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Abstract
Background: Clearly visualized biopathways provide a great help in understanding biological
systems. However, manual drawing of large-scale biopathways is time consuming. We proposed a
grid layout algorithm that can handle gene-regulatory networks and signal transduction pathways
by considering edge-edge crossing, node-edge crossing, distance measure between nodes, and
subcellular localization information from Gene Ontology. Consequently, the layout algorithm
succeeded in drastically reducing these crossings in the apoptosis model. However, for larger-scale
networks, we encountered three problems: (i) the initial layout is often very far from any local
optimum because nodes are initially placed at random, (ii) from a biological viewpoint, human
layouts still exceed automatic layouts in understanding because except subcellular localization, it
does not fully utilize biological information of pathways, and (iii) it employs a local search strategy
in which the neighborhood is obtained by moving one node at each step, and automatic layouts
suggest that simultaneous movements of multiple nodes are necessary for better layouts, while
such extension may face worsening the time complexity.

Results: We propose a new grid layout algorithm. To address problem (i), we devised a new force-
directed algorithm whose output is suitable as the initial layout. For (ii), we considered that an
appropriate alignment of nodes having the same biological attribute is one of the most important
factors of the comprehension, and we defined a new score function that gives an advantage to such
configurations. For solving problem (iii), we developed a search strategy that considers swapping
nodes as well as moving a node, while keeping the order of the time complexity. Though a naïve
implementation increases by one order, the time complexity, we solved this difficulty by devising a
method that caches differences between scores of a layout and its possible updates.

Conclusion: Layouts of the new grid layout algorithm are compared with that of the previous
algorithm and human layout in an endothelial cell model, three times as large as the apoptosis
model. The total cost of the result from the new grid layout algorithm is similar to that of the
human layout. In addition, its convergence time is drastically reduced (40% reduction).
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Background
Modeling and simulations of large scale biological path-
ways are some of the most important tasks in Bioinfor-
matics. Many applications, e.g., Cell Illustrator [1,2],
Cytoscape [3], Pajek [4], PATIKA [5,6], and CADLIVE
[7,8] have been developed in this area. Related to these
topics, the visualization of biopathways is considered to
play a key role in understanding biological systems. How-
ever, manual drawing of large-scale biopathways is a time
consuming work, hence suitable biopathway layout algo-
rithms and their applications are strongly demanded.

Biopathways are categorized into three types, i.e., meta-
bolic pathways, signal transduction pathways, and gene-
regulatory networks. For metabolic pathways, several
algorithms have been already proposed [9-13], and some
of them succeeded in capturing the flow of the reactions
well. In contrast, few layout algorithms that provide a con-
venient biological understanding have been proposed for
signal transduction pathways [14,15] and gene-regulatory
networks [16,17]. Thus, our new layout algorithm is
focused on signal transduction pathways and gene-regula-
tory networks. For signal transduction pathways and gene-
regulatory networks, extant layout algorithms can be cate-
gorized into two types; force-directed and grid layout
algorithms.

Force-directed algorithms are used in [16,17] by taking
into account the directional constraint following different
types of molecular and simple regional constraints from
subcellular localizations. These algorithms have been suc-
cessfully integrated into PATIKA. However, as pointed out
in [14], force-directed algorithms may not be suitable for
compact layouts of complex biopathways. Furthermore,
intricately shaped regions such as torus-shaped region
cannot be handled well as regional constraints in these
force-directed algorithms. Hence, they are not suitable for
models containing torus-shaped plasma membrane and
nuclear membrane although such types of models are
common as biopathways.

A grid layout algorithm (referred to as LK-grid layout algo-
rithm) was initially proposed by Li and Kurata. The grid
layout algorithm restricts the positions of all nodes to grid
points. Li and Kurata defined a cost function for two
nodes that depends on some distance between these
nodes and the topology of their connections in the graph.
They applied LK-grid layout algorithm to a yeast cell-cycle
pathway and concluded that this algorithm can geometri-
cally classify the pathway into functional categories with-
out using biological information. Moreover, they noticed
that the algorithm generates compact layouts while avoid-
ing overlaps between nodes. [15] proposed CB-grid layout
algorithm, in which so as to reduce edge-edge crossings
and node-edge crossings, a penalty for these cases is added

to the cost function. The algorithm can also deal with any
complex regional constraints following subcellular locali-
zations, and besides search space is reduced due to these
constrains. As a result, in the apoptosis model, the layout
algorithm succeeded in a drastic reduction of edge-edge
crossings and node-edge crossings, while placing nodes in
biologically proper regions.

However, in the case of larger-scale networks, this algo-
rithm encountered three problems. First, a layout with
randomly placed nodes is used as the initial layout. This
random layout contains a large number of edge-edge
crossings and node-edge crossings; subsequently, many
iterations will be required to obtain a locally optimal lay-
out. Secondly, although one of the features of CB-grid lay-
out algorithm is to use the subcellular localization
information, it still does not fully utilize biological char-
acteristics. For example, it does not consider such biolog-
ical attributes as types of entities (protein, mRNA, and
microRNA) or types of processes (phosphorylation, bind-
ing, and translation), although in human layouts these
biological attributes are apt to contribute to the compre-
hension of interesting biopathways easier. Thirdly,
according to a greedy strategy, CB-grid layout algorithm
updates a layout by moving one node at each step until
the layout reaches an optimum. However, resulting lay-
outs are just local optima, hence their quality fundamen-
tally depends on the initial layout. Although in [15] a
multi-step CB-grid layout algorithm was also proposed to
solve this drawback, it requires higher time complexity
and hence is not suitable for practical applications.

To overcome these three problems, we propose a new grid
layout algorithm. For the first problem, we propose a new
force-directed algorithm whose output is suitable as the
initial layout of grid layout algorithms. For the second
problem, we introduce the concept that assigns a score
i.e., a negative cost, to a layout depending on how nodes
with the same attribute are aligned. This concept is real-
ized with a combo score function, which is combined
with the cost function defined in CB-grid layout algo-
rithm. For the third problem, the search strategy in CB-
grid layout algorithm is improved by adding the swap
operation while keeping the time complexity. By the swap
operation, the new grid layout can also consider layouts
generated by exchanging the positions of two nodes in the
current layout at each step.

The Methods section is organized as follows: (i) first, we
introduce the previous grid layout, i.e., CB-grid layout
algorithm; (ii) for the first improvement in the initial lay-
out of CB-grid layout algorithm, the new force-directed
algorithm termed Eades initial layout algorithm is
described; (iii) for the second improvement, CCB-grid
layout algorithm, which is CB-grid layout algorithm with
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the combo score function is described; (iv) for the third
improvement, SCCB-grid layout algorithm, which
enhances CCB-grid layout algorithm by adding the swap
operation is presented. In the Results and Discussion sec-
tion, the performances of these new algorithms are com-
pared and verified by applying them to the signal
transduction pathway of an endothelial cell, which is
larger than the pathways in [14] and [15].

Methods
CB-grid layout algorithm: Introduction of the grid layout 
algorithm
Given a graph G = (V, E) with nodes V and edges E, a layout
L = (V, E, U, P) of G consists of the underlying graph G,
grid points U and a function P : V → U such that P (vα) ≠
P (vβ) for any two distinct nodes vα, vβ ∈ V. This definition
does not allow overlaps between nodes in the layout. For
a layout L, this paper uses the following notations.

• WL: a set of vacant points of L.

• Ev: the set of all edges connected to node v.

• |V|: the number of nodes in V.

• |W|: the number of vacant points in L, instead of |WL| if
there is no confusion possible.

We define the following operations.

• Tv → p L: the layout generated by moving a node v to a
vacant point p ∈ WL.

• L: the layout generated by swapping nodes vα

and vβ.

• Dv L: the layout generated by removing a node v and all
edges connected to v.

In addition, we define the following functions.

•  (L): a binary function that returns 1 if an edge

ei crosses with an edge ej and 0 otherwise.

•  (L): a binary function that returns 1 if an edge

ej crosses with a node vi and 0 otherwise.

•  (L): a function that returns

, where  is the weight to the couple

of nodes vi and vj, and md (vi, vj) is the Manhattan distance

between vi and vj.

In our previous approach [15] (mainly referred to as CB-
grid layout algorithm), the layout cost C (L) of L was
defined as follows:

where Wee, Wne, and Wd are called respectively edge-edge
crossing weight, node-edge crossing weight, and distance cost
weight.

The CB-grid layout algorithm repeats the operation of
moving a unique node to a vacant point one-by-one until
it reaches a locally optimal layout. At each step, the algo-
rithm calculates costs of all layouts that can be generated
by moving one of all nodes to one of all vacant points. The
layout with the lowest cost is selected as a starting layout
for the next step. After reaching convergence, the algo-
rithm outputs a locally optimal layout. If the cost calcula-
tion of all possible adjacent layouts is implemented in a
naïve way, high time complexity is required. To overcome

this problem, the previous method [15] introduced Δ
matrix that stores each possible cost difference at the pre-
vious step and succeeded in reducing the time complexity
at each step from O (|W| (|V|2 + |E|2) to O (|V|2 + |E|2 +

|W|| | (|V| + |E|)), where vβ is the node moved at the

previous step.

When CB-grid layout algorithm was applied to several
biopathways, we encountered three problems. Thus, we
propose new grid layout algorithms that solve these prob-
lems. Problems and solutions are summarized as follows:

1. Improving the choice of the initial layout: since a
locally optimal layout depends noticeably on the initial
layout, we first apply Eades initial layout algorithm to a
random layout, and use its output as the initial layout. In
the previous approach, a random layout was directly used
as the initial layout.

2. Improving the cost function: we introduce the concept
of a combo score that gives a good score, i.e., a negative
cost when nodes with the same biological attribute are
aligned (CCB-grid layout algorithm). In CB-grid layout
algorithm, the biological attributes, except subcellular
localization, were ignored.

3. Improving the search strategy: we propose a better
search strategy, which allows us to obtain improved
results, keeping the time complexity. For obtaining a bet-
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Distancev vi j,
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ter layout, the search space is extended by adding the swap
operation. At each step, all layouts obtained by swapping
two nodes are also considered (SCCB-grid layout algo-
rithm).

In the remainder of this section, we describe these three
new algorithms mentioned above.

Eades initial layout algorithm: generating a new initial 
layout for grid layout algorithms
In the previous paper [15], a random layout was used as
an initial layout for CB-grid layout algorithm. When the
initial layout is far from the global optimum, the local
optimum obtained tends to be unacceptable. Therefore,
we decided to develop Eades algorithm [18] and use its
output as the initial layout. Eades algorithm is one of the
force-directed algorithms, consisting of the following two
steps.

1. Two types of forces are defined for each pair of nodes.
If two nodes are adjacent, there exists an attractive force
ac1 log(d/ac2) between them, where ac1 and ac2 are con-

stants, and d is the distance between the two nodes. On
the other hand, if two nodes are not adjacent, there exists

a repulsive force rc/  between them, where rc is a con-

stant. At each step, the positions of all the nodes are
updated according to the sum of the repulsive and attrac-
tive forces between them.

2. The above step is iterated a predetermined number of
times, and the final result is obtained.

We have customized two points in Eades algorithm. First,
nodes in Eades algorithm can be placed anywhere. All the
nodes in the initial layout for CB-grid layout algorithm,
however, should be placed on the grid points that satisfy
the subcellular localization. Thus, the output of Eades
algorithm cannot be used directly as an input for CB-grid
layout algorithm.

To handle this problem, we propose to move each node
to the closest vacant point that satisfies the subcellular
localization after moving nodes at each step.

Second improvement is the following one. Since Eades
algorithm doesn't consider edge-edge crossings and node-
edge crossings in its implementation, the resulting layout
could contain a lot of such crossings. For example, sup-
pose a biological pathway with a subcellular localization,
membrane, which slimly surrounds other subcellular
localizations as shown in Figure 1(a), the graph in (a)
could be a layout resulting from Eades algorithm. In this
case, the layout might contain a large number of edge-
edge crossings and node-edge crossings because edges

cross over other subcellular localizations. In order to
avoid this problem, we propose to gather nodes around a
particular grid point for each subcellular localization as
shown in Figure 1(b). Eades algorithm with the above
improvements is called Eades initial layout algorithm.

CCB-grid layout algorithm: utilizing various biological 
attributes

When humans draw biopathway models, nodes with the
same attribute are usually arranged according to a rule. In
CB-grid layout algorithm, this type of information is com-
pletely ignored. To implement this type of property, we
introduce the concept of combo scores called combo1
and combo2 (see Figure 2). Note that a combo score is
applied only to nodes having an attribute since some
nodes do not have any attributes. We denote the set of

nodes having an attribute by V' ⊆ V. In this algorithm, (i)
upperGrid(p, i)/lowerGrid(p, i) returns the upper/lower

ith grid point over/under a grid point p ∈ P, and (ii)

Attr(v) is the attribute of a node v ∈ V', and CWa = (1 + C/

| |), where C is a constant and normally set to |V|, and

 is the set of nodes having an attribute a.

The combo score is designed such that the more nodes
with the same attribute are aligned vertically, the higher
the score is. The combo score is defined between two
nodes, and a combo score of a layout L is defined to be the
sum of all the combo scores occurring in L. We say that
two nodes have a combo relation when a combo score
occurs between them. Note that the horizontal alignment
score is not implemented because if the above combo
score supported both the vertical and horizontal direc-
tions, the numbers of edge-edge crossings and node-edge
crossings would be considerably increased. Therefore, we
should choose only one direction for combo scores. In
this paper, we defined combo scores in the vertical direc-
tion. We have considered two types of combo scores, i.e.,
combo1 and combo2 for layouts in Figure 3(a) and 3(b),
respectively. Let nodes va to vf in Figure 3 have the same

attribute. The combo1 considers only the nodes with one
vertical grid distance from the target node. In contrast,
combo2 considers the nodes with up to two vertical grid
distances from the target node. For the layout in Figure
3(a), the number of combo relations with combo1 and
combo2 are 8 and 12, respectively. If node vf is moved as

shown in Figure 3(b), the number of combo relations
with combo1 is the same as before, whereas that with
combo2 is 14. Thus, only by using combo2, we can
improve the combo score when node vf is moved as

d

′Va

′Va
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shown in Figure 3(a) and 3(b). As shown in the dotted
rectangle in Figure 3(a), a pair of vertically aligned nodes
often occurs during the process of updating a layout. In
this case, Figure 3(b) should be a better layout than Figure
3(a). For this reason, we decide to employ combo2.

Henceforth, for a node v ∈ V in a layout L, Combov (L)

denotes the same combo score as combo2 (v, L). The total

score  for L is denoted by Combo (L).

If CWa returns the same value for any attribute a, many of
the nodes with the same attribute will be vertically aligned
easily since they have a greater chance to neighbor one
another. So as to reduce the biases among the attributes,
we define CWa to be inversely related to the total number
of the nodes whose attribute is a.

By modifying the layout score of CB-grid layout algo-
rithm, we can define the layout cost C (L) of a layout L
with the new concept of the combo score as follows:

where Wcs is called combo score weight. CB-grid layout algo-

rithm improved by the above modification is named
Combo score, Cross cost and Biological information grid layout
algorithm (CCB-grid layout algorithm). The reason for
multiplying the sum of the combo scores by 1/2 is that
combo scores are counted twice since a combo score

between nodes vα and vβ is included in both  (L)
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Two layouts with the same canvas and three subcellular localizationsFigure 1
Two layouts with the same canvas and three subcellular localizations. The grid canvases (a) and (b) have the same 
biological subcellular localizations extracellular space, plasma membrane, and cytoplasm. Both canvases contain the same graph 
with four nodes that are located in plasma membrane, which surrounds cytoplasm. In (a), nodes are spread apart in plasma 
membrane, and edges among these nodes cross over cytoplasm. In (b), the nodes are gathered in the left-top corner, and no 
edge crosses over cytoplasm. Due to its crossing patterns in (a) these edges have a higher probability to cross other nodes in 
cytoplasm. This is the drawback of using the layout in (a) as the initial layout for Eades initial layout algorithm.
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and  (L). The algorithm is the same as C-optimi-

zation (L) step in [15] except for the use of the above lay-

out cost C (L), i.e., the algorithm for calculating Δ matrix
is also the same.

For calculating the combo score for each node, only four
nodes need to be checked at most, i.e., its time complexity
is constant, while for calculating the edge-edge crossing
cost, the node-edge crossing cost, and the distance cost for
each node, these time complexities depend on |E|, |V|,
and |W|, respectively. Thus, without using Δ matrix, the
time complexity related to combo scores is O (|V||W|) at
each step.

At each step, we need to calculate the difference between
the combo score of the previous layout L and that of the
current layout that is generated by moving a node v to a

vacant point p, i.e., Combo(Tv→p L) – Combo(L). We can

efficiently calculate the difference of the combo score 

(L) as follows:

where

We introduced Adjv (L) due to the following reason. First,

suppose that three nodes with the same attribute are
aligned vertically. We call them vα, vβ, and vγ beginning

from the bottom. There are three combo relations among
the three nodes: one is between vα and vβ, another

Combovβ

Δvp
cs

Δvp
cs cs v v p v v v p v

L
W Combo T L Combo L Adj T L Adj L
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( ( ) ( ) ( ) ( ))
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− + −→ → iff
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 v V

v V
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v=
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isCombo upperGrid P

isCombo( )
( , ( ( , ))) &1 true

(( , ( ( , )))

.

.v vlowerGrid P
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1
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⎧
⎨
⎪
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Pseudo codes of combo score functions: combo1 and combo2Figure 2
Pseudo codes of combo score functions: combo1 and combo2. (a) combo1: a score function that considers nodes 
with one vertical grid distance from the target node. (b) combo2: a score function that considers nodes with up to two verti-
cal grid distances from the target node, (c) isCombo: a boolean function that takes a node and a grid point as its arguments and 
returns "true" if the attribute of the node and that of the node on the grid point are the same.
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An example that compares the features of combo1 and combo2 score functionsFigure 3
An example that compares the features of combo1 and combo2 score functions. (a) An intermediate layout of 
CCB-grid layout algorithm. In this layout, all six nodes have the same attribute. (b) The next candidate layout that is generated 
from (a) by moving node vf below node vd. Combo scores of (a) and (b) are the same with combo1 score function. Instead, the 
combo score of (b) will be better than (a) with combo2 score function.

(a) (b)

An optimal layout of CB-grid and improved layout with the swap operationFigure 4
An optimal layout of CB-grid and improved layout with the swap operation. (a) An optimal layout for CB-grid layout 
algorithm. (b) From (a) a better layout will be generated with the swap operation.

(a) (b)
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between vβ and vγ, and the third between vα and vγ.

Although vβ is involved in these three combo relations, the

combo relation between vα and vγ is not considered in

 (L). Therefore, Adjv (L) is needed to correct this

type of undercount.

SCCB-grid layout algorithm: extension of the search space 
due to the swap operation
Another drawback of CB-grid layout algorithm is that only
one node can be moved to a vacant point at each step. For
example, the layout shown in Figure 4(a) is optimal for
CB-grid layout algorithm despite the fact the layout in Fig-
ure 4(b) should be selected as the better layout. This lim-
itation is due to the strategy of CB-grid layout algorithm.
Thus, we have devised a new algorithm by allowing the
swap operations between two nodes while keeping the
time complexity. With this improvement, the layout in
Figure 4(a) will be arranged as shown in Figure 4(b). The
new algorithm is named CCB-grid layout with the swap
operation (SCCB-grid layout algorithm). The layout cost
function is the same as in CCB-grid layout algorithm.
However, a naïve implementation would increase the
time complexity to calculate the layout cost for swapped
layouts.

In the previous approach [15], Δ matrix stores cost differ-
ences that are induced only by moving nodes to vacant
points. As a result, if a grid point of interest was occupied
at the previous step, we cannot exploit Δ matrix to calcu-
late cost differences corresponding to that grid point.
Since grid points of interest on the swap operation are
obviously occupied at the previous step, Δ matrix cannot
be used. However, if Δ matrix also stores cost differences
related to occupied points, Δ matrix can be exploited for
this problematic case, too. We then propose an extended
Δ matrix, which considers occupied points as well as
vacant points. Since the definition of the cost differences
for vacant points cannot be applied directly to occupied
points, we decide to calculate the cost differences for the
occupied points by calculating it without taking into
account the node occupying that grid point and all edges
connected to it. In the remainder of this section, we will
show how to calculate the extended Δ matrix and then
compare the time complexity of the extended Δ matrix
and the original Δ matrix.

Henceforth, let us refer to the extended Δ matrix as Δ
matrix. Given a layout L, at the first step, we update Δ (L)
matrix as follows:

 is the following function:

If the previous layout is updated by moving node vβ to

vacant point q, Δ ( L) can be updated efficiently by

using Δ (L) as follows:

where DIFF0 to DIFF4 are defined in the following way:

where Q shall be defined below.

If the previous layout is updated by swapping two nodes

 and , Δ ( L) is then updated efficiently

by using Δ (L) as follows:

where DIFF5 to DIFF9 are defined in the following way:
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The case of vα =  is not considered in Equation (13)

because equations of this case can be obtained by simply

replacing  with  in case 1 and 3.

 (·) and  (·) in DIFF0 to DIFF9 are partial

cost functions depending on the two nodes va and vb and

the three nodes va, vb, and vc, respectively, they are the

sums of the corresponding partial edge-edge crossing
costs, node-edge crossing costs and distance costs as fol-
lows:

where  (·) and  (·) are related to edge-edge

crossings, while  (·) and  (·) are related to

node-edge crossings, and  (·) and  (·) are

related to the distance cost. The details are described as
below.

(a)  (·) is a partial edge-edge crossing cost function

of  and , and is defined as follows:

Similarly,  (·) is a partial edge-edge crossing cost

function of , , and , and is defined as follows:

(b)  is a partial node-edge crossing cost function of

va, vb, , and , and is defined as follows:

Similarly,  (·) is a partial node-edge crossing cost

function of va, vb, vc, , , and , and is defined as

follows:

(c)  is a partial distance cost function of va and vb,

and is defined as follows:

Similarly,  (·) is a partial distance cost function of

va, vb, and vc, and is defined as follows:

Thus far, we found out a method to efficiently calculate Δ
matrix. The purpose of extending Δ matrix is to calculate
the cost difference of the swap operation. When nodes

 and  are swapped, we can calculate 

using these Δ costs as follows:

where

In SCCB-grid layout algorithm, the combo score also
needs to be considered. Given a layout such that a node vα

is moved to a vacant point p,  can be calculated as

shown in Equation (3). In contrast, if two nodes  and

 are swapped, the difference of combo scores, Combo

( L) – Combo (L), is effectively calculated as fol-

lows:
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where

A pseudo code of SCCB-grid layout algorithm is described
in Figure 5.

If node vβ is moved at the previous step, the time complex-

ity of calculating Δ matrix is O ((|V| + |E|)| ||U|). If

two  and  are swapped at the previous step, the

time complexity of calculating Δ matrix was O ((|V| + |E|)

(| | + | |) |U|) = O ((|V| + |E|) | ||U|), where

| | = (| | + | |)/2. In addition, the time com-

plexity of all the swap operations considered at each step
is O (|E|2). Therefore, the time complexity of SCCB-grid

layout algorithm is O (|E|2 + |U|| | (|V| + |E|)) at each

step.

Since the time complexity of CB-grid layout algorithm is

O (|V|2 + |E|2 + |W|| | (|V| + |E|)) at each step [15], the

time complexity of SCCB-grid layout algorithm is

O(|V|| | (|V| + |E|)) larger than that of CB-grid layout

algorithm (note that vβ and vβ' are not distinguished here).

Here, we consider two cases, |V| ≤ |W| (case 1) and |V| >
|W| (case 2) and show these two algorithms have the
same time complexity with high probability. For case 1,

the above difference is negligible since O (|V|| | (|V| +

|E|)) ≤ O (|W|| |(|V| + |E|)). In contrast, the

O(|V|| | (|V| + |E|)) difference cannot be neglected in

case 2. However, if we assume that all nodes can be moved

to form the next layout with equal probability, |V|| | =

2 |E|, and O(|V|| | (|V| + |E|)) = O (|V|2 + |E|2) subse-

quently. Therefore, the time complexity of SCCB-grid lay-
out algorithm will be the same as that of CB-grid layout
algorithm even in the case 2. For the above reasons, the
time complexities of SCCB-grid and CB-grid layout algo-
rithms are the same in practice.

Results and Discussion
Data and Parameters
To evaluate our algorithms on a large-scale signal trans-
duction pathway with a gene regulatory network, we cre-
ate the pathway model of an endothelial cell with Cell
Illustrator [1,2] by extracting information from [19]. The
model consists of 309 nodes and 371 edges (three times
as large as the apoptosis model in [15], which consists of
117 nodes and 126 edges), and the maximum degree of a
node is ten (eight in the apoptosis model). Grid widths
and heights are fixed to 100 pixels; the total numbers of
vertical and horizontal grid points are 36 and 40, respec-
tively. We used the following information pertaining to
seven GO subcellular localizations: extracellular space
(GO:0005615), cytoplasm (GO:0005737), nucleus
(GO:0005634), mitochondrion (GO:0005739), plasma
membrane (GO:0005886), nuclear membrane
(GO:0005635), and mitochondria membrane
(GO:0005740). We also used the following information
pertaining to sixteen processes and entities used as
attributes of nodes: migration, phosphorylation, protein
with a modification, ligand, assembly, transcription,
translation, mRNA, ligand and receptor, receptor,
unknown, protein, exchange, trimer, ubiquitination, and
degradation.

Usually, these types of biological models have many
nodes termed as degradation. The degradation process
always has only one edge. To exploit this property, we
apply these layout algorithms after removing degradation
nodes (97 nodes). After applying layout algorithms, we
attach each eliminated degradation node just below the
entity to which it was initially connected. Thus, in prac-
tice, the numbers of nodes and edges in the model given
to layout algorithms are 212 and 274, respectively. Note
that when the performances of algorithms are compared
with the numbers of edge-edge crossings and node-edge
crossings in the latter part of this section, crossings that are
caused by degradations and edges connected to them are
not taken into account.

We apply the following rule to edge-edge crossing weight
Wee, node-edge crossing weight Wne, combo score weight
Wcs, and distance cost weight Wdc of a layout cost, in Equa-
tion (2), to ensure that the importance of the distance cost
is less than those of the others:

In our study, Wdc, Wee, Wne, and Wcs were set to 1, 70, 150,
and 110, respectively. Also, the constant C in CWa was set
to 12.

Using the combo score, many nodes can be aligned verti-
cally. However, in many cases, the nodes cannot be
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moved once they have combo relations. Plasma mem-
brane, nuclear membrane, and mitochondrial membrane
are thin and torus shaped, thus, vertical alignments of the
nodes on these subcellular localizations will not be of
interest for users (e.g., the width of plasma membrane in
our model is only two grids). Therefore, in this paper, we
decided to ignore combo scores in plasma membrane,
nuclear membrane, and mitochondrial membrane.

Comparison of layouts
Figure 6 shows the number of edge-edge crossings, the
number of node-edge crossings, combo scores, and total
costs of the layouts with CB-grid, CCB-grid, and SCCB-
grid layout algorithms, and the human layout. We gener-
ate ten initial layouts by applying Eades initial layout

algorithm to ten random layouts. These initial layouts are
commonly used for each layout algorithm (CB Eades,
CCB Eades, and SCCB Eades in Figure 6). In addition, we
use the ten random layouts directly as initial layouts of
CB-grid layout algorithms (CB random in Figure 6, which
corresponds to the previous layout algorithm) to confirm
the significance of preparing proper initial layouts. Figure
8 and 9 respectively show the best layouts of CB-grid and
SCCB-grid layout algorithms, which have the lowest total
cost among ten resulting layouts of each algorithm. The
human layout is shown in Figure 10.

In [15], the initial layout for CB-grid layout algorithm was
a random layout, which had a large number of edge-edge
crossings and node-edge crossings. Many iterations will,

SCCB-grid layout algorithmFigure 5
SCCB-grid layout algorithm. A pseudo code of SCCB-grid layout algorithm.
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Comparisons of edge-edge crossings, node-edge crossings, combo score, and total cost among the results of four grid layout algorithms and the human layoutFigure 6
Comparisons of edge-edge crossings, node-edge crossings, combo score, and total cost among the results of 
four grid layout algorithms and the human layout. Costs and scores of the generated layouts with the CB random, CB 
Eades, CCB Eades, SCCB Eades, and human layout from the same initial layout. These algorithms are applied to ten initial lay-
outs. (a) the number of edge-edge crossings. (b) the number of node-edge crossings. (c) combo score. (d) total cost.
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therefore, be needed until convergence. This fact
prompted us to use the output of Eades initial layout algo-
rithm as an initial layout. Figure 7 shows the number of
iterations until convergence. As shown in this figure, CB-
grid Eades successfully reduces the number of iterations
when compared to CB-grid random (40% reduction on
average). Moreover, the total score of CB-grid Eades is
greatly improved over that of CB-grid random (see Figure
6(d)). A discussion in [15] was suggesting that reducing
edge-edge crossings and node-edge crossings will lead to a
better approximation of the human layout. In contrast as

shown in Figure 6(a) and 6(b), the human layout also has
several edge-edge and node-edge crossings, and has a
higher combo score than that of CB-grid layout algorithm.
Based on these facts, we proposed an additional scoring
criterion – combo score – in CCB-grid layout algorithm.
As seen through the value of combo scores (see Figure
6(c)), CCB-grid layout algorithm drastically improves this
score, and this score becomes closer to that of the human
layout. However, the numbers of edge-edge crossings and
node-edge crossings in CCB-grid layout algorithm
increase, comparing to CB-grid Eades (see Figure 6(a) and

A resulting layout of CB-grid layout algorithmFigure 8
A resulting layout of CB-grid layout algorithm. A resulting layout of CB-grid layout algorithm in an endothelial signal 
transduction pathway. The pathway model is the same as that in Figure 10.
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6(b)). In this paper, the swap operation is proposed to
increase the number of candidate layouts at each step. As
shown in Figure 6(a) and 6(b), SCCB-grid layout algo-
rithm succeeds in reducing edge-edge crossings and node-
edge crossings, i.e., the above drawback of CCB-grid lay-
out algorithm is partially diminished. In addition, as
shown in Figure 6(c), the combo score of SCCB-grid lay-
out algorithm is also improved slightly.

We also apply grid-layout algorithms to Fas-induced
apoptosis pathway model [20] and ASE cell fate simula-
tion model [21] to obtain a more generalized compari-
son. Resulting layouts and the number of crossings in
each layout are summarized in Additional file 1. These
models including the endothelial cell model are also
available as Additional file 2, and the application of
SCCB-grid layout algorithm for these models can be
downloaded from [22].

A resulting layout of SCCB-grid layout algorithmFigure 9
A resulting layout of SCCB-grid layout algorithm. A resulting layout of SCCB-grid layout algorithm in an endothelial sig-
nal transduction pathway. The pathway model is the same as that in Figure 10.
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Conclusion
For better biopathway layouts, three improvements to CB-
grid layout algorithm were proposed: (i) the improve-
ment of initial layouts (ii) the improvement of cost func-
tion (iii) the improvement of search strategy itself without
increasing the time complexity. For (i), Eades initial lay-
out algorithm was proposed and the improvement was
confirmed with a signal transduction pathway of an
endothelial cell. For (ii), CCB-grid layout algorithm,
which includes combo score function, was proposed and
the improvement was verified with the same signal trans-
duction pathway. For (iii), SCCB-grid layout algorithm

was proposed. Due to (i) and (iii), our layout algorithm
can be started from the better layout, and more robust to
the condition of the initial layout than extant methods. In
addition, we succeeded in utilizing the biological
attributes that are not considered in extant methods due
to combo score.

However, our layout algorithm has limitations and prob-
lems, which should be addressed in future work. Firstly, if
the parameters of the combo score are not correctly
selected, once a node gets a combo relation, the node no
longer moves to other grid points anymore. Thus, it is

The human layoutFigure 10
The human layout. The human layout of an endothelial signal transduction pathway. This pathway model is arranged with 
CB-grid and SCCB-grid layout algorithms in Figure 8 and Figure 9, respectively.
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important to devise a method that automatically selects
the suitable parameters for the combo score function,
edge-edge crossing function, and node-edge crossing
function. Secondly, in our algorithm, only undirected
graphs are considered to be laid out. On the other hand,
for metabolic pathways, [11,13] proposed layout algo-
rithms that decompose a digraph to hierarchical structural
parts and directed cycle parts by considering the direction
of edges in order to capture the flow of reactions. There-
fore, the grid layout algorithm will also need to handle
digraphs, utilizing its property that is effective especially
in the grid-based layout. Finally, it should be addressed
that grid layout algorithms including our new approach
requires high time complexity and are not suitable for the
real-time drawing. Thus, we would like to devise a further
optimized grid layout algorithm to enable the real-time
drawing.
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