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Abstract

Background: S/MARs are regions of the DNA that are attached to the nuclear matrix. These
regions are known to affect substantially the expression of genes. The computer prediction of S/
MARs is a highly significant task which could contribute to our understanding of chromatin
organisation in eukaryotic cells, the number and distribution of boundary elements, and the
understanding of gene regulation in eukaryotic cells. However, while a number of S/MAR predictors
have been proposed, their accuracy has so far not come under scrutiny.

Results: We have selected S/MARs with sufficient experimental evidence and used these to
evaluate existing methods of S/MAR prediction. Our main results are: |.) all existing methods have
little predictive power, 2.) a simple rule based on AT-percentage is generally competitive with
other methods, 3.) in practice, the different methods will usually identify different sub-sequences
as S/MARs, 4.) more research on the H-Rule would be valuable.

Conclusion: A new insight is needed to design a method which will predict SSMARs well. Our data,
including the control data, has been deposited as additional material and this may help later
researchers test new predictors.

Background to transcribe [7]. They also have a strong effect on the level

In the nucleus of eukaryotic cells specific regions of the
DNA are attached to the nuclear matrix. These regions are
called matrix attachment regions (or scaffold attachment
regions, abbreviated as S/MARs). It is thought that there
are tens of thousands of S/MARs in the genome of higher
eukaryotes [1], which assigns a major role in the organisa-
tion of the chromatin within the nucleus to the S/MARs.
There is a category of S/MARs that function as boundary
elements when they separate a gene from other genes' reg-
ulatory modules [2-5]. S/MARs can activate enhancer
regions [6], and determine which one of a class of genes

of expression of transgenes [8,9]. Therefore, S/MARs are of
intrinsic interest for the understanding of gene regulation
in eukaryotic cells.

Reliable predictions of S/MARs by computer would be
very valuable, as they would facilitate the design of exper-
iments and improve our understanding of regulatory
mechanisms. In genome-wide applications, such methods
could allow insights into the number of S/MARs [10],
their distribution in the genome, their position relative to
genes, and the functional classifications of S/MARs. How-
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ever, while a number of methods have been proposed,
their predictive power has so far not been put under
detailed scrutiny and is therefore uncertain. There has also
been very little analysis of the respective strengths and
weaknesses of the proposed methods which could facili-
tate the design of better methods.

A considerable amount of research has been focused on
computational predictions of the position of S/MARs and
several methods of S/MAR prediction have been pro-
posed. The MAR-Finder method scores sub-sequences of
DNA by the abundance of DNA-motifs thought to be cor-
related with S/MARs [11]. Particular motifs have been sug-
gested by experimental groups: the recognition signature
(MRS) consisting of two consensus sequences [12] and a
"consensus" sequence by Wang et al. [13]. It has also been
found that a long run of bases that do not contain a G
binds to the matrix [14] and this is the basis of the H-Rule
[15]. Two methods which have attempted to learn motifs
from a training set are SMARTest [10] and ChrClass [16],
the latter also attempting to classify S/MARs.

It has been recognised that S/MARs are often AT-rich and
this has lead to the idea that strand separation (or at least
the potential for strand separation) is important for S/
MAR binding. The program Thermodyn [17] makes a sim-
ple calculation of the free energy of strand separation and
this program has received a fleeting mention in the S/MAR
literature [18] where its results correlated with the S/MARs
observed in that experiment.

SIDD (stress-induced duplex destabilisation) is a more
complicated calculation of the potential of DNA strands
to separate in a given region [19]. This calculation takes
into account the torsional stress on the DNA and uses a
thermodynamic model of energy states. A long series of
papers [2,19-21] has drawn attention to correlations
between S/MARs and SIDD results in particular situations
and experiments. Other authors such as Krawetz et al. [22]
have included SIDD in their list of possible tools for find-
ing S/MARs. However, the latest thinking of the SIDD
team [21] is that SIDD calculations do not [yet] form the
basis of an S/MAR predictor for wild type S/MARs in
genomic DNA. In view of the obvious interest in this
approach, the following analyses include our own inter-
pretation of the method which we call "duplex destabili-
sation".

It is not surprising that the original authors make encour-
aging statements about their own methods but a number
of authors have praised competitor methods, for exam-
ple:- The authors of SMARTest say MAR-Finder gives 80%
precision and 32% sensitivity [10]. Rogozin et al. [23] say
that both MAR-Finder and ChrClass (their own method)
can be recommended for analysing eukaryotic genomes
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even if caution must be exercised. A paper from the SIDD
team [20] compared MAR-Finder, SMARTest and SIDD on
one sequence and said "we have applied all three algo-
rithms in parallel and found a reassuring amount of coin-
cidence for a thoroughly studied example." The
experimental paper by Purbowasito et al. [24] compli-
mented the good performance of ChrClass with 85% sen-
sitivity and 50% precision. Another experimental paper
[25] found the MRS signature to be a good indicator.

There have however been a handful of negative results in
the literature. The experimental paper by Ostermeier et al.
[26] failed to find any correlation with predictive meth-
ods. Liebich et al. [27] suggested that many motifs associ-
ated with S/MARs were merely a consequence of the fact
that many S/MARs were AT-rich. Although Purbowasito et
al. [24] complimented the performance of ChrClass, other
methods were not found to be so successful. Krawetz et al.
[22] give a small tutorial example on the use of computer
methods where it is notable that the methods give differ-
ent results and the advice is "to compare the results
obtained from several different algorithms".

On balance the tone of the literature is very positive, even
if this does not reflect the views of many workers in the
field, especially for the prediction of AT-poor S/MARs. The
situation calls for a comprehensive statistical evaluation
especially since these methods are used by biologists to
plan their experiments. Our analysis uses relatively large
datasets and in particular measures performance against
negative control sets.

We have put together a positive test set of experimentally
verified S/MARs of known position within the mouse or
human genome as well as negative test sets and applied all
the methods mentioned above to this data. Our evalua-
tion reveals that these methods have little predictive
power. Moreover, we show that a simple rule based on AT-
percentage generally achieves the same level of accuracy as
the other methods. It is well known that many S/MARs are
AT-rich but it is still a surprise that such a simple method
compares well with the current state of the art.

A point of practical importance to the user is that the
methods will largely predict different sub-sequences. This
result might be exploited to design a stronger method for
S/MAR prediction, but we believe further insights based
on the biological mechanisms involved will be needed.

Although none of the methods analysed could serve as a
practical prediction tool, our analyses suggest several rea-
sons for thinking further research on the H-Rule would be
valuable.
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Extensive additional material has been deposited [see
Additional file 1].

Results

We have applied each of the methods to each sequence in
the positive and control test sets as explained in the Meth-
ods section-Figures 1 and 2 give examples of successful
and unsuccessful predictions of two methods for
sequences in the positive dataset. The vertical lines give
the extent of the S/MAR and the horizontal line a repre-
sentative threshold (as used in Table 1 below).

We have found the proportion of true positives and false
positives for each method. The trade-off between finding
more true positives at the expense of finding more false
positives is given by the "Receiver Operator Characteris-
tic" (ROC) and Figure 3 gives a ROC curve where the true
sequences are taken from our dataset of positive
sequences and the false sequences are taken from our pre-
ferred control dataset, the background dataset. This graph
shows that the discrimination of all the methods is very
low. The curves barely rise above the diagonal which rep-
resents a random classifier. Table 1 gives results for meth-
ods with a variable threshold where the threshold has
been set to give a background "discovery rate" around
10%, and Table 2 for the other two methods. These pre-
dictions are of questionable practical use.

Results have also been obtained for a number of different
combinations of the data (including the parts of the posi-
tive dataset obtained from the SMARt DB and Purbowa-
sito sources separately)-but no method can be said to be
good in any of the conditions tested.

Analyses using three other control sets have also been per-
formed. A complete set of graphs for these other control
data is available [see Additional file 2]. The results for
these three datasets are very similar to each other and we
have chosen the coding dataset used in Figure 4 to illus-
trate these other results. If this result is taken at face value
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then the H-Rule would be the best and the AT-method
next best. However, we doubt the value of this result: Fig-
ure 5 shows how effective these predictors are in distin-
guishing background mouse/human DNA from coding
DNA and this graph shows that the predictors are doing
little more than this.

In practice the methods will find different sequences: this
can be seen from Figure 6 where the Venn diagram shows
the overlap of the sets of positive sequences predicted to
contain S/MARs by three methods, at the thresholds used
for Table 1: ChrClass, the H-Rule and MAR-Finder (rules
1-6)-the MAR-Finder rules are explained in reference
[11] and summarised in Table 3 below. The additional
material contains a table showing which S/MARs were
found [see Additional files 3 and 4]. Results for other
combinations of methods or thresholds will lead to the
same conclusion.

However, because of the small sample size, we prefer the
following presentation. Each method ranks each S/MAR
in the positive test set according to the threshold at which
it is detected: if two methods are finding the same S/MARs
then a plot of the ranks of the two methods against each
other will be a straight line. Figure 7 shows an example: it
compares Thermodyn with MAR-Finder (rules 1-6)-the
high ranks (top right of the plot) are the points which the
methods predict as the most likely S/MARs. The correla-
tion of the points in this plot is 0.46. Other pairs of meth-
ods give similar results.

The length of the S/MAR, as defined in the database, is a
feature which makes S/MARs easier to predict. Figure 8
gives a histogram of the lengths of the S/MARs in the pos-
itive test set. These lengths have a median of 850 bases
and a mean of 1092 bases. However, the median lengths
of S/MARs identified for the thresholds in Tables 1 and 2
are much longer: these medians range from 1274 to 1966
which are the values for the AT-method and ChrClass
respectively. This is not a consequence of the fact that a

Table I: Percentage of SSMARs and pseudo-S/MARs predicted by each method by type of sequence

Positive Background Negative Coding E. coli
MAR-Finder (rules |-6) 18.2% 9.4% 0.0% 0.0% 4.5%
MAR-Finder (rules 1-5) 10.3% 9.4% 0.0% 0.0% 1.5%
Duplex destabilisation 13.3% 9.4% 16.4% 15.2% 8.5%
ChrClass 13.9% 10.9% 1.8% 0.6% 0.9%
H-Rule 17.6% 9.7% 0.0% 0.0% 0.0%
Thermodyn 18.8% 9.4% 0.0% 0.0% 0.0%
AT-method 15.2% 9.4% 0.0% 0.0% 0.0%

MAR-Finder (rules |-6) includes the "AT-richness rules", and MAR-Finder (rules |-5) excludes this rule. Two or more hits for the same S/MAR
counted as one. This Table shows that there is little difference between the results for the positive and background datasets. The ranking of the
methods depends on the chosen background discovery rate (see Figure 3).
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An example of a successful and an unsuccessful prediction of MAR-Finder (rules 1-6)—sequences surrounding SM217 and
SM418 respectively.
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An example of a successful and an unsuccessful prediction of the H-Rule—sequences surrounding SM003 and SMOI5 respec-
tively.
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Table 2: Percentage of SSMARs and pseudo-S/MARs predicted by each method by type of sequence

Positive Background Negative Coding E. coli
MRS 24.8% 20.6% 7.9% 1.2% 7.0%
SMARTest 19.4% 11.8% 0.0% 0.3% 0.6%

Two or more hits for the same S/MAR counted as one.
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Figure 3

ROC curve for the positive dataset versus background sequences.

Page 6 of 29

(page number not for citation purposes)



BMC Bioinformatics 2007, 8:71

http://www.biomedcentral.com/1471-2105/8/71

o ]
7
[e0)
- S |
9
Q
o
o
o
92 ©
£ S
=
()
©
[0}
o
y— <
o oS
S AT-method
£ MAR-Finder (rules 1-6)
2 MAR-Finder (rules 1-5)
T o Duplex destabilisation
o Thermodyn
ChrClass
S SMARTest
M MRS
o | - -+ HRULE
o
| | | | | |
0.0 0.2 0.4 0.6 0.8 1.0
Proportion of Coding Sequence Pseudo S/MARs Predicted
Figure 4

ROC curve for the positive dataset versus coding sequences.

random sequence is more likely to be found if it is longer:
Figure 9 shows the ROC curve for S/MARs of 500 bases or
longer in the positive dataset and both the discovery rate
and the discrimination improves.

We have considered how the AT% of the 10 kb region
affects the results: we have used a median value of 58% for
the AT% as the cut off and divided positive and back-

ground datasets into AT-rich and AT-poor. The results for
finding S/MARs in AT-rich regions compared with the
results for pseudo S/MARs in AT-rich regions are given in
Figure 10 and the corresponding results for AT-poor
regions in Figure 11. The general result is that all methods
perform slightly better in AT-rich regions than in AT-poor
regions. These results do not support the suggestion that
rule 6 of MAR-Finder should be used for AT-rich regions
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Figure 5

ROC curve for the background dataset (that is randomly selected real mouse DNA) versus coding sequences.

and not for AT-poor regions. The H-rule is best or near the
best in both circumstances. However none of the results
are indicative of a good predictor.

We have also looked at the AT% of the S/MAR itself to see
how this affected the success of the predictor: of course the
AT% of the S/MAR is not known until it is found. For this
comparison no attempt was made to control for the AT%

within the background S/MAR. Figure 12 shows that AT-
rich S/MARs are easier to find-a result in line with expec-
tations. The H-Rule, Thermodyn, the AT-method and
SMARTest are the best methods in this analysis. However,
the results for AT-poor S/MARs in Figure 13 are worse than
random predictions: only MAR-Finder (rules 1-6)
remains above the diagonal. Given that all the methods
are looking for some definition of AT-richness this result
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Table 3: Summary of the MAR-Finder Rules

Rule Number Purpose of Rule

Orrigin of replication

|
2 TG-richness
3 Curved DNA
4 Kinked DNA
5 Topoisomerase Il cleavage sites
6 AT-richness
Consensus motif
8 ATC rule

Each rule is based on a set of motifs thought to be related to a biological feature which itself is likely to be indicative of an S/MAR. In standard use,
rules 1-6 are used.

MAR-Finder (rules 1-6)

VAV,

ChrClass H-rule

Figure 6

A Venn diagram showing the number of S/MARs found at Table | thresholds. This Venn diagram shows the number
of S/MARs found by various combinations of three methods at the thresholds used for Table |. 103 S/MARs were not found by
any of these three methods at these thresholds.
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Comparison of Thermodyn and MAR-Finder (rules 1-6). Shown are the ranks of each S/MAR in the positive test set
according to the threshold at which it is detected. The higher the correlation the more the methods agree on the order in
which the S/MARs are detected using varying thresholds. S'MARs with the strongest signals are top right. The correlation is

0.46.
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Histogram of length of S/MARs.
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Figure 9

ROC curve for long positive S'MARs versus background sequences.

is understandable even if Figure 13 exposes the problems
of the methods.

MAR-Finder uses the base frequencies of the local
sequence in its calculations and this may be relevant to its
performance in Figure 13. Conversely, as explained in the
Methods section the H-rule is based on an absolute count
of motif occurrences. We therefore tested if the MAR-

Finder interpretation of the H-Rule would be better-Fig-
ure 14 shows the results for this version (here called the
H'-rule). We see that judged on the total dataset it gives a
poor result even by the standards of the methods availa-
ble. However, for the AT-poor S/MARs it gives surprisingly
good results, even if for AT-rich S/MARs the results fall
below the diagonal. Some insight into this result can be
gained from Figure 15 which shows the average value of
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Figure 10

ROC curve for AT-rich 10 kb regions.

the absolute H-Rule score by distance from the centre of
the S/MAR: also shown is the average value of the back-
ground dataset. The S/MAR average shows a peak above
the background but away from the S/MAR this average
value falls below the background average. The S/MAR
average in fact remains below the background average for
a few tens of kilobases each side of the centre of the S/
MAR (data not shown).

To see the effect of using LIS-see the discussion of experi-
mental protocols in the Methods section-we give Figures
16 and 17 which show the results for the S/MARs con-
firmed with and without LIS. There are some indications
that some methods differ in their ability to find these two
types of S/MARs: for example SMARTest, the H-Rule and
Thermodyn seem to be better at finding LIS verified S/
MARs. Although we were unable to find any combination
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Figure 11
ROC curve for AT-poor |0 kb regions.

of results which was statistically significant in the dataset,
it is possible that this is because the dataset is too small.
We also considered if the in vitro verified S/MARs gave dif-
ferent results to the in vivo verified S/MARs, but could not
find such an effect. For both comparisons it is necessary to
control for the different lengths of the positive S/MARs in
the subsets of the data.

Discussion

We have evaluated the predictive power of the available
methods for S/MAR prediction on positive and back-
ground test sets using straightforward analytical tech-
niques. The results lead us to four main conclusions: the
methods analysed have little predictive power; a simple
rule based on AT-percentage does just as well especially at
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Figure 12

ROC curve for finding S'MARSs that are AT-rich.

low false discovery rates; in practice, the different methods
will identify different sub-sequences; several aspects of the
H-Rule have been observed which deserve further investi-
gation.

These results are different from those claimed by the orig-
inal authors and this needs some explanation. We think
that the main reason for these conclusions is that much

previous analysis did not include a comparison against
negative/background test sets and in particular a control
based on the length of the putative S/MAR. Several of the
original studies are based on only a handful of positive
test sequences. Their results cannot be generalised to these
larger human/mouse test sets. We also question if some of
the analyses in the literature have not been biased by a
concentration on one or two of the best cases effectively
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ROC curve for finding SSMARSs that are AT-poor.

using very stringent thresholds. As an aid for future work
we have included the 10 kb sequences for both the posi-
tive and control sequences in the additional material [see
Additional files 5, 6, 7, 8, 9].

We have explored changes in the details of the analyses.
For example we tried doubling/halving the window sizes.
For MAR-Finder we have tried other combinations of

rules, alternatives in defining the base probabilities and
how the signals for the two strands are combined. The
thrust of our conclusions is unchanged. We are therefore
confident that our conclusions are robust against techni-
cal changes and definitions. The Purbowasito data [24]
formed about a third of our dataset. In case this affected
the results, we repeated our analyses without this data and
our conclusions are unaffected.
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ROC curve for the H'-Rule for three divisions of the dataset. This Figure compares the positive dataset with the back-
ground dataset. a) black (middle curve) using all the positive dataset; b) red (top curve) AT-poor S/MARs; c) blue (bottom
curve) AT-rich S/MARs. Note the contrast with the H-rule in Figures 12 and 3.

While all methods have little predictive power, some com-
ments on individual methods can be made. In general
MAR-Finder performs better when rules 1-6 are used than
when only rules 1-5 are used. This is true for regions
which are AT-rich as well as those that are AT-poor.
Exploratory analyses suggest that MAR-Finder might per-

form better when the base frequencies are defined from a
very long sequence which contain the candidate S/
MAR(s), but this alternative does not turn the method
into a strong predictor. The ChrClass method does not
come with strong claims from its authors but Purbowasito
et al. [24] found good performance for S/MARs in one
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H-Rule measure. This Figure shows the average of real SSMAR sequences (line with peak) compared with the average back-

ground level (the horizontal line).

megabase of DNA sequence. For the same data we find
that it detects a high proportion of true S/MARs but also
has a high false positive rate: for the other S/MARs in our
dataset it does not perform well (details not shown). We
find the MRS signature to have very moderate predictive
power-less than expected [12]. The SMARTest method
tends to find a smaller proportion of real (and pseudo) S/

MARSs than either the MRS or ChrClass methods. We also
find its performance comparable to MAR-Finder at com-
parable levels of sensitivity. Thermodyn turns out to be as
good as some of the more established methods.

The H-Rule may not be of practical use but it is the best

predictor of those examined. Figures 14 and 15 show
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Figure 16

ROC curve for the positive with-LIS data versus background sequences.

aspects of this idea which might be exploited to improve
the measure. Figure 15 and the fact that the S/MAR aver-
age remains below the background average for tens of
kilobases from the S/MAR centre invites interpretation. A
typical S/MAR may be in a large distinctive region which
presumably contains more than one S/MAR. Regions
between the S/MARs (or S/MAR-clusters) may be under
selective pressure not to bind to the matrix to allow for

proper looping of DNA. Therefore, one way to improve S/
MAR prediction may be to incorporate features of the
neighbouring, non-binding regions into the model.

In framing the duplex destabilisation method, we have
followed the ideas and calculational technique of the
SIDD calculations [19]. We have tried variations in the
method, e.g. of window sizes and the use of the p-graph
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Figure 17

ROC curve for the positive non-LIS data versus background sequences.

instead of the G-graph and have found that they all lead
to the same conclusions. We have also experimented with
alternatives such as area measures (the area of graph
under a given threshold) and length measures (the
number of bases for which a graph falls below the thresh-
old). For some area measures there was a small improve-
ment in predictive power but nothing to alter the main
conclusions. We did not try the complexities of the

method described in general terms in [21] but we see no
reason to dispute their conclusion that a SIDD predictor
of wild type S/MARs in genomic DNA has not yet been
developed.

It is of course possible that these principles might be used
successfully but we foresee difficulties and do not share
the hopes expressed in [21]. The purpose of SIDD calcula-
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tions is to calculate where torsional stress causes DNA to
separate. It is still not obvious that either torsional stress
or strand separation is relevant to S/MAR binding. In vivo
the salt concentration is comparatively high and DNA
would relieve torsional stress by twisting about itself
rather than melting [28]. The presence of nucleosomes
also relieves torsional stress. Several S/MAR proteins bind
to double stranded DNA and SATBI1 in particular does not
bind to single stranded DNA [14]. The main problem that
we have found is that for any sequence the duplex desta-
bilisation method searches for the weakest point. There is
therefore a tendency for the duplex destabilisation
method to predict exactly one S/MAR in any sequence of
any length. To some extent this is avoided by the use of
the G-graph rather than the probability p-graph-but it
remains a difficulty of the method. This explains its poor
performance on the coding, negative and E. coli test sets.
It also explains the purpose behind the procedure
described in [21] of obtaining a standardised measure for
a sub-sequence by splicing it into a standard plasmid.

Our use of AT-percentage as a prediction rule is not
intended to suggest that AT-richness of (many) S/MARs is
a new result. On the contrary, most authors who write on
the subject explain that many S/MARs are known to have
a high correlation with AT-rich regions or have runs of As,
but the situation is more complicated. The current meth-
ods of S/MAR prediction have a correlation with AT-rich-
ness built in: MAR-Finder has several rules correlated with
AT-content and the duplex destabilisation calculations are
heavily influenced by AT-content. Indeed as noted below
when rule 6, "AT-richness", is included in MAR-Finder it
dominates the other rules. However, we do find it striking
that our simple AT-percentage-rule is competitive with
published methods.

One notorious problem for research in this area is the
choice of a control set. There are a number of features of
the genome which have been annotated-for example
transcription start sites-but it does not follow that these
regions are free of S/MARs. On the contrary these may be
regions where S/MARs are to be found. The approach that
we prefer is to use real DNA sequences chosen randomly
from the mouse genome. The disadvantage is that the real
proportion of S/MARs within this test set is unknown.
However, if a predictor cannot make a clear distinction
between the real S/MARs and the background set it must
mean that either the predictor is very poor or that the def-
inition of an S/MAR is nearly meaningless-a random
piece of DNA is just as good. We have constructed three
other control datasets: the coding, the negative and the E.
coli dataset. The advantage of these three sets is that it is
almost certain that there are no S/MARs in these datasets:
both the function and sequence of coding sequences
make them unlikely to contain S/MARs; the negative data-
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set consists of an entirely artificial sequence; and E. coli
has no nucleus which implies that no specialised S/MARs
can have evolved. The disadvantage of these datasets is
that they can easily be distinguished by statistical methods
from mouse/human sequences and if the evaluation is set
up in this form it is not clear whether a successful measure
is doing anything more than distinguishing the type of
sequence rather than finding S/MARs. Our reading of Fig-
ures 3, 4, 5 is that this is all these measures are doing.
However, if these control sets are regarded as giving a
proper evaluation then the H-Rule and the AT-method are
superior to the other methods. It is also true that if one
used a threshold which found only a fifth of real S/MARs
then most of the methods would find a negligible number
of S/MARs in these three control sets. However, on the
same basis, the same threshold would identify at least a
tenth of random sequences of mouse DNA as containing
an S/MAR.

Users will also need to bear in mind that different meth-
ods will predict different sub-sequences as S/MARs. At one
level this is obvious in that the default parameters of the
different methods operate at regions along the ROC curve.
It is also a corollary of the with-LIS/non-LIS results (Fig-
ures 16 and 17). Other evidence that the methods will in
practice identify different sequences was given in Figures
6and 7.

A number of roles for S/MARs have been proposed in the
literature [29], and this suggests it might be possible to
predict the function or type of an S/MAR as well as its pres-
ence. However, there is not yet sufficient data for such an
analysis. The ChrClass method [16] is an attempt at this,
but the authors themselves stress the difficulties of their
analysis. We examined the notes in SMARt DB and it is
possible that the different methods are in fact predicting
S/MARs with different features, e.g. duplex destabilisation
for S/MARs with bent DNA and MAR-Finder with clusters
of motifs, but with the current limited data we can only
leave this as a question for further work. The analysis split-
ting the data by LIS and non-LIS S/MARs fell short of giv-
ing statistical significance, but it would be interesting to
see if a larger dataset could settle the question of whether
some methods were better at finding LIS confirmed S/
MARSs.

Using background sequences allows one to see how many
hits a method will generate on average in a length of
sequence. Unfortunately the poor predictive power of the
methods means that we cannot go on to estimate the
number of S/MARs in the genome, and we have therefore
not reported these results.

However, two points may be made. Firstly, as could be

deduced from the Results section, there are many hits in
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the background sequences. Secondly, sequences contain-
ing a known S/MAR contain more hits than background
sequences do-suggesting that S/MARs come in clusters.
This possibility is not unexpected given the work of [7,24]
and [25].

It is also revealing to examine individual plots of 100 kb
sequences. Figure 18 gives an example of the results for
one sequence of 100 kb: this happens to be of the MAR-
Finder (rules 1-6) measure but similar examples could be
given for any of the measures. The known S/MAR is of
length 1783 bases in the centre of the sequence where
there is a small local peak whose height is lower than the
many other peaks in the figure. One possibility is that for
this sequence this method simply gives the wrong results.
Another view is that the rule gives a near miss or there are
several S/MARs in the region. This figure is typical of doz-
ens that we have examined. The implication is that S/
MARs may come in clusters which are spread over many
kilobases and that the existing methods do not get to the
root of the matter.

Conclusion

We have been invited to comment on where progress
might be made in this field. We do not share the view that
S/MARs are no more than an experimental artefact but we
do suspect that the term is too broad and useful categories
need to be identified either by function or more probably
by the protein (or protein family) that binds to the S/
MAR. We also expect that experiments of wild type S/
MARs will be more useful than in vitro ones. A corrollary
of S/MARs coming in clusters is that a biologically rele-
vant feature might be a long region (say 100 kb) that con-
tains a cluster of S/MARs. Support for this idea comes
from the behaviour of the H-Rule measure which takes
several 10 kb to return to the background level. If the biol-
ogy is to be explained in terms of strand separation then
the in vivo mechanisms need to be better understood. On
present evidence it looks more likely that the H-Rule is
closer to the biological mechanisms and that progress
may be made by a better mathematical formulation of the
H-rule.

It appears that existing methods can pick out a few
extreme candidates for S/MARs and that these can be
expected to be true positives. However, a method which
identifies S/MARs with good precision is still needed. It is
clear that a new insight is needed: perhaps then we will be
able to identify some sequences as forming-for example-
insulators between genes and others as framing regulatory
cassettes.
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Methods

SIMAR Predictors

MAR-Finder

The MAR-Finder method [11] uses a set of DNA-sequence
motifs known to be abundant in S/MARs in order to pre-
dict S/MARs. In the MAR-Finder calculations these motifs
are grouped into "rules" according to the reason the motif
was included: see Table 3. As noted below, the authors are
not entirely prescriptive as to which of these rules are to be
used.

In a window of fixed length the number of occurrences of
each motif is determined and compared to the expected
number of occurrences in a random DNA sequence of the
same length as the window. Using a Poisson distribution
these values are turned into a score for that window. The
average of the score for the positive strand and the nega-
tive strand is then computed and called the MAR-potential.
This step is repeated for each window along the sequence
under consideration and those windows that have a MAR-
potential above a given threshold are predicted to contain
an S/MAR. In the original method the MAR-potential is
scaled so that the maximum value for the sequence under
consideration is 1.0. We give results by Frisch et al. [10] for
the power of this method in the subsection describing
SMARTest.

Both the original MAR-Finder method [11] and its present
incarnation on the MAR-Wiz website [30] leave it open to
the user to specify several steps in the analysis-in particu-
lar, which motifs to include and how the final scaling is
done. An example of this ambiguity is that rule 6-the "AT-
richness rule"-is used in some applications for the detec-
tion of AT-rich S/MARs, but not for the detection of AT-
poor S/MARs [10,11,16]. We have evaluated the contribu-
tion of this motif to the MAR-potential and found that it
dominates the other motifs, if included. The MAR-Wiz
website allows two rules to be used which were not dis-
cussed in their original paper-a "consensus sequence"
and the H-rule. We discuss these separately below. The
default method of normalising by the maximum potential
in the sequence, as described above, is statistically unsta-
ble, and the authors suggest that the user clips the highest
peaks in the MAR-potential if this should seem appropri-
ate. There is also the ambiguity of how to define the fre-
quencies of the bases: the default is to use the frequencies

in the sequence being analysed-however long that might
be.

We have coded the method as described in [11]. We have
deduced that the published specification is incomplete
but on making the appropriate changes we get very close
agreement with the graphs in the original paper and from
the website. The changes refer to the motifs listed in Figure
1 of [11]. Motif 7 should read A n,A;n,A, and motif 8
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An Example Measure over an Example Sequence—sequence surrounding SM003.

similarly. Although not stated, it also appears that motifs
16 and 17 should be allowed to match with one and two
mismatches respectively, and the probability of the motifs
occurring should be adjusted accordingly.

We have used the default window of 1000 bases and tried
both alternatives of including and excluding the "AT-rich-
ness rule". These are referred to as "MAR-Finder (rules 1-
6)" and "MAR-Finder (rules 1-5)". Base frequencies have

been calculated from the 10 kb sequence containing the S/
MAR. Instead of the arbitrary scaling method we have left
the MAR-potential in absolute units and tried various
thresholds.

Consensus sequence

The "consensus sequence" is "TCTTTAATTTCTAATATATT-
TAGAA" and is a SATB1 recognition sequence derived
from the S/MAR downstream of the mouse immunoglob-
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ulin heavy chain enhancer [13]. Any twenty-five base pair
sequence is very rare and this one does not occur exactly
in our positive test set. If two mismatches are allowed then
it appears twice-not surprisingly in/near the two S/MARs
that gave rise to the sequence. The use of this sequence
therefore depends entirely on how many mismatches are
allowed, and since this sequence is nearly all A/T this
method becomes simply a measure of AT-richness over
two dozen bases and we have not pursued this particular
approach further.

H-Rule

It has been found that a long run of bases that do not con-
tain a G binds to the matrix [14]. MAR-Wiz [15] allows
users to use this rule where it is translated into their for-
malism as a motif of 20 consecutive Hs (i.e. each of the 20
basesisan A, T or C) and allowing no mismatches. We call
this MAR-Wiz implementation the H'-Rule. We have also
implemented a version, which we call the H-Rule, which
is a simple count of the number of occurrences (possibly
overlapping) of a motif of 20 consecutive Hs on either
strand in a moving window of 1000 bases, allowing two
mismatches. We have quoted most of our results for this
latter measure as it usually performs better, but as we dis-
cuss there are some interesting features of the H'-Rule.

MRS Signature

The two part motif AATAAYAA and AWWRTAANNW-
WGNNNC has been suggested by van Drunen et al. [12]
to be an indicator of an S/MAR, where Y=C or T, W = A
orT,R=AorG and N=AorCorGorT.

These motifs should appear within about 200 bp of each
other and can be on either strand, in either order and may
even be overlapping. The 8 base part should match exactly
and the 16 base part is allowed one base mismatch. The
authors found that this signature identified 80% of S/
MARSs in their test set.

SMARTest

Frisch et al. [10] explain in general terms that SMARTest is
based on 97 weight matrices, describing motifs of length
10 to 21 bases, which are AT-rich. These motifs were
obtained by automatic searching in 34 known animal and
plant S/MARs. Their testing on an independent test set
gave comparatively good results finding 14 out of 37
known S/MARs and 19 out of 28 predictions to be cor-
rect-that is a sensitivity of 38% and precision of 68%,

where sensitivity = , and precision (sometimes

TP
TP + FN
P

TP + FP
positives, FP = number of false positives, FN = number of

called specificity) = , where TP = number of true
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false negatives. Note that it was possible for more than
one "prediction" to predict the same S/MAR. The same
authors compared MAR-Finder on the same data and in
their hands it found 12 out of 37 known S/MARs and 20
out of 25 predictions to be correct-that is a sensitivity of
32% and a precision of 80%. We used the SMARTest pro-
gram as supplied on the public website.

ChrClass

We have used the package as supplied from the public
website [16] and we have used the results for "predicted S/
MARs" ignoring any output for the MRS and using the col-
umn "score” as a variable threshold in the ROC analyses.
In the figures giving ROC curves, "C" marks the point
where all the predictions of ChrClass for "predicted S/
MARs" are included.

Duplex Destabilisation

SIDD calculations predict where the DNA strands can eas-
ily separate: it has been suggested that this is an indication
of the presence of an S/MAR [19]. This is plausible both
because DNA melting tends to occur in regions high in AT
and there is some association of S/MARs with origins of
replication [31,32].

These calculations assume that DNA is under torsional
stress and it will relieve this stress by melting. Energy is
needed to separate the strands but the energy needed to
twist a pair of separated strands is less than the energy to
twist the equivalent length of double stranded DNA.
These facts form the basis of a thermodynamic model
[19,33,34] which calculates the energies and probabilities
of different states with different positions of base separa-
tion. One output is the p-graph which gives the probabil-
ity that a given base pair is separated-typically this graph
shows a peak in a small region and is close to zero else-
where. The G-graph gives the average energy which has to
be put into the system for a given base pair to separate and
is normally a more sensitive measure: following the
advice in the references this is the quantity we have used
for the duplex destabilisation method. We were able to get
results corresponding to the public website up to an
(inconsequential) off-set of about 1.5 to 2.0 kcal between
the website results and our calculations for a given
sequence.

Details of the method are in the above references. In short,
the calculations are extremely time consuming, and we
have limited the analysis to thermodynamic states of one
or two open windows, on the grounds that this gives a
good approximation to the result given with more open
windows. Otherwise we used the default parameters of
the public website. The reported results are based on cal-
culations on a sequence length of 10 kb: exploratory anal-
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yses with longer and shorter sequences give similar results
(not shown).

As noted in the introduction, the authors of [2,19,21]
present a number of ideas and results but do not claim to
give a prediction algorithm. This implementation takes
the obvious step of testing whether the G-graph crosses
below a given threshold.

Thermodyn

Thermodyn is a calculation of the free energy of strand
separation derived from summing the contributions of
each doublet in a window to the thermodynamic quanti-
ties AH and AS [17]. Its use in the context of finding S/
MARs comes from Kieffer et al. [18] where it was used to
check for the plausibility of the S/MARs found in that
experiment. The formulae are straightforward to program
and we have tried Thermodyn as a predictor in our analy-
ses. After some experimenting, we used a window size of
1000 bases.

AT-percentage

A simple measure of AT-percentage was also tried as a con-
trol: this was calculated as the proportion of bases that are
A or T in a sliding window of 300 bases. This proportion
was associated with the central base of the window.

The additional files contain our C++ code for calculating
several of these measures [see Additional file 10].

Test Sets and Analytical Procedure

Positive Test Set

To evaluate the S/MAR predictors we constructed a test set
of known S/MARs. S/MARs are defined according to one
of several experimental protocols. There is some contro-
versy in the field as to the validity of the protocols [35]
and the underlying biology is still being clarified [36]: we
therefore give a short explanation of the operational defi-
nitions.

In most in vitro selection protocols, the nuclei are isolated
from cells, and the nuclear scaffolds are fractionated from
these nuclei with either LIS-containing buffer-that is a
low salt extraction buffer containing lithium diiodosali-
cylate-or a high-salt buffer. The nuclear scaffolds are
digested with restriction enzymes, incubated with labelled
DNA fragments in the presence of some competitor DNA
and centrifugated. The DNA is purified and analysed on
agarose gel and via autoradiography [37]. The first steps in
the usual in vivo selection protocols are the same, but after
restriction digest, the nuclear scaffolds are directly centrif-
ugated. The DNA is purified from both supernatant (non-
S/MAR) and pellet (S/MAR) fraction and analysed on aga-
rose gel and southern hybridisation [4,37], or directly
cloned and sequenced [38]. For UV-crosslinking the cells
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are UV-radiated, and the nuclear lamina is purified. The
DNA fragments covalently linked to the lamina proteins
in vivo are cloned and sequenced [39]. In the topoisomerase
IT cleavage assay, an incubation with topoisomerase II is
followed by Proteinase K digest, phenol-extraction and
DNA purification. The analysis of the DNA fragments is
done by gel electrophoresis, restriction digests, Southern
transfer, hybridisation, and PCR amplification [40].

It can be seen that there are a number of ways in which
subtypes of S/MARs might be defined according to the
experimental definition. One division of the protocols is
into in vivo protocols which find S/MARs as they occur in
cells and in vitro protocols which test if known sequences
of DNA can act as S/MARs. Another interesting division is
between those protocols which use LIS and those that do
not-the former is thought to be a more disruptive tech-
nique and hence finds fewer S/MARs.

We obtained our positive sequences from two sources,
about two thirds from the S/MARt DB, which is built up
from a literature search [41], and one third from the S/
MARSs found in the experiment of Purbowasito et al. [24]
for one sequence of one megabase. In both cases, the
defined mouse and human sequences were blasted
against the mouse genome (asssembly build NCBIM33)
or human genome (assembly build NCBI35) to find the
surrounding chromosomal sequence. In essence the
reported analyses refer to the S/MAR sequences them-
selves, but there are several reasons why the analyses need
the surrounding sequence-for example many of the meth-
ods use moving windows of length 1 kb. As noted below
we also credit the methods with near misses. To make sure
these minor needs have been met, the analyses have used
a sequence of 10 kb with the S/MAR in the middle. Know-
ing the surrounding sequence has also allowed a number
of exploratory analyses of the 100 kb region. The addi-
tional material contains various tables giving the DNA
sequence, reference identifier and further information
about the data we used [see Additional files 11, 12, 13].

We used version 2.3 of the S/MARt DB. To improve the
power of the analysis, this data was purified as follows.
Twelve sequences with undefined bases in the S/MAR
sequence or in the vicinity were removed from the test set.
We checked the original literature and removed seven S/
MARs where insufficient experimental evidence was
given. We excluded S/MARs longer than 5000 bases. This
produced a set of 113 known S/MARs (86 human and 27
mouse) which had been confirmed as follows:

16 by in vivo selection only [29,38,42-46],

17 by in vivo and in vitro selection [4,37,47-52],
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1 by two different in vivo assays [45,53],

1 by in vivo selection [46] and FISH [3],
57 by in vitro selection only [14,37,54-69],
14 by UV-crosslinking [39],

6 by re-binding assays [18,70],

1 by topoisomerase-II cleavage assay [40].
113 S/MARt DB Total

The Purbowasito experiment [24] was based on an in vitro
binding assay using high salt and this provided a further
52 S/MARs to make a total of 165 S/MARs. We also
checked that no S/MAR was included twice in the dataset.

Control Test Sets

We evaluated the performance of the S/MAR predictors on
the positive test set by comparing the performance against
a control test set. We have four control datasets, which we
call "background", "coding", "negative" and "E. coli". We
regard the background test set as the most useful for this
purpose: the choice of control dataset is discussed in the

Discussion section.

Each control set consists of 330 sequences and was used
in the same way. A sub-sequence in the middle of each
sequence was imagined to be an S/MAR and part of the
analysis was to see if the imaginary S/MAR was (wrongly)
identified by the prediction methods. We call the imagi-
nary S/MAR a pseudo S/MAR. The chance of finding the
pseudo S/MAR increases with its length and to control for
this we matched two sequences in the background set to
one sequence in the positive test set and assumed that
each of the pseudo S/MARs had the same length as the
matched real S/MAR.

The background test set was assembled by selecting
sequences at random from the mouse genome. If a
sequence contained an undefined base, an N, then that
sequence was discarded and another one chosen. The cod-
ing test set was prepared by concatenating coding
sequences and then dividing the concatenation into long
sections. The coding sequences were taken to be the exons
of coding proteins, excluding the first and last exon, from
ENSEMBL mouse assembly 33. The negative test set con-
sists of artificial sequences derived from a 3rd order
Markov model: that is each sequence was built by adding
a base chosen at random based on the conditional proba-
bilities of the three preceding bases. These probabilities
were derived by sampling sequences from the whole of
the mouse genome. The E. coli test set is a selection of non-

http://www.biomedcentral.com/1471-2105/8/71

overlapping sequences from the E. coli K12 substrain
MG1655 taken from GenBank sequence reference
uo00096.

Analytical Procedure

The profile of each of the measures was calculated for each
sequence in the test sets and an S/MAR is predicted where
the measure shows a peak. However, the precise algorithm
will contain parameters for the necessary height and
width of the peak. The height or threshold can be varied
to alter the balance between the proportion of S/MARs
found and the false positive rate.

We also included two parameters to allow predictions to
be successful for near misses. These parameters were set in
the light of the following information. It is known that
functional S/MARs can be very short and one set of exper-
iments found there is no need to make S/MARs longer
than 300 bases [71]. We gave statistics above on the length
of S/MARs in the dataset. The authors of MAR-Finder
advise that in their method there should be a significant
value, for a sliding window of 1000 bases, at three consec-
utive positions 100 bases apart on the assumption that S/
MARs are about 600 bases long.

The following procedure has been adopted. The measure
had to exceed the threshold for at least a given number of
bases, x. For MAR-Finder and the MAR-Finder version of
the H-Rule x was taken to be 201 bases (for the reason
explained above) and for all other methods x was taken to
be 1. These islands were then extended on each side by y
bases, y being chosen to make up the run to 600 bases, i.e.
y was 200 for MAR-Finder and 300 for the other methods,
y was put equal to 0 for Thermodyn and the H-Rule as this
worked well for these methods. Given the lack of ambigu-
ity for the ChrClass and SMARTest methods, we used the
predictions as they stood-i.e. x is irrelevant, and y was
taken as 10 as a protection against any difficulties in find-
ing the S/MAR in the genome assembly.

Islands which were less than z bases apart were then
merged: i.e. the region between the islands regarded as
part of the larger S/MAR. z was taken as 100 bases. Any
method of analysis will have implicit values for x, y and z.
However, our exploratory analyses show that our conclu-
sions are robust over a wide range of these parameters.

Finally the method is taken to have predicted a particular
S/MAR or pseudo S/MAR if any one of its bases has been
identified as part of an S/MAR by this procedure.
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