given mapping experiment i, both
the ordered marker interval recombination rate and dis-

tance estimates are independent, i.e cov(fi/j(jﬂ),

fi,(j+1)(j+2)) =0 and COV(di,]-(j”), di(j+1)(j+2)) =0 forie
[1,...,n]andje [1,.., M;-2].

e Assumption 3 : the "true" marker order and recombina-
tion rate are supposed to be the same in the different pop-
ulations, i.e 1,4 = 7, if markers m; and m;, have been
mapped in population i and i', i #i' and (i, i) € [1..n]2.

e Assumption 4 : all the genetic maps are connected.
Mathematically, this means that if we consider maps as
vertices and common markers as edges, then the corre-
sponding graph is supposed to be connected.

Meta-analysis model
We define D = (Eli,jk) and T" = diag( 7i2,jk) the vector of
ordered marker interval distance estimates and the diago-

nal terms of the variance covariance matrix of D. We
assume that a total of M distinct markers have been
mapped in the n populations. The aim of the meta-analy-
sis is to combine all the available information on marker
order and positions in order to build a consensus linkage
group on which the M markers are positioned. To do so
we introduce Y = (yy,..., y,) the vector of the "true" posi-
tions of these M markers on the consensus linkage group,
where the y;'s can be either positive or negative depending
on an arbitrary zero-reference on the chromosome (here-
after we suppose y, = 0). If the n mapping experiments are
consistent with the previous assumptions and assuming
that the distances on the linkage group are additive we
propose to estimate Y by solving the following linear sys-
tem:

d ije = Ve~ Vit Eiju
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where (j, k) € [1,...M]% i€ [1,.., n], di,jk is the distance
estimate of the interval between marker m;and m, consec-
utive on the ih experiment, y, - y; is the true distance

between these markers, & ~ N (0, Viz,jk) is the error

term. If assumption 4 holds we are ensured that this sys-
tem has at least one solution. Applying a classical
weighted least squares (WLS) strategy, the optimal solu-
tion is the one which minimizes the target function,

4= iZ [d; i — (i — 7)1

2
i=1 jk Yi,jk

Let's introduce the design matrix A such that y = T( D -

AY)IY( D - AY). Then the value of Y which minimizes y is
given by:

Y = (TAT"1 A)1(TAT! D)

which is also a maximume-likelihood estimation of Y with

variance-covariance matrix given by (TAI"! A)-1. Thus Y
gives both the marker positions and the marker order
along the consensus linkage group. The goodness-of-fit of
the model can be evaluated by the means of a chi-square

testas y~ l;_MH where ¢ is the length of the vector D,

i.e the number of marker intervals over the n experiments.
As an illustration, let's consider the following idealized
scenario : suppose that the n gathered genetic maps share
the same markers, i.e M;= M fori = 1,..., n. In this simple

case the computation of Y is straightforward:

)l =0

n ~
2 Vi)
i1 jell,...M~-1]

- -2
Vi)
i=1

Yis1 —Vj =

and y is the sum of M - 1 terms each distributed as a chi-
square with n - 1 degree of freedoms. This is equivalent to
for each marker intervals testing if the distances are homo-
geneous between populations using a classical test of
equal means. This trivial example illustrates how our WLS
approach can be used to test for the homogeneity of the
recombination rate between several mapping experi-
ments. This can be viewed as an alternative to the M-test
devised by [23] when raw data are not available.

http://www.biomedcentral.com/1471-2105/8/49

Meta-analysis of QTL

Input QTL map information

Suppose that for a given trait a QTL detection has been
carried out in the n mapping experiments. The minimal
information supplied by the it QTL experiment consists
of a set of estimated positions of the QTL, denoted X
and the corresponding proportion of variance explained
by each QTL, the r-squares values 4;. Herej e [1,..., ;)] and
q;is the number of QTL detected in the it mapping exper-
iment on the current linkage group (generally ¢;= 1 or
possibly 2). The confidence intervals (CI) of the x's,
denoted vy,
CI may have been performed by different approaches:

can also be reported. The construction of the

e support interval [24,25].
¢ likelihood method [26].
¢ bootstrapping [27,28].

When the CI is not available it is possible to obtain an
approximation of the CI by applying the empirical for-
mula proposed by [29]. By means of intensive simula-
tions they showed that for either a backcross or a F,
population the expected CI, at 95% level, can be expressed
as CI(95) = 530/(NA) where N is the population size and
A the proportion of variance explained by the QTL. More
recently [30] have derived simple analytical equations
which are in good agreement with the formula of [29].

Whatever the method used to estimate the uncertainty on

the QTL locations, we assume that the X ;s are normally

distributed around the true position x; of the jh QTL: X ;

~ N (x5 (F,% where o7 is the variance of the estimated

ij
position which can be deduced from the confidence inter-

val v;;. For a CI of % (/3 depends on the method used to
compute the CI), the standard deviation ¢; can be esti-

mated as 0;; = v;/(2u,) where uzis the double-sided S-per-
centile of a centered normalized gaussian. This Gaussian
approximation based on the classical asymptotic theory
has been suggested by [17], even though this is not per-

fectly correct for QTL with small effects [31].

Furthermore the n QTL mapping experiments are
assumed to be consistent with the following assumptions:

e Assumption 1 : they are independent. This can be con-
sidered as correct when the individuals measured in the
different populations have been generated independently.

Page 4 of 16

(page number not for citation purposes)



BMC Bioinformatics 2007, 8:49

Independence between experiments i and i' means inde-
pendence between X ;and X ;.

e Assumption 2 : for a given trait there is a finite number
of underlying QTL which cosegregate in the mapping
experiments: this means that the populations share the
same trait determinism with potentially different allelic
configurations at the QTL. In other word there is a finite
number of true QTL positions on the linkage groups, i.e
{x;1(i, j) € [1,.... n] x [1,.., q;]} can potentially contain
redundancy.

In addition to the two previous assumptions we also
assume that the detected QTL locations are independent
within experiments. This is not really true when the QTL
detection does not properly take into account linked QTL.
But with the advent of composite interval mapping strat-
egy [32,33] multiple-QTL model can now be fitted by
adding properly chosen cofactors which limit the impact
of linkage between QTL on the position estimates. There-
fore we assume that X ;;and & ;; are independent for all j #

j

Pre-processing

The first step is to apply our WLS strategy to the n mapping
experiments in order to build a consensus linkage group.
Then the QTL locations are projected on the consensus
linkage group using a simple scaling rule between the
original QTL flanking marker interval and the correspond-
ing one on the consensus chromosome. For a given QTL
location the new confidence interval (if available) on the
consensus linkage group is computed by taking into
account the average scaling between the original and the
consensus chromosome. This is done by computing the
sum over the common marker intervals of the ratio of the
interval lengths weighted by the probability that the QTL
position lies in this interval. There are two possible strate-
gies to approximate this probability. The first one relies on
a rough approximation using a Gaussian distribution

around the most likely position X ; of the jth QTL, namely
um+
[ 0l =x)/ oldu
Pr(QTLjinm) = "’L
[, 0l u=x;)/o1du
density function of a centered normalized Gaussian distri-
bution, m is the index of the marker interval, u,,and u

where ¢@[ulis the

m+1
are the absolute positions of the flanking markers on the
original map of total length L. If the LOD score profile is
available, a more accurate strategy can be applied by sub-
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stituting ¢ for the density function which best fits the pro-
file.

The meta-analysis model

The purpose of the QTL meta-analysis is to evaluate, for a
given trait, the degree of congruency of the QTL detected
in the n mapping experiments. By assuming that there is a
finite number of true QTL locations, [17] proposed a clus-
tering based approach to both classify the observed QTL
and estimate the positions of the underlying QTL. Their
method proceeds by testing all the possible QTL combina-
tions and then choosing the one which maximizes a
penalized log-likelihood. Although interesting, this
method suffers from a categorical repartition of the QTL
in the clusters, which is a limit case of Gaussian mixture
models. We propose to adopt a similar clustering strategy
but with a more standard Gaussian mixture model which
allows QTL to be probabilistically distributed into clus-
ters.

In order to lighten the notation we denote by ¢ the total
number of observed QTL locations and we ignore the

mapping experiment subscripts so that X = (& ,.., & 7

and X = (0y, ...,0;). Then, let's suppose there are K 2 1 true

QTL located at xIKI = (ng],...,x[g]) which segregate in at

least one of the n QTL mapping experiments. Since the

QTL position estimates X are normally distributed
around their true positions, the problem of finding the K
underlying true positions can be viewed as a Gaussian
mixture problem where the variances of each observation
are known. Thus the log-likelihood of the observations
can be written as follows:

q K
ez o S]] )
i=1 j=1

where OIKl = (XIK], TIIKI) denotes the parameters of the
model, TTK! = (n{K],...,ngl) are the mixing proportions,

which sum to one, and ¢[x] is the density function of a
centered normalized Gaussian distribution. We assume

(K]

without loss of generality that ng] <Xy << x[éq and

that ﬂE.K !

tion of the observed QTL locations is shaped by a mixture
[X]
J

the true QTL on the linkage group and the mixing propor-

#0, forj € [1,..., K]. In other word the distribu-

density where the components x."' are the positions of

tions 7 represent the proportion of QTL related to the jth
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true QTL which have been detected in the n mapping
experiments.

Maximizing 1 can be achieved via a standard EM algo-
rithm [34] by using the following parameter updates (M-
step):

q
Z tE‘J‘K]xiO-i_ 2
K _ i

K13k
] and 71'5 | =—Zt£j |

q
(K] —2 i=1
> tij Oi
i=1

where tng] is the conditional probability that X ; belongs

(K]
ij
obtained by applying a simple Bayes' rule evaluated at the
current parameter estimates (E-step):

to the jth meta-QTL. This conditional probability ;. is

w0 (=)o |
K

(K] (K]
2 o (i =Ny |

K
K

The EM-algorithm is run until reaching convergence: this

yields the maximum-likelihood estimate denoted O Kl =

(XK, I [K1). Finally, once © K] has been obtained the
variance-covariance matrix of the parameter estimates,
conditionally to the current model, can be computed by
applying the Supplemental EM (SEM) strategy proposed
by [35].

The problem is that we do not know K, i.e the number of
true QTL positions. Since the mixture model of K compo-
nents is nested into the model with K + 1 components, the
likelihood ratio test (LRT) should be suitable. However, as
discussed by many authors (see for instance [36,37]) the
LRT statistic does not follow the usual 2 distribution due
to testing a null hypothesis on the boundary of the param-
eter space (i.e the regularity conditions on the loglikeli-
hood do not hold). Another strategy is to use the
Kullback-Leibler information in order to derive the infor-
mation criterion which is widely used to select a statistical
model. In particular, the Kullback-Leibler information
can be viewed as a measure of goodness-of-fit of a statisti-
cal model. Here for a given value of K, minimizing the
Kullback-Leibler information is equivalent to maximizing
the negentropy KL,

KL =-— jX g(X,2)L(x,z;0khax
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where g( X, Y) is the the true underlying density function.
Thus, from the point of view of the negentropy maximiza-
tion principle, the goodness of the model can be evalu-
ated by the expected log-likelihood. Note that the
negentropy maximization principle naturally leads to the
maximization of the log-likelihood. However, the maxi-
mized log-likelihood is a naive estimate of the expected

loglikelihood: since the same data set X is used for both
the estimation of the parameter and the estimation of the

expected log-likelihood, L( X, %; ©IKl) is a biased estima-
tor of the expected loglikelihood. Its bias is defined by,

B=E, [L(X,E;(:)[K])—EY [L(Y,Z;C:)[Kl)]]

and the use of L( X, ; © K1) - B is justified as an estimate
of KL. There are different strategies to estimate this bias
and several information based criteria have been reported
in the mixture model literature in order to tackle the issue
raised by choosing the number of components (see Addi-
tional File 2). In the next Simulation section, we propose to
evaluate the ability of some of these information based
criteria to determine the optimal number of QTL.

Simulation study

For the sake of concision, in this section we only present
simulations for the QTL meta-analysis (simulations for
the meta-analysis of genetic maps are described in Addi-
tional File 3). We assume that the complexity which
shapes the distribution of the observed QTL along the
chromosome can be represented by our mixture model. In
order to explore mixture configurations which are realistic
we have assumed that the QTL effects have a L-shaped dis-
tribution (i.e most of the detected QTL in mapping exper-
iments have a small effect and only a few show a strong
effect, or in other words, most of the detected QTL have
large confidence intervals). Consequently this implies
that X1, the inverse of the QTL standard deviations, has
also a L-shaped distribution (i.e the smaller the effect of
the QTL the larger the confidence interval of the estimated
QTL position). Then for a given value of the number of
true QTL, K, we randomly generated configurations as fol-
lows:

1. Draw X from a inverse gamma distribution (this simply
mimics a L-shaped distribution).

2. Generate the mixing proportions by choosing them
over the discrete uniform [0.1, 0.9] distribution subject to

K
constraint Z”k =1.
k=1
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3. Draw from a multinomial, with frequencies equal to
the mixing proportions, the origins of the g observed QTL
Z = (2y,...%,) where z; = 1 if the i observed QTL belongs
to the jth true QTL, 0 otherwise.

4. Generate the true QTL positions, X = (x;,..., x;), subject

to constraint x;, + 7,,;, <Xj,,1 <Xj, + 7, Where 7. and 7, are

min max

defined so that the distance between x, and x;,, lies

between ,,;, and J,,,,. The distance J is defined as the
mahalanobis  distance  between x, and

2
6= M where g, = (zq:zikai)/(izik) is the
Ajp + ot i=1 i=1
average standard deviation for the kth true QTL. This meas-
ures the separation between consecutive true QTL rela-
tively to the precision of the experiments: 6 < 2
corresponds to tightly or moderately separated QTL, while
9> 3 corresponds to well separated QTL.

We stress that this process is not an attempt to describe
reality, nevertheless it makes it possible to cover a large
range of possible repartitions of the QTL. Finally, for each
of the 4 distance constraints considered (J,;, = 1, 2, 3,4
and 9, = J,,, + 1), 50 configurations were generated. For
a given value of K, the following scenario was repeated
100 times:

1. Draw a sample X of size g.

2. Run the EM-algorithm to obtain @ [KIforK = 1,..., q.
3. Choose the best model according to each criterion.

Since the goal of QTL meta-analysis is to obtain a better
predictive inference of the true QTL locations we have
compared the two alternative strategies:

e Strategy 1 : choose the model with as many true QTL as
the number of observed QTL. It is the naive model, x (1)

=X

e Strategy 2 : choose the best model K according to the
. o — oy KKK

model choice criterion, x;(2) = ijl Gi X

For each strategy s = 1, 2, the measure of performance used

was the mean squared error of prediction defined as fol-

lows:

http://www.biomedcentral.com/1471-2105/8/49

q
MSEP(s) = =" H(3; 5(5))’]

qi=1
Absolute values of these MSEP are not of interest here
because our goal is comparison of strategies; hence, we
consider the ratios MSEP(2)/MSEP(1) for 5 different
information based criteria:

e AIC=-2L(X,%; OIKl) + 2y

2v(v+1)

® AIC,=-2L(X,%; OIKl) + 21+ :
q-v-

e AIC3=-2L(X,3; OIKl)+3yp

e BIC=-2L( X, Z; ©) + vlog(q)

¢ EIC = AIC - K + 1, which was obtained by means of sim-
ulations (data not shown).

where v = 2K - 1 is the number of free parameters of the
model and g the number of observed QTL along the chro-
mosome (see Additional file 2 for theoretical details on
each above criterion).

In Figure 1 we summarized the result of simulations for
several values of K and g by averaging over the distance
constraint configurations (J,,;, = 1, 2, 3 and 4). At first
sight the 5 criteria seem to have the same behavior what-
ever the configuration, except for AIC3 which crucially
underperforms for small values of g (this can be explained
by the higher penality of AIC3 comparing to the other cri-
teria for small values of ¢). For reasonable sample size rel-
atively to the true number of components the meta-
analysis appears to be more efficient than strategy 1. Since
the AIC criterion has relatively good performance in these
simulations we assume that there is no need for a specific
theory to deal with this kind of mixture models and that
this criterion can be used to carry out model selection in
this context. So, in Figure 2 we focus on the AIC criterion
=1,2,3 and
4. This clearly shows that, for configurations with reason-
able separation between the true positions of the QTL, the
meta-analysis performs relatively well. It is worth noting
that the better the probability to choose the true model,
the better the quality of the QTL position estimates. In
order to evaluate the ability of the meta-analysis to
improve the precision on the "true" QTL locations we

for the different distance configurations J,;,

computed the quantities |x; - X; (s)| and calculated the
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quantiles at 95 and 90% of its empirical distribution over
all the QTL for the two strategies. The smaller this confi-
dence interval, the better the estimated position X ;(s). We

reported in Supplementary Table 1 (see Additional File 4)
the average ratios of these quantities between the two
strategies. Hence, if there are actually one, two, three or
four different QTL locations with a reasonable separation
(Sin 2 2), we can see that the meta-analysis gives better

estimates of the QTL locations and makes it possible to
reduce the length of the 95% CI (in most of the situtations
this length is halved). According to [29] to halve a Cl in a
QTL experiment, one needs to use at least two times the
initial number of individuals.

Implementation

The previous methods have been implemented into a Java
package called MetaQTL. This package includes also addi-
tional programs to format, organize or visualize the data.
All the programs in MetaQTL are command line programs
(see Supplementary Table 2 in Additional File 4 for a com-
plete list of the programs available in the package). Each
program performs a specific task and the programs can be
combined by the user as a group to run a complete analy-
sis. Thanks to its flexible and modular implementation,
MetaQTL could also be integrated in more elaborated
softwares if needed. First, before running meta-analysis
one needs to store the different QTL studies into a data-
base. To do this MetaQTL uses a simple multiple plain
text files database. Each file corresponds to a table and the
database is organized as follows:

e Experiment file: stores descriptions on mapping experi-
ments (name, population type and size, reference, ...).

¢ Genetic map directory : contains one file per input
marker map. Each file contains the corresponding genetic
marker map.

¢ QTL map directory : contains one file per QTL mapping
experiments. For each QTL mapping experiment the file
provides the properties of each detected QTL (trait, posi-
tion, confidence interval, r-square, ...).

e Trait ontology file: describes how the traits are related
together using a simple hierarchical relationship scheme.
This information can then be used to group the QTL
according to the ontology in subsequent analyses.

Once the database created, MetaQTL first checks the input
data files and then summarizes their content into a set of
XML files. All the programs of MetaQTL use these XML
files as inputs. Utilities are provided to convert them in
various plain text file formats if required (for more details

http://www.biomedcentral.com/1471-2105/8/49

on using MetaQTL see the user manual in Additional File
5).

Application

Recently, [12] made a bibliographical review of QTL stud-
ies relative to 4 traits related to flowering time in maize:
days to pollen shed (DPS), silking date (SD), plant height
(HT) and leaf number (LN). From the 22 QTL studies they
reported, we excluded 6 experiments for which QTL detec-
tion was based on ANOVA with a low density of markers
and 2 other for which it was not possible to get exact infor-
mation on either the genetic linkage map or the QTL loca-
tions. In addition to these 15 mapping experiments we
considered 3 other recent experiments (details of these 18
QTL studies are given in Additional File 6). We focus here
on chromosome 8 and we present results by using for
each step of the meta-analysis the corresponding program
name of MetaQTL.

Result of InfoMap

Among the 153 distinct markers which have been posi-
tioned over the 18 mapping experiments on the chromo-
some 8, only 53 markers are observed in at least two
different mapping experiments. We restricted the meta-
analysis to these 53 markers. Only one order inconsist-
ency was detected between [38] and [39] concerning
markers umc89a and umcl2a. As in [38]umc12a is very
close to umc89a (less than 2 cM) we have decided to
ignore this marker in this mapping experiment. Over the
18 mapping experiments the mean interval distance was
about 18.9 <M with an average of 8.7 markers per map-
ping experiment and it existed at least one common
marker path which connected all the mapping experi-
ments together (insuring that the WLS can be applied).

Result of ConsMap
The consensus linkage group of chromosome 8 is
depicted in Figure 3. The goodness-of-fit of the consensus

chromosome is relatively bad: A = 365.31 with A~ %3, . It

could be due to some heterogeneities in recombination
rate among mapping experiments, located in the filled
marker intervals of Figure 3. Note that variability of
recombination rate in maize was first reported by [40]
and, more recently, [41] demonstrated that exotic inbred
lines exhibit higher recombination rate that U.S. inbreds
origin along chromosome 1 (see also [42]). On the other
hand, since no information about the marker configura-
tions in each individual mapping experiment was availa-
ble, the variances of the distance estimates have been
computed by assuming no missing data and no ambigui-
ties (dominance) in the original data sets. This is surely
too optimistic and some data sets may have included
missing data and/or dominant markers. Therefore the pre-
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Figure |

Comparison of model choice criteria: a simulation study. Simulation results for different values of the true number of
QTL, K, and the number of observed QTL, g. The vertical bars indicate the probability that the best model selected by the cri-
terion is the true model. The open circles, respectively the dotted lines, represent the mean, respectively the 0.1% and 0.9%

quantiles, of the ratios MSEP(2)/MSEP(1) for each criterion.

cision on the distance estimate may have been overesti-
mated for some marker intervals.

Result of QTLProj
From the 18 QTL studies we projected 34 QTL on the con-
sensus chromosome 8. Among these 34 QTL, 16 (47%)

are related to SD, 10 (29%) to DPS and 8 (24%) to HT.
The distribution of the r-square values clearly shows a L-
shape: 75% of the QTL have r-square values lower than
12%. For 17 QTL a CI was reported (build from a 1-LOD
support) from which we computed the standard devia-
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Figure 2
Performance of AIC: a simulation study. Behavior of the AIC criterion for the 4 distance constraints, J,,;, = |, 2, 3, 4, and

for different values of the true number of QTL, K, and the number of observed QTL, g. The vertical bars indicate the probabil-
ity than the AIC criterion has selected the true model. The open circles, respectively the dotted lines, represent the mean,
respectively the 0.1% and 0.9% quantiles, of the ratios MSEP(2)/MSEP(I).

tions assuming that a 1-LOD support corresponds in fact
to a 90% CI. For the other QTL we derived the standard
deviations from the formula proposed by [29]. Then mod-
els from K = 1 to K = 10 QTL were considered and their
parameters estimated by applying our EM-algorithm.

Result of QTLClust

In Table 1 we give the values for the criteria AIC, AIC,
AIC3 and BIC for the different values of K explored. This
clearly shows that the model with 5 QTL is the best one.
Then, for the model with 5 QTL, the parameter estimates
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Table I: Model choice criteria for the meta-analysis of flowering time QTL on maize chromosome 8

K Model Choice Criterion

AIC AIC, AIC3 BIC
| 1096.32 1088.94 1088.32 1084.11
2 497.22 490.52 491.22 488.06
3 139.15 133.79 135.15 133.05
4 34.73 31.53 32.73 31.67
5 0.00 0.00 0.00 0.00
6 4.00 8.50 6.00 7.05
7 8.00 18.70 12.00 14.11
8 12.00 31.17 18.00 21.16
9 16.00 46.75 24.00 28.21
10 19.54 66.33 29.54 3481
34 51.42 43.92 76.42 89.58

All the criteria select the model with 5 QTL (in bold). The values are adjusted with respect to the minimal value of the criterion, i.e. the value for K

=5.

are listed in Table 2 and depicted in Figure 4. First, 3 QTL
(1,4 and 5) have been detected in only 22% of the map-
ping experiments. At least two observed QTL are assigned
to each of these 3 QTL without ambiguity.

Secondly, two closely linked QTL (2 and 3) contribute to
75% of the reported QTL. This is strongly consistent with
the knowledge of this region where a major QTL, vgt1, is
tightly linked to another QTL, vgt2 [43,44]. It is worth not-
ing that the confidence interval of the QTL corresponding
to vgt1 (around 3.8 ctM) encompasses a marker interval of
approximately 2 ctM (at the left of the marker umc89a) in
which this QTL has been finely mapped by [44] using NIL
lines (result not included in our analysis). This congru-
ency lends further credence to the meta-analysis
approach.

Discussion and conclusion

Nowadays more and more studies concerning QTL detec-
tion are available via public databases and the number of
articles dealing with the comparison and/or integration of
these results increases [12,45-47]. We believe that our
meta-analysis procedure can contribute to facilitate the
elaboration of such syntheses by providing a simple statis-

tical framework to establish consensus models for both
linkage maps and QTL locations.

First, the WLS strategy we proposed is a step forward to
integrate several genetic marker maps. Contrary to itera-
tive projection procedures, this approach provides a well-
established statistical machinery (WLS) to assess the
goodness-of-fit of the consensus model. It can also be
used to test the homogeneity of the distance estimates
among different mapping experiments. This can be usefull
to investigate the possible variation of recombination rate
among genotypes (as reported by [41]). As pointed out in
the application, this method can suffer from the lack of
knowledge about the effective precision on the marker
interval distances in each individual mapping experiment
due to possible missing data and/or the type of scoring of
individual markers (codominance vs dominance). This
could be improved by asking researchers to supply the var-
iance estimates of the marker interval distances when they
submit their results to a public database. These variance
estimates could be used to improve the weight factors in
the WLS model. Also, as sometimes robust framework
maps are available in the literature or via public databases,
the program ConsMap in MetaQTL offers the possibility

Table 2: Parameter estimates of the best meta-analysis model for flowering time on maize chromosome 8

QTL ~ ~ Mahalanobis distance to 95% ClI
Position X Weight H next QTL
| 14.6 0.06 6.21 1.7
2 754 0.35 1.26 6.2
3 89.5 0.44 2.64 3.8
4 114.5 0.07 5.20 1.1
5 165.2 0.09 - 13.9

The positions and the lengths of the Cl are given in ¢cM. The 95% Cl is derived from the conditional variance estimate of the position obtained by
applying the SEM strategy. Note that QTL 2 and 3 correspond to vgt2 and vgt/, respectively (following the designation of [43]).
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Overview of the maize chromosomes 8 together with the consensus chromosome. Overview of chromosome 8
for the 18 mapping experiments involved in the meta-analysis of flowering time in maize. The first chromosome at the left rep-
resents the consensus chromosome obtained by applying the WLS approach as described in the first section of the article
(implemented into ConsMap). The filled marker intervals indicate that the standardized residual between the interval distance
estimates of the original chromosome and the consensus one exceeded the double-sided 95% percentile of a normalized cen-
tered gaussian. This figure has been created by the program MMapView.

to fix a genetic map as a reference (i.e for which the dis-
tances between ordered markers are assumed to be the
"actual" distances). In this case, only the positions of the
markers which are not reported on the reference have to
be estimated.

Secondly, for the QTL meta-analysis itself, the Gaussian
mixture model used to fit the distribution of the observed
QTL locations on the chromosome provides a well-stud-
ied statistical inference technique. In this model-based
clustering, each "true" QTL is mathematically represented
by the Gaussian distribution of its detected positions,
which leads to a probabilistic classification of the
observed QTL. Contrary to [17] who developed a specific
model choice criterion, our simulation results show that
AIC gives relatively good performances in our QTL meta-
analysis framework. This difference, with regard to the
conclusions of [17], may be explained by their discrete
formulation of the problem (recall that, instead of using a
usual Gaussian mixture likelihood to evaluate the proba-

bility of the data, they assumed that the observations
could be categorically assigned to the mixture compo-
nents). Parameter estimates obtained by this approach
were not really the maximum-likelihood estimates of the
underlying mixture model. This may have added a bias in
the evaluation of the AIC criterion, which could explain
the bad performances of AIC in their simulations.

Thus, our mixture-modelling approach makes it possible
to go beyond the limits encountered by [17]: the Akaike
like criterion they proposed was limited to models from 1
to 4 QTL. As a consequence, [47] who used the method of
[17], was obliged to break chromosomes on distinct seg-
ments to carry out the meta-analysis. This subjective divi-
sion of the chromosome can now be avoided thanks to
our method. Simulations have shown that the ratio
between the number of observed QTL and the number of
"true" QTL is one of the main limiting factor. The number
of "true" QTL which can be assessed by the meta-analysis
must be reasonable compared to the number of observed
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Figure 4

Visualization of the QTL meta-analysis result on maize chromosome 8. Result of the meta-analysis of the 34 QTL
projected on the consensus chromosome 8. The ClI of the meta-QTL positions are indicated on the chromosome by the filled
colored areas. The observed QTL positions are depicted by their most probable position (triangle) and Cl (segment). Member-
ship probabilities of each initial QTL with respect to meta-QTL is visualized by the proportions of corresponding colored seg-
ments. This figure has been created by using MQTLView.

Page 13 of 16

(page number not for citation purposes)



BMC Bioinformatics 2007, 8:49

QTL (at least between 5 or 10 observed QTL per actual
location). Note that this also depends on the distance
between true QTL. But since there are more and more QTL
locations reported for a given trait and since the real
number of distinct QTL locations which can be detected
with usual experimental designs is limited (only QTL with
relatively large effects can be found), we assume that in
many cases the ratio between observed and "true" QTL
locations will steadily increase and should generally be
reasonable. It is worth noting that, provided that the
number of observed QTL is appropriate, the meta-analysis
is able to separate "true" QTL locations even if they are
closely linked (as illustrated in the application with vgt1
and vgt2, and the consistency of the vgt1 estimated posi-
tion with fine mapping result of [44], result not included
in the meta-analysis).

The ultimate step toward a more accurate identification of
QTL relies on finding the underlying genes. Up to now,
the majority of QTL isolated in plants have been cloned
via positional cloning (see for instance [48]). However
positional cloning of QTL is quite expensive both in terms
of time and resources due to the necessity to screen recom-
binant individuals within large population (typically sev-
eral hundreds) and to characterize these individuals with
a very dense set of molecular markers. As an alternative
and thanks to the advent of structural and functional
genomics, QTL can also be resolved through association
mapping of candidate genes. Candidate genes identifica-
tion is based on a assumption that the polymorphism of
the gene is associated with the variation of the trait of
interest. Both function and mapping information have to
be crossed to establish this assumption. The function of
the gene may have been determined in the species of inter-
est, based for instance on mutant analysis. More often,
function is hypothesized based on sequence homology
with genes the function of which has been established in
model species, including possible positional cloning of
QTL. Gene mapping information may have been obtained
in the species of interest, but may have been also inferred
from synteny based projections, as illustrated by [12] for
rice to maize. Relevancy of the colocalization between
QTL and candidate genes crucially depends on the confi-
dence interval of the QTL positions. For this purpose the
reduction of the confidence interval of the QTL is an
important goal [2]. The ability of our method to reduce
the QTL confidence interval by taking advantage of pool-
ing QTL results could contribute in an increased resolu-
tion in selecting candidate genes. It is worth noting that
candidate genes are generally mapped on a framework
map used as reference for the species of interest (e.g. in
maize [49]), while the QTL detections are carried out
using specific populations (generally obtained by crossing
parents contrasted for the trait(s) of interest).

http://www.biomedcentral.com/1471-2105/8/49

Therefore, the selection of candidate genes which colocal-
ize with QTL depends also on the process used to merge
these different maps. Up to now, no statistical method
had been proposed to combine candidate genes and QTL
mapped in independent experiments, so we think that our
WLS strategy should increase the precision of the integra-
tion of candidate gene mapping information.

Finally once candidate genes have been selected and their
different haplotypes defined, association studies can be
carried out. The identification of a statistically significant
association between haplotype variation at a candidate
gene and the target trait gives further credence on the role
of this gene in the trait variation. Since the last 5 years
more and more association studies have been reported in
plants [50]. It would be interesting to integrate these new
results into a global meta-analysis framework. Further
developments are needed to combine onto a synthetic
model the different scale of mapping: from linkage map-
ping (QTL) to fine mapping (association studies).
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