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Abstract
Background: The four heterogeneous childhood cancers, neuroblastoma, non-Hodgkin lymphoma,
rhabdomyosarcoma, and Ewing sarcoma present a similar histology of small round blue cell tumor (SRBCT) and
thus often leads to misdiagnosis. Identification of biomarkers for distinguishing these cancers is a well studied
problem. Existing methods typically evaluate each gene separately and do not take into account the nonlinear
interaction between genes and the tools that are used to design the diagnostic prediction system. Consequently,
more genes are usually identified as necessary for prediction. We propose a general scheme for finding a small
set of biomarkers to design a diagnostic system for accurate classification of the cancer subgroups. We use
multilayer networks with online gene selection ability and relational fuzzy clustering to identify a small set of
biomarkers for accurate classification of the training and blind test cases of a well studied data set.

Results: Our method discerned just seven biomarkers that precisely categorized the four subgroups of cancer
both in training and blind samples. For the same problem, others suggested 19–94 genes. These seven biomarkers
include three novel genes (NAB2, LSP1 and EHD1 – not identified by others) with distinct class-specific signatures
and important role in cancer biology, including cellular proliferation, transendothelial migration and trafficking of
MHC class antigens. Interestingly, NAB2 is downregulated in other tumors including Non-Hodgkin lymphoma and
Neuroblastoma but we observed moderate to high upregulation in a few cases of Ewing sarcoma and
Rabhdomyosarcoma, suggesting that NAB2 might be mutated in these tumors. These genes can discover the
subgroups correctly with unsupervised learning, can differentiate non-SRBCT samples and they perform equally
well with other machine learning tools including support vector machines. These biomarkers lead to four simple
human interpretable rules for the diagnostic task.

Conclusion: Although the proposed method is tested on a SRBCT data set, it is quite general and can be applied
to other cancer data sets. Our scheme takes into account the interaction between genes as well as that between
genes and the tool and thus is able find a very small set and can discover novel genes. Our findings suggest the
possibility of developing specialized microarray chips or use of real-time qPCR assays or antibody based methods
such as ELISA and western blot analysis for an easy and low cost diagnosis of the subgroups.
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Background
Gene expression data are ever increasingly being used in
the fields of medicine including categorization of cancers
into different diagnostic subgroups, which often appear
similar in routine histology [1-3]. We focus our attention
on one such important problem, proper classification of
various groups of childhood cancers, collectively known
as small round blue cell tumors (SRBCTs). The worldwide
incidence rates of childhood cancers vary widely from as
high as 155 per million persons in Nigeria to 40 per mil-
lion persons in the Indian population of Fiji. The inci-
dence rate of childhood cancer in the USA is
approximately 125 per million persons [4,5]. Amongst
the various childhood cancers, SRBCT is the third most
frequently occurring type (18%) and consists of neurob-
lastoma (NB, 7%), non-Hodgkin lymphoma (NHL, 6%),
rhabdomyosarcoma (RMS, 3%), and Ewing sarcoma
(EWS, 2%) [4,5]. These heterogeneous types of cancer
present a similar histology of small blue tumor cell and
thus often leads to misdiagnosis. Accurate diagnosis of
these subgroups is important as the treatment options,
monitoring the response and prognosis may vary widely
between these subgroups. Development of cancer is a
complex reorganization and remodeling of multiple cel-
lular pathways affecting thousands of genes. Thus the
identification of global gene expression signatures rather
than depending on a particular gene marker for a specific
type of cancer may be ideally suited in categorizing vari-
ous subgroups of SRBCTs. Our objective here is to identify
a small set of biomarkers to design useful diagnostic pre-
diction systems for accurate classification of the four cate-
gories of SRBCTs.

Typically gene expression data suffer from three problems
: (i) limited number of available examples, (ii) very high
dimensional nature of the data, and (iii) noisy character-
istics of the data. Moreover, for a given problem, usually a
few genes are required. So we face two challenging tasks:
finding a minimal set of genes that has an adequate dis-
criminating power to categorize the subgroups and
designing of a prediction system using the selected genes
to accurately classify unseen examples. Use of a minimal
number of genes is consistent with the principal of mini-
mum description length (MDL). Systems designed keeping
in mind MDL are likely to yield better generalization (less
number of free variables, and hence less likely to result in
poor generalization). Moreover, with a small set of genes,
it is easy to optimize the diagnostic system better. Model
selection can also be done using Akaike Information Cri-
terion (AIC). Several attempts have been made to solve
these problems. The different machine learning tools used
by researchers include multilayer perceptron (MLP) net-
works [3], Self-organizing maps [1], nearest centroid clas-
sifiers [2], support vector machines (SVMs) [6,7].
Similarly, many gene selection methods have also been

used. The gene selection methods often ignore the learn-
ing machine used to design the prediction system. Some
methods, although, take into account the learning
machines, they remove one (or a set of features) at a time
in a stepwise manner. Such a method cannot capture the
subtle nonlinear interactions between different genes and
consequently, one ends up with more genes than what is
needed to solve the problem.

To overcome this problem, we use a neural network,
which can pick up what is needed (select the required
genes) when it learns the diagnostic classification task.
This helps the network to honor possible nonlinear inter-
actions between genes. The set of selected genes is further
reduced with clustering of correlated genes based on fuzzy
sets theory. We apply our method on the same SRBCT
data set used by Khan et al. [3] and other researchers
[2,6,7]. This data set consists of expression levels of 2,308
genes, which were obtained from glass-slide cDNA micro-
arrays, prepared in accordance with the standard protocol
of the National Human Genome Research Institute. We
have identified only seven (7) genes that can do the diag-
nostic classification task with 100% accuracy both on the
training data and the blind test data. This set of genes
includes three novel genes, NAB2, EHD1, and LSP1, that
are not identified by others as important. Our method
clearly outperforms other results because for the same
data set, the number of marker genes reported by other
researchers vary between 19 and 96. Moreover, we have
demonstrated that these seven genes perform equally well
with other machine learning tools like radial basis func-
tion network and support vector machines.

Results
Data Set
Khan et al. [3] considered the 2308 genes that passed a fil-
ter requiring a minimum expression level and all other
processing was done on this set of 2308 genes. We also use
the same set of 2308 genes. There are 88 samples of which
63 (EWS:23, NHL:8, NB:12, and RMS:20) samples are
used for training. The remaining 25 includes five samples
which are later detected to be of non-SRBCT types. Hence
for blind testing of the system we use 20 (EWS:6, NHL:3,
NB:6, and RMS:5) samples. For this data set, other
researchers also used this training-test partition. The five
non-SRBCT samples include 2 normal muscle tissues
(Sample Nos. 1 and 6, Table 1) and 3 cell lines including
an undifferentiated sarcoma (Sample No. 3, Table 1),
osteosarcoma (Sample No. 7, Table 1) and a prostate car-
cinoma (Sample No. 2, Table 1). The data set is available
at [8].
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Neural Networks with online Gene Selection Ability Select 
Good Biomarkers
We have used a modified multilayered perceptron (MLP)
network [9] with online feature selection capability for
identification of biomarkers. We call it Feature Selection
MLP (FSMLP). Conceptually, each input node (hence
each gene) of the FSMLP has a gate associated with it. At
the beginning of training, these gates are kept almost
closed, and the learning algorithm opens the required
gates (allows genes to enter the network) depending on
the ability of genes to reduce the training error. This is our
first stage. In this stage, we have selected only twenty
genes based on the importance of genes as defined by the
gate opening values (see Materials and Methods). For the
FSMLP network to reduce the chances of bad generaliza-
tion, we have used just one hidden layer with 150 nodes.
The set of selected twenty genes are listed in Table 2. These
twenty genes have enough characteristic signatures to dis-
criminate the four categories of tumors with 100% accu-
racy both in the training and test data sets. With these
twenty genes, we have trained neural networks 20 times
with different initializations, and in each case the system

is found to achieve 100% accuracy on the training data as
well as on the twenty blind test data.

Relational Fuzzy Clustering and Neural Networks 
Together Select Only Seven Biomarkers
In order to further reduce the number of biomarkers, we
have proceeded as follows: Again we have used the FSMLP
to select the best ten marker genes from among the
selected twenty genes. We have ensured with repeated tri-
als that these ten biomarkers {CDH2, FGFR4, EHD1,
LSP1, FVT1, FCGRT, NAB2, AF1Q, PMS2L12, HCLS1} can
do the intended job of classifying both training and blind
test data with 100% accuracy. These ten genes are marked
with asterisk in Table 2. We have then used the non-Eucli-
dean relational fuzzy c-means (NERFCM) clustering algo-
rithm [10] to cluster the twenty selected genes (not the
samples). We have not used Euclidean distance to generate
the dissimilarity relation for NERFCM because our objec-
tive is to eliminate positively correlated genes, if any, in
the selected genes. Note that, two highly correlated genes
may have a higher distance than two uncorrelated genes.
The dissimilarity relation, R, to be used for clustering is

Table 1: Network outputs for 25 blind test samples

Sample # EWS RMS BL NB Actual

1 0.999 0.001 0.000 0.000 Sk. Muscle
2 0.000 0.224 0.000 0.004 Prostate Cancer
3 1.000 0.204 0.000 0.000 Sarcoma
4 0.000 0.000 0.000 1.000 NB
5 0.151 0.157 0.000 0.000 RMS
6 0.039 0.000 0.992 0.000 Sk. Muscle
7 0.016 0.000 0.999 0.000 Osteosarcoma
8 0.000 0.000 0.000 1.000 NB
9 1.000 0.001 0.000 0.008 EWS
10 0.000 1.000 0.000 0.000 RMS
11 0.003 0.000 1.000 0.000 BL
12 1.000 0.000 0.000 0.000 EWS
13 0.000 0.997 0.000 0.000 RMS
14 1.000 0.000 0.000 0.000 EWS
15 1.000 0.001 0.000 0.000 EWS
16 0.309 0.028 0.001 0.000 EWS
17 0.000 1.000 0.000 0.000 RMS
18 0.001 0.000 1.000 0.000 BL
19 0.000 1.000 0.000 0.000 RMS
20 0.000 0.000 0.000 1.000 NB
21 0.000 0.000 0.000 1.000 NB
22 0.000 0.000 0.000 1.000 NB
23 0.000 0.000 0.000 1.000 NB
24 0.000 0.000 1.000 0.000 BL
25 1.000 0.000 0.000 0.000 EWS

The predicted and the actual outputs of a typical run for the 25 blind test samples. These 25 also includes the 5 nonSRBCT cases as marked in 
column 6 (sample numbers : 1,2,3,6, and 7). All but sample No. 16 of the 25 SRBCT test samples, the support provided by the network for the 
correct class is almost 1 and for the other classes it is practically 0. For sample No. 16, the support for the correct class is 0.309 but it is about 12 
times stronger than the next high output value. Hence, this is also a decision with high confidence. For sample No. 5, although the network 
classified it correctly, the support for RMS and EWS are 0.157 and 0.151 suggesting further investigation (weak support for the RMS and the next 
higher support is for EWS, but that is very close to that of RMS.). Due to nonavailability of the patient's identity, this investigation could not be 
pursued further.
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computed as a scaled version of Pearson correlation coef-
ficient matrix. The NERFCM algorithm is used to cluster
this R into 6 clusters. The algorithm was run several times
with different initializations. Six subsets of genes are
found to form consistently strong (evaluated in terms of
membership value (see Materials and Methods) of
belonging to a cluster) clusters: {CDH2, AF1Q, PMS2L12,
the gene with Image ID 450152}, {EST with Image ID
208699, HCLS1, EHD1, HLA-DQA1}, {LSP1, IGF2,
CCNE1}, {NAB2, LGALS3BP, BAT3, NOE1}, {FGFR4,
SGCA, EST with Image ID 244618} and {FCGRT, FVT1}.
This partition is found to be very consistent between dif-
ferent runs of the algorithm. We have also experimented
with five clusters. Typically, when NERFCM is used to find
5 clusters, the fourth and sixth clusters listed above are
merged together. The following analysis reveals that with
6 clusters, the selection of genes becomes easy. For the first
cluster the gene with Image ID 450152 is not in the list of
selected ten and the gene PMS2L12 has the least gate
opening in the list of ten genes, so we have removed both
from the list. We have retained both CDH2 and AF1Q
because their associated gates were significantly opened
and the gate opening values were quite close. For the sec-
ond cluster, the gene EST with Image ID 208699 and gene
HLA-DQA1 are not in the top ten and between HCLS1
and EHD1, gene HCLS1 has a very low importance in
terms of gate opening. So we have retained only EHD1.
From the third cluster we have retained only LSP1 because

the other two genes, IGF2, CCNE1, are not in the list of
top 10. Similarly, from the fourth cluster we have dropped
three genes which are not in the list of top ten and we are
left with only NAB2. From cluster five we have selected
only gene FGFR4 as the other two are not in the list of top
ten. The last cluster has two genes FCGRT, FVT1 both of
which have made their positions in the top ten. Although
the gate opening values for both of them are high, their
difference is also reasonably high. So, we have retained
only gene FVT1 having the higher gate opening value. This
brings the list of biomarkers to only 7 (Table 3). These
seven biomarkers can discriminate the four groups of
tumors and we can design a neural network, which can
categorize the training data as well as all blind test sam-
ples with 100% accuracy. The consistency of the selected
genes has been further established through extensive
experiments (see Discussion). Through in-silico experi-
ments, we have demonstrated that these seven genes form
a necessary and sufficient set for accurate categorization.
Note that, because of the existence of correlated genes,
this may not necessarily be the only possible such set. It is
worth noting here that for the same data set, Khan et al.
[3] reported 96 genes (Table 4), while Tibshirani et al. [2]
came up with 43 genes that are required for accurate cate-
gorization of the SRBCT groups. Best result found in the
literature suggests the need for at least 19 biomarkers [7].

Table 2: The list of twenty best genes selected by FSMLP in the first stage

Gene ID Image ID Name

FGFR4 (*)784224 fibroblast growth factor receptor 4
EST 208699 EST
FCGRT (*)770394 Fc fragment of IgG, receptor, transporter, alpha
AF1Q (*)812105 transmembrane protein
HCLS1 (*)767183 hematopoietic cell-specific Lyn substrate 1
NAB2 (*)770868 NGFI-A binding protein 2 (ERG1 binding protein 2)
CDH2 (*)325182 cadherin 2, N-cadherin (neuronal)
EHD1 (*)745019 EH domain containing 1
HLA-DQA1 80109 major histocompatibility complex, class II, DQ alpha 1
LGALS3BP 811000 lectin, galactoside-binding, soluble, 3 binding protein (galectin 6 binding protein)
BAT3 898237 HLA-B associated transcript-3
SGCA 796258 sarcoglycan, alpha (50 kD dystrophin-associated glycoprotein)
ESTs 244618 ESTs
NOE1 52076 olfactomedinrelated ER localized protein
LSP1 (*)143306 lymphocyte-specific protein 1
IFG2 296448 insulin-like growth factor 2 (somatomedin A)
PMS2L12 (*)878652 postmeiotic segregation increased 2-like 12
NA 450152 NA
FVT1 (*)814260 follicular lymphoma variant translocation 1
CCNE1 68950 cyclin E1

We used a network with 2308 input nodes, 150 hidden nodes and 4 output nodes. These twenty genes are selected based on the gate opening 
values. We made several runs of ordinary MLP using these twenty genes and in each case the network was able to correctly classify all training and 
blind test examples. In the second stage, the FSMLP network is used to select ten best genes from amongst the twenty genes selected in the first 
stage. These ten genes are marked by asterisks. This set of ten genes has adequate cancer specific signatures to categorize the four types of 
SRBCTs.
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The identified Biomarkers are Important in Cancer Biology
The set of seven genes that our system identified is
involved in the biological process of cancer. For example,
this set of seven genes includes an interesting gene NAB2
(EGR1 binding protein 2) which neither Khan et al. [3]
and nor Fu & Fu-Liu [7] had found important. Typically,
this gene is downregulated in various tumors. NAB2 is a
corepressor of EGR (early growth response gene) and its
expression depends on tumor types and stages. For exam-
ple, NAB2 is often downregulated in prostate cancer but
upregulated in malignant melanoma [11,12]. In our anal-
ysis we observed that NAB2 is moderate to highly upregu-
lated in EWS and in a few cases of RMS; while for the NHL
and NB cases it is practically absent (see Figure 1D). Inter-
estingly, a search in GEO profiles (Gene Expression
Omnibus, NCBI) also showed a moderate expression of
NAB2 in few cases of Ewing sarcoma (GPL1977 1934).
Thus, not only the involvement of NAB2 in tumorigenesis
but also its distinct signature in various types of tumors
are singled out by our analysis.

EH domain containing 1 (EHD1) is another novel gene in
our list of biomarkers which others could not find impor-
tant [3,7]. EHD1 protein is involved in endocytosis and
trafficking of various membrane protein including MHC
class proteins, insulin-growth factors and secretion of glu-
cose transporter 4 (GLTU-4) [13]. Although EHD1 has not
been studied in the context of cancer biology, it seems to
be highly expressed in metastatic colon cancer than in
tumor of the colon as per the GEO profiles (GEO: GPL96
208112). However, in EWS (GEO: GPL1977 1465), breast
tumor (GEO: GPL180 3948) and in B-cell lymphoma
(GEO: GPL176 5453) the gene expression is downregu-
lated but slightly upregulated in RMS (GEO: GPL1977
1465). We observed that EHD1 upregulated in Non-
Hodgkin Lymphoma (NHL) and in a few cases of RMS;
while in a majority of RMS and EWS cases it is moderately
expressed.

CDH2 belongs to the family of cell-cell adhesion mole-
cules and mostly their reduced expression leads to tumor
invasiveness [14]. Loss of or impaired cell adhesion are

important determinants in epithelial neoplasia [15]. In
pancreatic cancer CDH2 expression is silenced [16]. We
observed that CDH2 expression is practically absent in the
EWS and NHL groups of tumors, while for the NB class its
expression varied from moderate to very high levels. For a
few RMS cases also it is found to be moderately expressed.
This might be an indicator that plausibly CDH2 had
either acquired mutation or protein truncation in RMS.
Also a search in the GEO profiles showed that CDH2 is
largely downregulated in EWS (GPL1977 7918). There-
fore, it seems that CDH2 expression is tumor specific. And
in case of SRBCT family of tumors CDH2 provides us a
distinctive signature for categorizing the various tumor
classes.

A fourth relevant gene inferred by our system to have
class-specific signature is fibroblast growth factor receptor
4 (FGFR4). This tyrosine kinase receptor binds to fibrob-
last growth factor, a mitogenic ligand, and carry out the
signal transduction to the intracellular environment in
cellular proliferation, differentiation and migration [17].
In normal tissues, FGFR4 expression is hardly detectable.
However, overexpression of FGFR4 has been shown in
various cancers, including pituitary, prostate, thyroid [18-
20]. In these cases either mutation in FGFR4 (Gly338Arg)
or truncation in its protein was involved resulting in
deregulated FGFR4 mediated signaling. However, in lung
adenoarcinoma, FGFR4 is downregulated [21]. Curation
from GEO profiles of NCBI also supports our observation
that shows downregulation of FGFR4 in EWS but moder-
ate expression in RMS (GPL1977 11439). We observed
that for the RMS group, it is significantly upregulated but
for NB, EWS and NHL groups the FGFR4 expression is
practically absent revealing a remarkable RMS-specific sig-
nature.

The gene LSP1 is involved in transendothelial migration
of neutrophil and actin cytoskeleton organization
through MEK1 and ERK2 pathways [22,23]. We observed
downregulation of LSP1 in EWS, NHL and NB but reason-
ably higher expression in the RMS group of tumors. Inter-
estingly, in diffuse large B-cell lymphoma (DLBL) LSP1 is

Table 3: The list of seven biomarkers selected using the relational fuzzy clustering

Gene ID Image ID Name Rank

FGFR4 784224 fibroblast growth factor receptor 4 2
AF1Q 812105 transmembrane protein 6
NAB2 770868 NGFI-A binding protein 2 (ERG1 binding protein 2) 7
CDH2 325182 cadherin 2, N-cadherin (neuronal) 1
EHD1 745019 EH domain containing 1 3
LSP1 143306 lymphocyte-specific protein 1 4
FVT1 814260 follicular lymphoma variant translocation 1 5

The NERFCM algorithm is used to find 6 clusters in the 20 genes selected in the first stage of the scheme. The partition obtained by the relational 
clustering and the results of stage two are combined to select just 7 marker Genes.
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also very much downregulated (GEO: GPL176 13667).
However, LSP1 expression has been found to increase in
NHL class of B-cell lymphoma [24]. Thus, LSP1 regulation
is tumor class specific and useful for subcategorization of
tumors.

The ALL1-fused gene from chromosome 1q (AF1Q) is
known to play important roles in leukemia. In particular,
it was detected as a mixed-lineage leukemia (MLL) fusion
partner from infant acute myelomonocytic leukemia car-
rying the t(1;11)(q21;q23) translocation [25]. This MLL

Table 4: Top 96 Genes reported in Khan et al. (2001)

Rank Image ID Gene ID Rank Image ID Gene ID

1 296448 IGF2 49 788107 AMPHL
2 207274 IGF2 50 784593 EST
3 841641 CCND1 51 756556 C1NH
4 365826 GAS1 52 208718 ANXA1
5 486787 CNN3 53 308231 EST
6 770394 FCGRT 54 486110 PFN2
7 244618 EST 55 21652 CTNNA1
8 233721 IGFBP2 56 377671 ITGA7
9 43733 GYG2 57 745343 REG1A
10 295985 EST 58 241412 ELF1
11 629896 MAP1B 59 504791 GSTA4
12 840942 HLA-DPB1 60 841620 DPYSL2
13 80109 HLA-DQA1 61 859359 PIG3
14 41591 MN1 62 45542 IGFBP5
15 866702 PTPN13 63 80338 SELENBP1
16 357031 TNFAIP6 64 45291 DRPLA
17 782503 EST 65 323371 APP
18 377461 CAV1 66 897788 PTPRF
19 52076 NOE1 67 377731 GSTM5
20 811000 LGALS3BP 68 784224 FGFR4
21 308163 EST 69 293500 EST
22 812105 AF1Q 70 767183 HCLS1
23 183337 HLA-DMA 71 297392 MT1L
24 714453 IL4R 72 325182 CDH2
25 298062 TNNT2 73 1435862 MIC2
26 39093 MNPEP 74 377048 EST
27 212542 EST 75 814260 FVT1
28 204545 EST 76 784257 KIF3C
29 383188 RCV1 77 42558 GATM
30 82225 SFRP1 78 814526 HSRNASEB
31 44563 GAP43 79 839736 CRYAB
32 289645 APLP1 80 395708 DPYSL4
33 324494 HSPB2 81 416959 NFIB
34 563673 ATQ1 82 364934 DAPK1
35 1473131 TLE2 83 868304 ACTA2
36 1416782 CKB 84 755599 IFI17
37 417226 MYC 85 246377 EST
38 878280 CRMP1 86 291756 TUBB5
39 812965 MYC 87 809901 COL15A1
40 122159 COL3A1 88 769959 COL4A2
41 609663 PRKAR2B 89 796258 SGCA
42 461425 MYL4 90 854899 DUSP6
43 1469292 PIM2 91 755750 NME2
44 809910 1-8U 92 292522 EST
45 824602 IFI16 93 308497 EST
46 245330 IGF2 94 813266 FHL1
47 135688 GATA2 95 200814 MME
48 1409509 TNNT1 96 768370 TIMP3

List of 96 genes selected by Khan et al. using a neural network based method.
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fusion partner also plays an important role in acute mye-
loid leukemia (AML). The expression level of AF1Q is
shown to be correlated with the clinical outcome in pedi-
atric patients with AML. The elevated expression of AF1Q
is found to be an independent adverse prognostic factor in
pediatric AML [26]. Further AF1Q is found to be expressed
in high metastatic potential breast cancer cells rather than
low metastatic potential breast cancer cells and overex-
pression of AF1Q in the later cell renders it highly meta-
static [27]. Thus AF1Q plays important roles in different
types of cancer. We found that AF1Q is very much down-
regulated for the NHL, EWS and RMS groups of tumors
and is moderate to highly upregulated for the neuroblast-
oma group.

The gene FVT1 also an important one with cancer specific
characteristic. Its expression is practically absent for RMS,
NB and NHL groups of tumors, while for the EWS group

it is highly expressed signifying a very distinct tumor-spe-
cific signature.

The Seven Biomarkers Can Detect Non-SRBCT samples
In the original SRBCT data set [3] there were five non-
SRBCT samples : two normal muscle tissues, three cell
lines consisting of an undifferentiated sarcoma, an oste-
osarcoma, and a prostate carcinoma. It is surprising to
note that for these five non-SRBCT examples almost all of
the seven genes are downregulated (see Figure 2).
Although, we did not use any non-SRBCT examples to
decide on the biomarkers, our genes can detect non-
SRBCT examples, at least for four samples in Figure 2. Fig-
ure 2 has seven groups, each plotted using a different
color. The seven groups correspond to seven selected
genes { FGFR4, AF1Q, NAB2, CDH2, EHD1, LSP1, FVT1}
in order. Each group has five components one corre-
sponding to each of the 5 non-SRBCT test cases. The test

Scatterplot of expression values of the 7 genes in the training setFigure 1
Scatterplot of expression values of the 7 genes in the training set. Each panel corresponds to one gene. The red, blue, 
green and black colors respectively correspond to EWS, NHL, NB and the RMS type of SRBCTs. (A) FGFR4 is upregulated 
only for RMS, (B) CDH2 is upregulated only for NB (C)EHD1 is moderate to highly expressed for NHL and RMS (D) NAB2 is 
moderate to highly expressed for EWS and RMS (E) FVT1 is upregulated only for EWS (F) LSP1 is moderate to highly 
expressed only for RMS (G) AF1Q is moderate to highly expressed for NB.
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cases appear in this order : Skeletal Muscle tissue (test case
9, normal), Prostate carcinoma (test case 11, cancer),
undifferentiated sarcoma (test case 5, cancer), Skeletal
Muscle tissue (test case 13, normal) and osteosarcoma
(test case 3, cancer). Figure 2 shows that for the test case 5
(sarcoma) only NAB2 is highly expressed. This example
may be confused as Ewing Sarcoma. For the test case 3
(osteosarcoma), EHD1 is upregulated along with moder-
ately expressed NAB2. This is not typical of the SRBCT
classes. The upregulation of EHD1 and NAB2 clearly
reveals the cancer-specific characteristic signatures of the
identified genes. This is also revealed by Figure 3, which
displays the expression levels of different genes as an
image for the five outliers.

Simpler techniques may be used for easy diagnosis of 
SRBCTs with visual inspection
Figure 4 has four panels, each displaying the expression
values of the training samples of a particular class. Com-
parison of these four panels reveals four simple approxi-
mate diagnostic rules, one for each of the four SRBCT
groups:

EWS : Moderate to high upregulation of NAB2 or FVT1
and downregulation of other five genes.

NHL : Very high upregulation of EHD1 and downregula-
tion of other six genes.

NB : Moderate to high upregulation of AF1Q and CDH2
and downregulation of FGFR4 and FVT1.

RMS : Upregulation of FGFR 4 or LSP1 and downregula-
tion of the FVT1.

Note that, in these (approximate) rules, the upregulation
of a particular gene is associated with only one rule or
group. This mutual exclusion further suggests that the set
of identified biomarkers are essential.

Figure 4 and the above rules bespeak the possibility of
developing simpler and low cost methods for an easy
diagnosis of the subgroups. For example, based on anti-
bodies of the respective protein products of the genes we
can use western blot analysis or Enzyme-Linked Immu-
noadSorbent Assay (ELISA) to classify the SRBCT samples.
One can also use real-time qPCR assays.

Another possibility would be to design specialized micro-
array chips. For example, one may design microarray
chips only for these seven genes with replication. More
specifically, chips with 7 × T probes, where each row will
represent T probes for only one of the seven genes. Thus,
the expression level of each gene will be replicated T times
in a row. This replication will make the visual assessment
easy and will help to eliminate the effect of noise that is
typically encountered in gene expression values. We think
that (T =) 6–7 times replication of each probe would be
enough for visual inspection because human eyes can eas-
ily perceive the contrast between lines with thickness of 6–
7 pixels.

The identified Biomarkers are Universal in Nature 
(Essential and Sufficient)
We want to emphasize that typically the discriminating
ability of a feature or gene should be evaluated keeping in
mind the machine learning tool that will be used to
design the diagnostic system because the best set of genes
for a neural network may not necessarily be the best for a
decision tree or for nearest centroids classifiers. On the
other hand, a set of good biomarkers should be able to do
a good job of prediction using different machine learning
tools. Thus, if the selected set is essential and sufficient
then it should have "universal" characteristics and hence
should be able to do a good job with different tools. To
assess this universal character, we evaluated the seven
genes with RBF net [28], support vector machines (SVMs)
[29], and the nearest centroid classifier. The RBF net with 12

Scatterplot of the 7 genes for the 5 nonSRBCT samplesFigure 2
Scatterplot of the 7 genes for the 5 nonSRBCT sam-
ples. The 7 groups (each plotted with a different color) cor-
respond to seven selected genes { FGFR4, AF1Q, NAB2, 
CDH2, EHD1, LSP1, FVT1} in order. Each group has five 
components one corresponding to each of the 5 non-SRBCT 
test cases. The test cases appear in this order : Skeletal Mus-
cle tissue (test case 9, normal), Prostate carcinoma (test case 
11, cancer), undifferentiated sarcoma (test case 5, cancer), 
Skeletal Muscle tissue (test case 13, normal) and osteosar-
coma (test case 3, cancer). The Scatterplot shows that for 
the test case 5 (sarcoma)only NAB2 is highly expressed. For 
the test case 3 (osteosarcoma), EHD1 is upregulated along 
with moderately expressed NAB2. This is not typical of the 
SRBCT cases.
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Gaussian nodes, each with a very low spread (0.65), can
classify all 63 training examples as well as all 20 blind test
examples correctly. Note, that we did not optimize the net
as each RBF node used the same spread. So, the set has an
adequate discriminating power even for RBF network –
this is a very desirable feature of good biomarkers. A RBF
network even with just four nodes, one for each class, can
classify all training examples correctly and makes two mis-
takes on the blind test data; while a RBF network with
only five Gaussian nodes, each with a very low spread of
0.5 (i.e., high specificity) can classify all but one test exam-
ple of the blind test data.

Support vector machines finds a separating hyperplane
between two classes either in the original input space or in
some high dimensional projected feature space. For this
four-class problem, we used one-vs-one (OVA) strategy
which trains one classifier (SVM) for each pair of classes.
Then voting is used to decide the class label of a data
point. Use of Gaussian (RBF) kernels with a very low
spread for all SVMs results in zero error both on the train-
ing data as well as on the unseen test data. It is worth men-
tioning here that Fu and Fu-Liu [7] required nineteen (19)
genes selected using and for SVMs to achieve zero training
and test errors. This reconfirms the usefulness and univer-
sal characteristics of the identified biomarkers. Note that,
we use the word "essential and sufficient" with respect to
a set as a whole and hence there could be other such sets.

Like any other data driven approach we assume that the
training data set is representative of the four categories.

We have also analyzed the seven genes using unsupervised
learning. In particular, we used the single linkage cluster-
ing algorithm to cluster the relation (1-R), where R is the
Pearson's correlation matrix between the samples, each
sample is treated as a sequence and 1 is a 63 × 63 matrix
with each entry equal to unity (1). The four natural groups
(clusters) found by single linkage algorithm match exactly
with the four classes of the SRBCT (see figure 5).

Discussion
We have identified a set of just seven genes using an
online feature selection method based on neural networks
and designed a diagnostic system that can classify both
the training and unseen test examples with 100% accu-
racy. To establish that the selected marker genes indeed
constitute a minimal set, we made 20 runs of for each pos-
sible subset of six genes from the set of selected genes. The
networks are trained with the 63 training data points and
tested with the same blind set of 20 examples. For each
subset of six genes we report the maximum, minimum
and the average number of misclassifications on the train-
ing as well as on the blind test data in Table 5.

Of the 140 trials, only in one run the error on the blind test
data was zero. The average test error is quite high, the min-
imum value of the average test error rate is more than
20%. Similarly, for the training data also the minimum
value of the average training error is more than 10%. This
suggests that if we remove any other gene from this set, we
shall not be able to distinguish between the four catego-
ries of tumors.

To find how confident our network is in making deci-
sions, we analyzed the output of a typical run of network
for the blind test samples. For each example, each output
node of the network produces a value between 0 and 1.
Except for two blind test examples, the network produced
almost crisp output (full confidence of 1 only for the cor-
rect class and for other classes it is practically zero, see
Table 1. For test case 16, although the output was not crisp
but the strength for the correct class is about 12 times
more than that of its closest competitor, and hence this is
a prediction with a high confidence too. The test example
5, which belongs to RMS, although is correctly classified
by the MLP, it suggests a good resemblance with the EWS
tumor group (The network outputs for the two classes are
very close, 0.151 for EWS and 0.157 for RMS). This signals
that this case should be looked at more carefully, proba-
bly we should look for further information. Due to nona-
vailability of the patient's identity, we could not make a
follow up study on it. This test case is also one of the two
cases that are confused by the nearest centroids classifier.

Pseudo color image of the 7 genes for the 5 nonSRBCT sam-plesFigure 3
Pseudo color image of the 7 genes for the 5 nonSR-
BCT samples. The dark blue to dark red colors corre-
spond to low to high expression values. For each of test 
cases 5 and 3 the expression level of only one gene is high, 
for all other genes and cases the expression levels are quite 
low.
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A RBF network with just five Gaussian nodes can yield
zero training error and can classify correctly all but this
example in the blind test set.

In order to make a fair comparison of performance of our
method with other methods in the literature, we have
used the same training-test partition as used by others and

like others achieved 100% training and test accuracies. It
may not always be possible to achieve such a high accu-
racy with classification of other types of cancer or even
with new data sets for the same problem. In general, to
avoid the dependency of the classifier on the particular
training data set used (in other words, to reduce the vari-
ance part of the classification error), one should use mul-

Pseudo color image of the training data for the 4 SRBCT classesFigure 4
Pseudo color image of the training data for the 4 SRBCT classes. Each of the 4 panels represents one class. The dark 
blue to dark red colors correspond to low to high expression values. (A) EWS : The image reveals that moderate to high 
upregulation of NAB2 or FVT1 and downregulation of other five genes can signal EWS. (B)NHL : It suggests that a very high 
upregulation of EHD1 and downregulation of other six genes are signatures of NHL. (C) NB: Moderate to high upregulation of 
AF1Q and CDH2 and downregulation of FGFR4 and FVT1 indicate the presence of NB. (D)RMS: Upregulation of FGFR 4 or 
LSP1 and downregulation of the FVT1 are indicator of RMS
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tiple classifiers and then combine the outputs of the
multiple classifiers. Ensemble classification methods such
as bagging [30], boosting [31,32] help us to reduce the
classification error by reducing the variance.

Khan et al. [3] used PCA and then used a single layer feed-
forward network. They analyzed the sensitivity of the net-
work output with respect to changes in the expression
level (input) and used this information to rank the genes.

Dendrogram of the 63 samples in the training data setFigure 5
Dendrogram of the 63 samples in the training data set. The dendogram is obtained by the single linkage clustering algo-
rithm. We have used the Pearson's correlation matrix computed using only the selected seven genes. If we cut the dendrogram 
for 4 clusters, training data from different groups are found to form separate clusters as shown by different colors.
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They used 96 top ranked genes (see Table 4) because the
training error was reduced to zero with 96 genes. We
think, one of the reasons their method ended up having
so many genes is that it used a single layer network that
cannot capture nonlinear boundaries. The other reason
may be that their gene selection method looked at one
gene at a time and hence could not exploit possible subtle
nonlinear interactions between genes. We have demon-
strated that the same task can be done using the same tool
with just seven marker genes. These seven genes are
equally effective with other machine learning tools also.
Of these seven genes only four are included in the list
identified by Khan et al.

Tibshirani et al. [2] used a nearest centroid method with
shrunken centroids. The nearest shrunken centroids
method identifies subsets of genes that best characterize
each class. This method shrinks the centroid of each class
towards the overall centroid using the within-class stand-
ard deviation of each gene. A higher importance is given
to a gene whose expression is stable within samples from
the same class. As a result, many genes are effectively elim-
inated from the centroids. The shrunken centroid method
yielded 43 genes that include only four of the genes iden-
tified by us.

Ramaswamy et al. [6] used support vector machine (SVM)
for gene selection and multi-class cancer diagnosis.
Recently, Fu and Fu-Liu [7] applied the method of Ramas-
wamy et al. on the SRBCT data set and could find a set of
8 genes that can yield zero training error but 90% accuracy
on the blind test data.

Then Fu and Fu-Liu [7] proposed a modified method
based on SVM for gene selection and classification. This
method is also iterative in nature that finds the least
important feature, eliminates it and reevaluates the rest.
Using the SRBCT data set, they came up with a set of nine-
teen (19) genes that can achieve 100% accuracy both on

the training data and on the unseen test data samples. This
list of 19 genes includes four of the marker genes identi-
fied by our method.

Of the seven genes that we found, only four (FVT1, CDH2,
FGFR4, AF1Q) are included in the set of genes identified
by Kahn et al. [3], Tibshirani et al. [2] and Fu and Fu-Liu
[7]. The role of these four genes in cancer has been well
demonstrated [3,15,16,18-20,25]. Expressions of the
remaining three genes (NAB2, EHD1 and LSP1) are either
upregulated or downregulated in the various tumors and
also in SRBCTs depending on the tumor subgroups
[11,12,24]. It is worthwhile to discuss the role of these
three genes in cancer biology. Cancer is a sequential proc-
ess, involving breaking off cells from the primary tumor
sites, migration through bloodstream (transendothelial
migration), and setting in new places of the organs. NAB2
is a corepressor of transcription factor family EGR (early
growth response gene) and inhibits cellular proliferation
and growth. Dysregulation of NAB2 will involve unregu-
lated activity of EGR resulting in tumor growth [11,12].
The primary role of EHD1 is endocytosis and protein traf-
ficking such as MHC class molecules that participate in
antigen presentation and destruction of abnormal cells
[13]. Therefore, aberrant regulation of EHD1 likely would
give rise to tumors. The gene LSP1, on the other hand,
plays an important part in transendothelial migration of
tumor cells in the bloodstream and thus helps in cancer
development [22,23]. It, therefore, appears that these
three genes are involved in the tumor and cancer progres-
sion pathways. This does not necessarily mean that these
genes will have the same discriminating power for all
types of cancers. In order to find the best set of discrimi-
nating biomarkers for different cancers, one needs to use
our scheme to analyze data on those types of cancer.

Recently, Lee et al. [33] made an extensive study to com-
pare three feature selection methods in conjunction with
eleven classification schemes. These 11 methods include

Table 5: Training and test error statistics with all possible subsets of six biomarkers

Training Error in % Test Error in %

Gene Removed Max. Min. Average Max. Min. Average

FGFR4 87.30 0 18.18 85.0 15.0 37.0
AF1Q 68.25 0 15.71 80.0 10.0 34.5
NAB2 87.30 0 20.24 85.0 15.0 37.25
CDH2 68.25 0 30.32 75.0 10.0 43.0
EHD1 68.25 0 20.56 75.0 10.0 32.75
LSP1 68.25 0 11.59 70.0 10.0 26.25
FVT1 68.25 0 10.40 75.0 0.0 20.5

The maximum, minimum and the average training and test errors obtained using MLP networks with all possible subsets of size six genes (i.e., after 
removing one gene at a time from the set of identified marker genes). With each combination of 6 genes, the network was trained 20 times with 
different initializations and the statistics are computed based on the results of these 20 trials
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six classical methods like k-nearest neighbor, Fisher's lin-
ear discriminant analysis and five tree methods such as
CART, Bagging, Boosting. Lee et al. used 50 top ranked
genes to evaluate the performance of the 11 classifiers. The
average accuracy on the test examples by the five classical
methods varied between 11% to 37% while that for the
tree methods varied between 1% to 37%. Considering the
performance of classifiers and the fact that authors used
50 genes, it is reasonable to conclude that all selected fea-
tures were not biomarkers.

Conclusion
We proposed a computational intelligence based scheme
for identification marker genes for distinguishing cancer
subgroups and tested it on a well known data set on small
round blue cell tumors. All methods that we have dis-
cussed identified between 19–96 biomarkers to classify
the training and test data with 100% accuracy, while our
method found only seven genes to do the same task with
neural networks. These seven genes include three novel
genes which are not found by other researchers. The main
reason for this is that our method (see Methods) looks at
all genes together and picks up whatever is needed. The
relational fuzzy clustering has helped to reduce the
number of correlated genes. The genes identified by us are
equally good with other tools like RBF network and SVM,
although they were identified keeping in view an MLP.
Even unsupervised clustering using these seven genes can
discover the actual class structure. These seven genes bear
distinct cancer specific attributes and as a group plays
important roles in cancer biology. In this investigation
although we have analyzed the SRBCTs, the proposed
methodology can be used for knowledge discovery related
to other diseases

Methods
Outline of the Method
Figure 6 depicts the overall flow of the method. First we
train a FSMLP with 2308 input nodes and 150 hidden
nodes using the 63 training samples as mentioned above.
We did not try to optimize the network size because in this
stage our problem is not to find an optimal network for
prediction but a set of useful genes (not necessarily the
minimal set). Since the usefulness of features is not likely
to depend much on the size of the network (size can, of
course, influence the learning speed and the minimum
where the network lands at, and hence the feature set; but
we are interested in one such set), the choice of the
number of hidden nodes is not a critical issue at this stage.
The choice should be adequate so that the data can be
learnt. So, to decide on the number of nodes we made a
few trails and keeping in mind the principle of minimum
description length (smaller network, less degrees of free-
dom, lesser chance of poor generalization) decided on
150. Based on the gate opening values in the first stage we

select twenty genes as listed in Table 2. In the next stage of
the procedure, as shown in Figure 6, we again use FSMLP
to select ten genes from the set of 20. Now we apply the
NERFCM algorithm to cluster the set of twenty genes
selected in the first stage. A natural question comes : why
are we not clustering the 10 genes extracted in stage two?
We cluster the 20 genes for two reasons: (1) we wanted to
make sure that no interesting gene in the list of twenty is
excluded in the set of ten genes selected in stage two; i.e.,
we do not want to exclude a gene with no correlated coun-
terpart in the list of ten genes. This check is important as
our analysis is based on a limited training data. For exam-
ple, if we could have found a cluster with no member
from the list of 10, then we would have included one of
the genes from that cluster into the final list of selected
genes. (2) The other reason is that finding 5–6 clusters in
a set of ten data points may not be informative. In this
case the average number of points per cluster is two and
hence assessing the quality of clusters would be difficult.
Moreover, since the list of ten is expected to have less
number of correlated genes, good clusters are not
expected to be found.

The results of the relational clustering and that of the sec-
ond stage of gene selection are combined to pick seven
genes with sufficient cancer specific signatures to discrim-
inate between the four types of SRBCTs. This final set of
seven genes are now used to train MLPs, RBF networks
and SVMs. The trained machines are then used for classi-
fication of the blind test samples. Note that, the last stage
in Fig. 6 shows only MLP and RBF, but the system, as we
have discussed, can be augmented with other machine
learning tools like SVMs.

Since FSMLP looks at all genes together and uses the same
machine learning tool that is finally used to design the
classifier, our method takes into account the interaction
between genes and between genes and the tool. Moreover,
since we use gradient descent, genes having higher dis-
criminating power (i.e., which can reduce error faster)
would open their associated gates faster. Thus, FSMLP is
likely to select a small but adequate set of genes. The rela-
tional cluster analysis further reduces the number of cor-
related genes and hence the selected set of genes is
unlikely to have redundant ones. So, although we cannot
guarantee, compared to the techniques discussed here,
our method is expected to select less number of genes.

The Online Feature Selection Net
Accurate prediction of the diagnostic category of a tumor
based on gene expression data is a very important prob-
lem because this can help planning of better treatment of
patients. Moreover, identification of specific gene expres-
sion patterns that are linked to metabolic characteristics
which contribute to different diseases is also very impor-
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Flow-chart of the entire processFigure 6
Flow-chart of the entire process. First the data set is divided into training and test sets. Then in the first stage, FSMLP is 
used to select 20 important genes. In the next stage, again FSMLP is used to select 10 useful genes from the 20 genes selected 
in the first stage. Now, NERFCM is applied to cluster the 20 genes selected in the first stage considering only the training data. 
Six clusters are found using NERFCM. The results of NERFCM and the second stage of gene selection are combined to choose 
just seven genes with sufficient cancer-specific signatures to distinguish between the 4 types of SRBCTs. Now different classifi-
ers such as MLP, SVMs, RBF nets are trained using the training set with the selected 7 genes. The trained system (MLP/RBF net/
SVM) is then used for classification of blind test data.
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tant. But the very high dimensional nature of the microar-
ray data combined with the fact that such data are usually
contaminated with noise, makes such a task very difficult
one. This problem involve two tasks : selection of genes
and designing of the diagnostic system. Most approaches
to solve these problems, view them as two separate prob-
lems ignoring the fact that a set of genes best for one type
of machine learning tool may not necessarily be the best
for another kind of tool. Often one gene is evaluated and
removed at a time in a stepwise manner and such meth-
ods may not capture subtle non-linear interactions among
a set of genes. Hence the best strategy would be to select
the genes simultaneously with the main learning task, the
designing of the prediction system. We call such a system,
"online" system. We use an online feature selection mul-
tilayer perceptron network for gene selection and design-
ing of the diagnostic system. This novel scheme picks up
the necessary genes online when the system learns the
diagnostic prediction task.

For a multilayer perceptron network, the effect of some
genes can be eliminated by not allowing them into the
network, i.e., by equipping each input node (hence each
gene/feature) with a gate and closing the gate.

For useful genes, the associated gates should be com-
pletely opened and for a partially important genes the
gates should be partially opened. Pal and Chintalapudi
[9] suggested a mechanism for realizing such a gate so that
not useful features/genes can be identified and attenuated.
To model the gates we associate a gate function to each
node in the input layer. Each input node computes the
product of the input (expression value of a gene) and the
gate function value as its output. This modulated output
is passed on to the next layers of the network. The gate
function should produce high values for marker genes
(useful features); while for a redundant/not important
gene, it should be nearly 0. The gate functions attenuate
the genes before they propagate through the net, so we call
these gate functions attenuating functions. As an attenua-
tion function, we can use any function, Fi :R → [0,1], sat-
isfying the following conditions : (i) It has a tunable
parameter and it is differentiable with respect to the tuna-
ble parameter and (ii) it is monotonic with respect to its
tunable parameter. The sigmoidal function, F(m) = 1/(1 +
e-m), satisfies these criteria and we use it here.

Our learning philosophy is to keep all gates almost closed
at the beginning of the learning (i.e., as if no gene is
important) and then open the gates as required during the
training. Let Fi be the gate or attenuation function associ-

ated with the ith gene (input). Fi has an argument mi and

 (mi) is the value of derivative of the attenuation func-

tion at mi. Let μ be the learning rate of the attenuation

parameter; v be the learning rate of the connection

weights, xi be the ith input (gene);  be the attenuated

value of xi, i.e.,  = xiF(mi);  be the weight connecting

the jth node of the first hidden layer to the ith node of the

input layer; and  be the error term for the jth node of the

first hidden layer [9].

It is straightforward to show that except for , the

update rules for all weights remain the same as that for an
ordinary MLP trained with backpropagation. Assuming
that the first hidden layer has q nodes, the update rules for

 and mi are:

The gate parameters for all genes are so initialized that
when the training starts F(m) is practically zero for all
gates, i.e., no gene is allowed to enter the network. As the
learning proceeds, gates for the genes that can reduce the
error faster are opened faster. The learning of the gate
function continues along with other weights of the net-
work. At the end of the training we pick up important
genes based on the values of the gate opening. The train-
ing can be stopped when the training error is reduced to
zero or to an acceptable level or after a fixed number of
iterations. Note that, different initializations of the net-
work may lead to different subsets of important genes. If
this happens, this indicates that there are different sets of
features that can do the prediction task equally well. Since
we do not use any regularization on wij and mi, given a set
of wij and mi, there exists many sets of scaled version of
connection weights and gate opening parameters with the
same network behavior. However, since we use gradient
descent with a low learning rate and keep all gates almost
closed at the beginning of training, on termination we get
a useful network without any problem. We use a small set
of genes for which gates are reasonably open.

In this investigation, in the first stage we used an MLP with
2308 nodes in the input layer, 150 nodes in the hidden
layer, and 4 nodes in the output layer. The network was
trained till the misclassification on the training set
reduced to zero or it attained a maximum number of 5000
iteration. As discussed earlier, we used the backpropaga-
tion learning algorithm for this phase. Based on the
trained network, we selected twenty genes as listed in
Table 2.′Fi
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To decide on the number of features to be selected based
on the gate opening one can proceed as follows. Let G be
the maximum gate opening of a feature in a trial. Then
select all features having gate opening more than P% (say
P = 80) of G. Train a net with these features. If it can learn
the data satisfactorily (can achieve the same or almost
same level of classification accuracy as can be obtained
using all features), you increase P by, say, 2%; otherwise,
reduce it by 2% and repeat the process of training. This
can be easily automated. If enough data are available, we
can use training-validation-test partition to get better
choices of such thresholds. The other alternative is to look
at the gate openings. Typically useful gates are opened
much more than redundant ones and based on that one
can decide on a threshold. In the present case, analyzing
the gate opening values we simply experimented with a
few possibilities like top 18, 20 and 25 features and all sets
were found to have adequate discriminative power and we
decided on 20.

For a very high dimensional data set, two reasonably cor-
related genes x and y in conjunction with some other
genes may be able to reduce the error faster, but both x
and y may not be needed. Thus, this set of selected genes
may contain genes which are to some extent correlated
and hence redundant. If it is so, it may be possible to
remove further some of them. To guard against this we do
two things: (i) we use the FSMLP again on the set of
twenty selected genes; and (ii) we use the non-Euclidean
relational fuzzy c-means clustering algorithm (see next
section) to cluster the twenty selected genes. Unlike hier-
archical clustering algorithm, the NERFCM algorithm pro-
duces a set of membership values with each data point
that helps us to assess how strongly a point belongs to a
cluster. Moreover, different runs of NERFCM can produce
different partitions which can be used to check the con-
sistency of clusters. We want to exploit this information.

In the second phase of gene selection we apply FSMLP on
the twenty genes from phase 1 and select ten genes based
on the gate openings. We made many runs of MLP using
the selected ten genes to ensure that this set has the
required discriminating signatures. Then we use the
results of NERFCM clustering to remove 3 more genes
from this set of ten genes. Finally, in the third phase, an
MLP is trained with seven input nodes, six nodes in the
hidden layer and four output nodes. We used the Leven-
berg-Marquardt search method as implemented in Matlab
neural network toolbox.

We have decided the desired number of clusters (c) by
analyzing the consistency of partitions generated by NER-
FCM for different initializations and choices of c. In order
to automate this process, we may need to define a cluster
validity index [34,35] for relational clustering. Our broad

cluster analysis guidelines are : if a cluster does not inter-
sect the list of top ten, then select the gene with the highest
gate opening value, else from the cluster members belong-
ing to the top ten, select the one with the highest gate
opening. Further, if more than one cluster member belong
to the top ten, and their gate openings are very high and
very close, we retain them. Although not a trivial task,
such a process may be automated if we have sufficient
data. In that case we can partition the data into training,
validation and test sets and use the validation data to
decide the thresholds on the gate opening values. The sys-
tem can then be tested on the test set.

NonEuclidean Relational Fuzzy c-means (NERFCM) 
Clustering of the selected genes

If R = [rij]n × n is any relation satisfying the conditions :(i)

rij ≥ 0∀i,j; (ii) rii = 0; and (iii) rij = rji, we call R a dissimilarity

relation. The relation R may not satisfy the triangle ine-
quality, if it does, then it is a distance function. A dissim-
ilarity relation R = [rij]n × n is Euclidean, if there exists a set

of vectors {x1, ..., xn} ⊂ Rn-1 such that rij = the Euclidean

distance between xi and xj; otherwise, it is non-Euclidean.

In the present case, our objective is to find whether there
exists some genes which are to some extent positively cor-
related. If there are m samples and n genes, then we have

n vectors, each in Rm, {x1, ..., xn} ⊂ Rm. Note that, we are

not talking about distance between such vectors because
two highly correlated vectors may have a very high dis-
tance. Even two positively correlated genes and two nega-
tively correlated genes may result in similar distances.
Hence, we compute the Pearson's correlation coefficient
between pairs of vectors : R = [rij], rij = correlation coeffi-

cient between gene i and gene j, i.e., between xi and xj. This

R can have both positive and negative values and hence is
not a dissimilarity relation. To convert it to a dissimilarity
relation we use the following transformation : R = 1 - R,

i.e., rij = 1 - rij. This transformation will make rii = 0, rij ≥ 0.

The symmetry property of R will be maintained and the
negatively correlated vectors will show higher dissimilar-
ity while the positively correlated vectors will show lower
dissimilarity. This is a valid dissimilarity relation, not nec-
essarily Euclidean. We want to cluster this relation into c
clusters. The NERFCM algorithm finds a fuzzy partition
matrix U = [ui,k]c,n. Here ui,k gives the membership value

(the degree) with which xk belongs to the ith cluster, ui,k ≥

0; . This membership values help us to assess

how compact a cluster is. The NERFCM algorithm [10]
converts a non-Euclidean relation to an Euclidean one

ui ki
i c

,=
=∑ =
1

1
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using a transformation, known as β-transformation and
then uses an iterative algorithm to estimate the member-

ship matrix U [36]. The beta transformation is R ⇒ Rβ = R

+ β (M - In), where Mi,j = 1∀i,j, In is the n × n identity matrix

and β is suitably chosen scaler.

The RBF network and Support Vector Machines
For the Radial basis function network, we have used the
Matlab neural network toolbox and used the function
newrb. We did not use a fully optimized network because
we have used the same spread for all Gaussian nodes.

The SVM [29] maximizes the margin of separation
between two classes to find a separating hyperplane f(x) =

 = w'x + b, where p is the number of genes.

The SVM finds w = (w1, w2, ..., wp)' minimizing ||w||2

subject to the constraints yi(w'x + b) ≥ 1 ∀ i = 1, ..., n,

where yi = +1 or -1 depending on the class. When the train-

ing data are not linearly separable, SVM minimizes

||w||2 + C  subject to the constraints yi(w'x + b

+ ξi) ≥ 1 ∀ yi = +1; yi(w'x + b - ξi) ≥ 1 ∀ yi = -1; ξi ≥ 0, ∀ i.

The ξi's are the slack variables. More often than not, the

inputs are implicitly projected into a high dimensional
space to make them more separable and the separating
hyperplane is then found in the projected space. To realize
this projection, different kernels can be used. In this inves-
tigation, we have used the Gaussian (also known as RBF)
kernels with same spread for all cases. All experiments are
done using the SVM tool available at [37].
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