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Abstract
Background: Clustering is an important analysis performed on microarray gene expression data
since it groups genes which have similar expression patterns and enables the exploration of
unknown gene functions. Microarray experiments are associated with many sources of
experimental and biological variation and the resulting gene expression data are therefore very
noisy. Many heuristic and model-based clustering approaches have been developed to cluster this
noisy data. However, few of them include consideration of probe-level measurement error which
provides rich information about technical variability.

Results: We augment a standard model-based clustering method to incorporate probe-level
measurement error. Using probe-level measurements from a recently developed Affymetrix
probe-level model, multi-mgMOS, we include the probe-level measurement error directly into the
standard Gaussian mixture model. Our augmented model is shown to provide improved clustering
performance on simulated datasets and a real mouse time-course dataset.

Conclusion: The performance of model-based clustering of gene expression data is improved by
including probe-level measurement error and more biologically meaningful clustering results are
obtained.

Background
Microarrays [1,2] are routinely used for the quantitative
measurement of gene expression levels on a genome-wide
scale. Microarray experiments are complicated multiple
step procedures and variability can be introduced in every
step, so that the resulting data are often very noisy, espe-
cially for weakly expressed genes. Appropriate statistical
analysis of this noisy data is very important in order to
obtain meaningful biological information [3,4]. The anal-
ysis of microarray data is usually performed in multiple

stages, including probe-level analysis, normalisation and
higher level analyses. The aim of the probe-level analysis
is to obtain reliable gene expression measurements from
the image data. Various higher level analyses, such as
detecting differential gene expression or clustering, can
then be carried out depending on the biological aims of
the experiment.

Unsupervised clustering is the most frequently used
approach for exploring gene function. By clustering, a
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huge number of genes can be organised into a much
smaller number of categories according to their shared
expression patterns. It is hoped that these shared patterns
reflect similar function or common transcriptional regula-
tion. Exploring and studying the obtained gene clusters is
an important way to infer the function of uncharacterised
genes from other known genes in the same cluster. There
are many unsupervised algorithms which have been used
to cluster gene expression data, including the most popu-
lar hierarchical clustering [5] and k-means [6], which are
based on similarity measures, and self-organising maps
[7]. Most of these conventional algorithms are largely
heuristically motivated. They are easily implemented and
their application is usually computationally efficient.
However, these methods lack the capability to deal in a
principled way with the experimental variability in the
gene expression data. Furthermore, there is no formal way
to determine the number of clusters with these algo-
rithms. It is hard to say which one is generally better than
the others [8]. Probabilistic models provide a principled
alternative to these conventional methods. In particular,
model-based approaches have been proposed as useful
methods for clustering gene expression data in a probabi-
listic way [9-12]. By using a probabilistic model, the
experimental noise can be included explicitly in the
model and estimated from the data, making this approach
more robust to noise. There are also useful and principled
model selection methods that can be used to determine
the optimal number of clusters. The advantages of model-
based probabilistic approaches over heuristic methods are
already well established [10].

Affymetrix arrays contain multiple probes for each target
gene and this internal replication can be used to obtain an
estimate of the technical measurement error associated
with each gene expression measurement [13-17]. This
source of error is especially significant for weakly
expressed genes. The recently developed model, multi-
mgMOS [18], provides accurate gene expression measure-
ments along with the associated uncertainty in this meas-
urement. It has been shown that the probe-level
measurement error obtained from multi-mgMOS can be
propagated through a downstream probabilistic analysis,
thereby improving the performance of the analysis
[16,17]. Existing model-based clustering methods do not
consider this probe-level measurement error and they
therefore discard this rich source of information about
variability. Although standard model-based clustering
methods are relatively robust to noise, very noisy meas-
urements can still have a detrimental effect on these clus-
tering methods, resulting in poor performance and many
biologically irrelevant clusters. In this paper, we aim to
include information about probe-level measurement
error into the standard Gaussian mixture model in order
to improve performance compared to standard model-

based clustering. Our augmented Gaussian mixture clus-
tering model is called PUMA-CLUST (Propagating Uncer-
tainty in Microarray Analysis – CLUSTering) and has been
implemented in the R-package pumaclust which is availa-
ble from [19].

Results and discussion
We examine the performance of the extended Gaussian
mixture model on two simulated datasets and a real-
world mouse time-course dataset [12]. The simulated
datasets are generated to reflect the noise commonly seen
in real microarray experiments. The extended mixture
model is compared with the standard Gaussian mixture
models implemented in MCLUST [20], which includes all
variants of standard Gaussian mixture models in terms of
the representation of the covariance matrix. However,
these models do not take the probe-level measurement
error into consideration.

The performance of different clustering methods on data-
sets with known structures can be evaluated by using the
adjusted Rand index [21,22]. The adjusted Rand index
measures the similarity of two clusterings on a dataset and
it is widely used by the clustering research community
[10,23-25]. The adjusted Rand index lies between 0 and 1,
and is calculated based on whether pairs are placed in the
same or different clusters in two partitions with a higher
value meaning better agreement between two clusterings.
For the simulated datasets, since the true structure of the
data is known, we use the adjusted Rand index to evaluate
the different partitioning ability of the extended mixture
model which incorporates the probe-level measurement
error and the standard mixture model. For the real mouse
time-course dataset, gene ontology (GO) enrichment
analysis is used to compare the performance of the two
clustering methods.

Clustering on simulated data sets
Simulated periodic data
Periodic patterns are often observed in real-world time-
course microarray data [12,26]. However, the true struc-
ture of the real datasets is unavailable. We generate simu-
lated periodic data and include noise with magnitude
estimated from real microarray data. Similar to the meth-
ods used by [23] and [25], the simulated data is generated
by the following four steps.

At the first step, the logged gene expression within each
known group is generated. There are six groups and 600
genes in the dataset. Each group has 100 genes. The first
four groups have a periodic sine pattern. The expression of
gene i in group q, q = 1, 2, 3, 4, is generated by

xqij = Ai sin(2πj/10 - πq/2) + S,  (1)
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where j = 1, 2,..., J and J is the number of conditions or
time points. Ai is a random scaling factor which is sampled
from U(0, 7), where U represents the uniform distribu-
tion. S is a shifting factor which is set as 7. This assignment
of Ai and S is to make the gene expression level lie between
0 and 14 which is the normal range of the logged gene
expression level from real Affymetrix datasets. The gene
expression levels of group 5 and group 6 are generated by
linear functions

xqij = jAqi/J and xqij = -jAqi/J + S,  (2)

respectively, where Aqi is sampled from U (0,14) and S =
14 when q = 6 so as to ensure that the simulated expres-
sion level lies within the accepted logged expression
range.

The simulated data from the first step follows perfectly the
same sine wave within the same group except for a differ-
ent magnitude. However, in practice there is biological
and technical noise in the experiment distorting the true
sine wave. At the second step, the real mouse dataset
(described in the next section) is used to obtain an esti-
mate of the combined noise from biological and technical
sources which is related to the variance of observed gene
expression level from replicated experiments. The mouse
dataset has three or four replicates for each condition.

Using the gene expression summaries from MAS 5.0 [27]
which is the standard software provided by Affymetrix, an
estimate of the combined technical and biological noise
can be obtained from Cyber-T [28]. Cyber-T is a Bayesian
hierarchical model which calculates the variance between
replicates using point estimates of gene expression level
from each replicate. Since the variance has a dependence

on gene expression level, the combined noise, , is

sampled from a subset of variances calculated from Cyber-
T whose corresponding expression levels are close to xqij.

Thus, the final simulated expression level, qij, is

qij = xqij + εqij,  (3)

where εqij is drawn from (0, ). When J = 10, the

simulated expression level for group three is shown in Fig-
ure 1(a). It can be seen that there is more noise for the
lower expressed genes than the highly expressed ones,
which is a common feature of real datasets.

At the third step, in order to show the clustering improve-
ment by including probe-level measurement error, we
sample the corresponding probe-level variance of the sim-

σqij
2

x̂

x̂

 σqij
2

Simulated expression profilesFigure 1
Simulated expression profiles. Simulated expression profiles for one group under 10 conditions. (a) are the raw data on a 
log scale and (b) are the normalised profiles with zero mean and standard deviation one.
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ulated expression level from the real mouse dataset proc-
essed by multi-mgMOS. Similar to the second step, since
the measurement error has a dependence on the gene
expression level, the standard deviation for each simu-

lated expression value, qij is sampled from a subset of

standard deviation calculated from multi-mgMOS whose

corresponding expression levels are close to qij. Figure

2(a) shows the scatter plot of the sampled standard devi-
ation against the simulated expression level for one ran-
domly selected condition. It can be seen that the variance
of the measured gene expression for the weakly expressed
genes is generally larger than that for the highly expressed

genes as is commonly observed in real datasets. This is
consistent with the plot in Figure 1(a). At the final step, we
normalise the simulated expression level for each gene
over all conditions by subtracting the mean expression
level and dividing by the standard deviation such that the
profile of each gene has zero mean and standard deviation
one. The simulated standard deviation is also divided by
the standard deviation of the expression level to deter-
mine the corresponding measurement error of the nor-
malised data. The normalised profile is shown in Figure
1(b) when J = 10.

σ̂

x̂

Standard deviation against the simulated gene expression levelFigure 2
Standard deviation against the simulated gene expression level. Scatter plots of standard deviation against the simu-
lated gene expression level. The standard deviation in (a) is sampled from the multi-mgMOS results obtained from the mouse 
dataset. The standard deviation is randomly changed by adding a noise drawn from (b) (0, 0.01), (c) (0, 0.1) and (d) 

(0, 0.2).
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Since the true partition of the simulated dataset is known,
the agreement of the clustering results from different
methods with the true partition can be assessed by the
adjusted Rand index. The true number of groups, six, is
selected for both MCLUST and PUMA-CLUST. Three sets
of datasets are generated to evaluate the different perform-
ance of PUMA-CLUST and MCLUST with number of con-
ditions 10, 20 and 30. For each set, 10 random simulated
datasets are generated. The average adjusted Rand index
from PUMA-CLUST and MCLUST are shown in the first

column of Figure 3. For the three sets of simulated data-
sets, PUMA-CLUST results in markedly better perform-
ance compared with MCLUST and the p-values of a paired
t-test, shown in Table 1, indicate that the difference in per-
formance is highly significant.

Including a noise group
In a real-world microarray dataset, there are usually a cer-
tain fraction of genes whose expression levels are indistin-

Average adjusted Rand indexFigure 3
Average adjusted Rand index. The average adjusted Rand index of the clustering results from PUMA-CLUST and MCLUST 
on the simulated data. The first column is for the six group dataset and the second column is for the seven group dataset with 
one noise group added. The upper panel shows results on datasets with 10 conditions, the middle panel is for 20 conditions 
and the lower panel is for 30 conditions. PC represents PUMA-CLUST results on the original simulated data. PC.01, PC.1 and 
PC.2 represent the PUMA-CLUST results on the datasets with added noise drawn from (0, 0.01), (0, 0.1) and (0, 
0.2) respectively. The average adjusted Rand index is calculated over 10 simulated datasets for each plot and the range of the 
adjusted Rand index of each case is shown by error bars.
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guishable from random noise. These genes do not belong
to any pattern group in the dataset [25].

To assess the performance of PUMA-CLUST on this kind
of dataset, we add a group of random noise genes into the
previously simulated datasets. The first generating step of
the gene expression level for group seven is

xqij = Aqi,  (4)

where Aqi is sampled from U(0,14). The following steps of
the simulation are the same as those for the former six
groups. Three sets of simulated datasets with 10 randomly
generated datasets for each set are also sampled and the
average adjusted Rand index for three cases with 10, 20,
and 30 conditions are shown in the second column of Fig-
ure 3. The number of groups for both MCLUST and
PUMA-CLUST is assigned to seven. From the three plots it
can be seen that the performance of the clustering from
both PUMA-CLUST and MCLUST decreases with the
inclusion of the noise group, but PUMA-CLUST still out-
performs MCLUST over all three noise levels with the
three different data dimensions. The p-values in Table 1
indicate that the improvement is statistically significant.

Testing the robustness to misspecified technical variance

The probe-level variance in the simulated datasets gener-
ated above is sampled from multi-mgMOS results from
the real mouse dataset. When applying PUMA-CLUST it
was assumed that the level of noise is known, but in prac-
tice it would be estimated using multi-mgMOS. We would
like to test robustness to errors in estimating the measure-
ment error variance. We therefore add some noise to the

sampled standard deviation, qij, to simulate the error

made in estimating this quantity. For the six-group and
seven-group datasets, three kinds of random noise are
added by sampling from (0, 0.01), (0, 0.1) and

(0, 0.2). The scatter plots of the error-added standard
deviation against the simulated gene expression are

shown in Figure 2(b)–(d). Figure 3 gives the average
adjusted Rand index of the clustering results from PUMA-
CLUST on the error-added standard deviation for various
cases. In the case of PC.01, the added noise is quite small
so that the clustering results of PC.01 are very close to the
clustering results on the original simulated data. As the
added noise variance increases, the performance of
PUMA-CLUST decreases. The p-values in Table 1 mostly
increase when larger noise is added to the variances but all
p-values remain small and demonstrate a significant
improvement for PUMA-CLUST over MCLUST. These
results demonstrate that clustering is most accurate when
the measurement error variance is known, but that the
method is robust to errors in the estimate of the measure-
ment error.

Clustering on a real mouse time-course dataset
The improved performance of the new model, PUMA-
CLUST, over the standard Gaussian mixture model on
simulated datasets was shown in the previous section.
Here, we evaluate the performance of PUMA-CLUST on a
real mouse dataset showing periodic behavior [12] by
comparing with the results of the standard mixture model
implemented in MCLUST.

This time-course dataset profiles the gene expression
changes during the hair growth cycle, which is synchro-
nised for the first two cycles following birth. After two
cycles the hair growth cycle becomes progressively unsyn-
chronised. Lin et al. use Affymetrix MG-U74Av2 microar-
ray chips to profile mRNA expression in mouse back skin
from eight representative time points in order to discover
regulators in hair-follicle morphogenesis and cycling [12].
The microarray dataset utilised a total of 25 chips with
each time point consisting of three or four replicates. The
first five time points (day 1, 6, 14, 17 and 23) cover the
first synchronised cycle and the last three time points
(week 9, month 5 and year 1) belong to the asynchronous
cycles. They identified 2,461 potential hair cycle-associ-
ated genes using a F test comparing synchronous and

σ̂

 


Table 1: P-values obtained from a paired t-test of adjusted Rand index from MCLUST and PUMA-CLUST. A paired t-test is performed 
for MCLUST and each of PUMA-CLUST results. The 10 simulated datasets in Figure 3 are used for each test. PC represents PUMA-
CLUST results on the original simulated data. PC.01, PC.1 and PC.2 represent the PUMA-CLUST results on the datasets with added 

noise drawn from (0, 0.01), (0, 0.1) and (0, 0.2) respectively.

No of 
conditions

6 groups 7 groups

PC PC.01 PC.1 PC.2 PC PC.01 PC.1 PC.2

10 1.10e-8 9.37e-8 5.90e-8 5.67e-7 5.67e-9 7.77e-9 3.87e-7 5.87e-6
20 2.39e-8 1.80e-8 2.30e-7 4.22e-7 4.03e-9 4.10e-9 1.13e-7 8.56e-8
30 3.54e-7 1.38e-6 2.99e-6 5.00e-6 9.96e-7 4.34e-7 1.14e-7 3.75e-6

  
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asynchronous time points. This dataset is available at
[29].

We apply both PUMA-CLUST and MCLUST clustering
over the first five time points which belong to the synchro-
nised cycle and includes 15 chips. For MCLUST the raw
mouse dataset is processed using the popular probe-level
method GCRMA [30]. For PUMA-CLUST the raw data is
processed by multi-mgMOS. We also applied MCLUST to
MAS5.0 and multi-mgMOS gene expression measure-
ments and the performance was found to be similar to the
results presented here using GCRMA.

The clustering is performed on the 2,461 potential hair
cycle-associated genes. The obtained expression level for
each probe-set from both probe-level methods are nor-
malised to have zero mean and standard deviation one.
The Bayesian Information Criterion (BIC [31]) is used to
determine the number of clusters. The calculated BIC for
various numbers of clusters is shown in Figure 4. It can be
seen that the optimal BIC for PUMA-CLUST is obtained at
K = 22 and the optimal BIC for MCLUST is obtained at K
= 30. In both cases, MCLUST converges to the model hav-
ing the same full rank covariance matrix for each compo-
nent (the 'EEE' model [32]). In order to make the different
clustering methods comparable, the number of clusters
for each method should be the same. Therefore, the 22-
cluster and the 30-cluster cases are compared separately.
The 22 clusters obtained from PUMA-CLUST and
MCLUST are shown in Figure 5 and Figure 6 respectively,
and the 30 clusters obtained are shown in Figure 7 and
Figure 8, respectively. For visualisation, the average
expression level at each time point over replicates is
shown for both the gene profile and the cluster center.

To assess whether biologically relevant clusters are created
using the two methods, we systematically performed GO
annotation enrichment analysis for the individual clusters
using DAVID 2006 (The Database for Annotation, Visual-
ization and Integrated Discovery, [33]). The GO enrich-
ment analysis allows the direct assessment of the
biological significance for gene clusters found based on
the enrichment of genes belonging to a specific GO func-
tional category. The enrichment calculation performed in
DAVID is a modified Fisher Exact test. The resulting p-
value shows the biological significance for gene clusters.
Based on our experience, GO Biological Process term level
5 gives more precise category definitions which are useful
in further biological interpretations. Therefore, a mean-
ingful GO enrichment analysis is to examine enriched cat-
egories of GO Biological Process at term level 5 and to
select an enrichment cutoff at a conventional p-value of
0.05.

We found that for the 22-cluster results from the two
methods PUMA-CLUST produced more clusters (21 of
22) with at least one enriched GO category in comparison
to MCLUST (17 of 22), as shown in Figure 9(a). A visual
inspection of these MCLUST clusters without an enriched
GO category indicates that four out of five of these clusters
(Cluster #1,6,8,15 in Figure 6) contain heterogeneous
temporal expression profiles (i.e. not tightly clustered).
Since the number of enriched GO categories found varies
greatly among clusters (shown in Figure 10(a)), the aver-
age number (13.1) of enriched categories among the 22
PUMA-CLUST clusters is only slightly greater than the
average among the MCLUST clusters (11.5). A more
meaningful indicator of the distribution differences is the
median number of enriched categories in PUMA-CLUST
clusters (14) and MCLUST clusters (7). The same enrich-
ment analysis method was repeated using the 30 clusters
for both methods, and the results still clearly indicate that
the PUMA-CLUST method results in more biologically
meaningful clusters than the MCLUST method. Using 30
clusters, all clusters generated by PUMA-CLUST have at
least one enriched GO category, in comparison to only 21
out of 30 clusters created by MCLUST as shown in Figure
9(b). The median number of enriched categories for
PUMA-CLUST and MCLUST are 7 and 3, respectively, as
shown in Figure 10(b). Based on these GO enrichment
analyses, it is evident that PUMA-CLUST generated more
biologically relevant clusters than MCLUST.

For further validation of the performance of PUMA-
CLUST, we also applied MCLUST on multi-mgMOS meas-
urements so that we can compare PUMA-CLUST with
MCLUST using exactly the same probe-level summary
method. MAS 5.0 is another popular probe-level method
and therefore we also applied MCLUST to MAS 5.0 proc-
essed data for comparison. Enrichment analyses on the
22-cluster results for all four approaches (Figure 11 and
Figure 12) show that MCLUST on multi-mgMOS proc-
essed data performed similarly to MCLUST on GCRMA
processed data. Both have five clusters without any
enriched category, but MCLUST with GCRMA had slightly
higher median value for the number of enriched catego-
ries (7 vs. 5). Although MCLUST with MAS5.0 only had
two clusters without any enriched category, its median
value for the number of enriched categories is notably less
than that of PUMA-CLUST with multi-mgMOS (5.5 vs.
14). Thus, PUMA-CLUST with multi-mgMOS still per-
forms best in comparison to MCLUST using the three dif-
ferent expression summary methods. For 30-cluster
results and for results with other numbers of clusters we
found similar results. In particular, when the same probe-
level method, multi-mgMOS, is used, PUMA-CLUST
always outperforms MCLUST. The improved performance
is due to the inclusion of the probe-level measurement
Page 7 of 19
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BIC for PUMA-CLUST and MCLUSTFigure 4
BIC for PUMA-CLUST and MCLUST. BIC for (a) PUMA-CLUST and (b) MCLUST against the number of mixture compo-
nents on the 2,461 potential hair growth-associated genes from the mouse time-course dataset. PUMA-CLUST obtains the 
minimum BIC at K = 22 and MCLUST obtains the minimum at K = 30.
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Expression pattern clusters from PUMA-CLUST when K = 22Figure 5
Expression pattern clusters from PUMA-CLUST when K = 22. The clusters are for the 2,461 potential hair cycle-asso-
ciated genes of the mouse time-course dataset when K = 22. The expression pattern for each probe-set is shown as dark lines 
for five time points. The light line on each plot is the clustering center for each group. At each time point, the expression value 
is the average of the three replicated measurements.
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Expression pattern clusters from MCLUST when K = 22Figure 6
Expression pattern clusters from MCLUST when K = 22. The clusters are for the 2,461 potential hair cycle-associated 
genes of the mouse time-course dataset when K = 22. The expression pattern for each probe-set is shown as dark lines for five 
time points. The light line on each plot is the clustering center for each group. At each time point, the expression value is the 
average of the three replicated measurements.
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Expression pattern clusters from PUMA-CLUST when K = 30Figure 7
Expression pattern clusters from PUMA-CLUST when K = 30. The clusters are for the 2,461 potential hair-growth-
associated genes of the mouse time-course dataset when K = 30. The expression pattern for each probe-set is shown as dark 
lines for five time points. The light line on each plot is the clustering center for each group. At each time point, the expression 
value is the average of the three replicated measurements.
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Expression pattern clusters from MCLUST when K = 30Figure 8
Expression pattern clusters from MCLUST when K = 30. The clusters are for the 2,461 potential hair-growth-associ-
ated genes of the mouse time-course dataset when K = 30. The expression pattern for each probe-set is shown as dark lines 
for five time points. The light line on each plot is the clustering center for each group. At each time point, the expression value 
is the average of the three replicated measurements.
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error which down-weights the effect of the noisy low
expressed genes.

Conclusion
In this paper we demonstrate the usefulness of the meas-
urement error in model-based clustering of gene expres-
sion data. A standard Gaussian mixture model with an
unequal volume spherical covariance matrix is aug-
mented to incorporate probe-level measurement error
obtained from Affymetrix microarrays. Results from simu-

lated datasets and a real mouse time-course dataset show
that the inclusion of probe-level measurement error
results in improved and more biologically meaningful
clustering of gene expression data. The augmented cluster-
ing model has been implemented in an R package, puma-
clust, for public use of the method.

The improved performance of the augmented model has
been shown in this paper. It is possible that further
improvement can also be made by considering the repli-

Comparison of the number of clusters found with the indicated ranges of enriched GO categories for MCLUST and PUMA-CLUST clustersFigure 9
Comparison of the number of clusters found with the indicated ranges of enriched GO categories for MCLUST 
and PUMA-CLUST clusters. Comparison of the number of clusters found with the indicated ranges of enriched categories 
for MCLUST and PUMA-CLUST clusters using (a) 22 clusters and (b) 30 clusters. For both comparisons, the enriched catego-
ries were found using GO Biological Process term level 5, enrichment cutoff at p-value of 0.05, and mouse (Mus Musculus) as 
the population background.
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Boxplot of the number of enriched categories for MCLUST and PUMA-CLUST clustersFigure 10
Boxplot of the number of enriched categories for MCLUST and PUMA-CLUST clusters. Boxplot of the number of 
enriched categories for MCLUST and PUMA-CLUST clusters using (a) 22 clusters and (b) 30 clusters. The boxes show the 
lower quartile, median, and upper quartile values. The dotted lines show the extent of the rest of the data. The number of 
enriched categories for MCLUST has larger variance than that for PUMA-CLUST.
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cate information where repeated measurements are avail-
able for time points. Clustering on repeated
measurements has been considered by [12,23,25], but all
of these approaches do not include the probe-level meas-
urement error. Including both probe-level noise and rep-
licate information in the clustering would be a useful
extension of our work.

Methods
multi-mgMOS and probe-level measurement error
Affymetrix microarrays use multiple probe-pairs called a
probe-set to measure the expression level for each gene.
Each probe-pair consists of a perfect match (PM) probe
and a mismatch (MM) probe. By design, the intensity of
the PM probe measures the specific hybridisation of the
target and the MM probe measures the non-specific

Comparison of the number of clusters found with the indicated ranges of enriched GO categories for MCLUST and PUMA-CLUST clusters using various probe-level methodsFigure 11
Comparison of the number of clusters found with the indicated ranges of enriched GO categories for MCLUST 
and PUMA-CLUST clusters using various probe-level methods. Comparison of the number of clusters found with the 
indicated ranges of enriched categories for MCLUST and PUMA-CLUST clusters using various probe-level methods when K = 
22. For all comparisons, the enriched categories were found using GO Biological Process term level 5, enrichment cutoff at p-
value of 0.05, and mouse (Mus Musculus) as the population background.
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hybridisation associated to its corresponding PM probe.
The microarray experimental data show that the intensi-
ties of both PM and MM probes vary in a probe-specific
way and MM probes also detect some specific hybridisa-
tion. Based on these observations, multi-mgMOS [18]
assumes the intensities of PM and MM probes for a probe-
set both follow gamma distributions with parameters
accounting for specific and non-specific hybridisation,
and probe-specific effects. Let yijcand mijc represent the jth
PM and MM intensities respectively for the ith probe-set
under the cth condition. The model is defined by

yijc ~ Ga(aic + αic, bij)

mijc ~ Ga (aic + φαic, bij)  (5)

bij ~ Ga(ci, di),

where Ga represents the gamma distribution. The param-
eter aic accounts for the background and non-specific

hybridisation associated with the probe-set and αic

accounts for the specific hybridisation measured by the
probe-set. The parameter bij is a latent variable which

models probe-specific effects. The Maximum a Posteriori
(MAP) solution of this model can be found by efficient
numerical optimisation. The posterior distribution of the
logged gene expression level can then be estimated from
the model and approximated by a Gaussian distribution

with a mean, ic, and a variance, νic . The mean of this dis-

tribution is taken as the estimated gene expression for

x̂

Boxplot of the number of enriched categories for MCLUST and PUMA-CLUST clusters using various probe-level methodsFigure 12
Boxplot of the number of enriched categories for MCLUST and PUMA-CLUST clusters using various probe-
level methods. Boxplot of the number of enriched categories for MCLUST and PUMA-CLUST clusters using various probe-
level methods when K = 22. The boxes show the lower quartile, median, and upper quartile values. The dotted lines show the 
extent of the rest of the data.
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gene i under the condition c and the variance can be con-
sidered the measurement error associated with this esti-
mate. The Gaussian approximation to the posterior
distribution is useful for propagating the probe-level
measurement error in subsequent downstream analyses.

Mixture model
The mixture model is a useful tool for revealing the inher-
ent structure of data. In a mixture model with K compo-
nents, the data is generated by

where P(k) denotes the probability of selecting the kth
component with parameters θk and θ = {θ1, θ2,..., θK, P(k)}
is the complete parameter set of the mixture model. The
parameters k ar latent variables determining which cluster
the data belongs to.

Mixture models are usually solved by maximum likeli-
hood using an Expectation-Maximisation (EM) algorithm
[34]. With the initialised parameters at t = 0, the values of
parameters can be determined iteratively through an E-
step and M-step:

• E-step: Compute

Pt(k|xi) = P(k|xi; θt)  (7)

for each data point xi and each component k.

• M-step:

with constraint ∑k P(k) = 1.

Standard Gaussian mixture model
For mixture component distributions from the exponen-
tial family, like the Gaussian, both steps are exactly tracta-
ble. In a Gaussian mixture model where θk = {μk, Σk}, each
component k is modelled by a Gaussian distribution with
mean μk and covariance matrix Σk,

where |·| denotes determinant and p is the dimension of
the data. As well as changing the number of components
in the mixture, the covariance matrix Σk can be con-
strained to determine the flexibility of the model. The

most constrained model is parameterised by Σk = σ2I with
only one free parameter in the covariance matrix for all
components. The unconstrained model has full rank Σk
with p(p + l)/2 free parameters in the covariance matrix for
each component where p is the data dimension. All repre-
sentations of the covariance matrix are explored in [35].
Allowing the number of free parameters in the covariance
matrix to vary leads to various models accommodating
varying characteristics of data. All of these models have
been implemented in MCLUST [20] and the BIC model
selection criterion (described later) is used to select the
most appropriate model.

Including measurement uncertainty in a Gaussian mixture 
model

From a probabilistic probe-level model, such as multi-
mgMOS, for each data point one can obtain the measure-

ment error, νi, which is a vector giving the variance of the

measured expression level on each chip. Suppose xi is the

true expression level for data point i. The kth component

of the Gaussian mixture model is modelled by p(xi|k; θk)

= (xi|μk, Σk). The measured expression level i can be

expressed as i = xi + εi. A zero-mean Gaussian measure-

ment noise is assumed, εi ~ (0, diag(νi)), where

diag(νi) represents the diagonal matrix whose diagonal

entries starting in the upper left corner are the elements of

νi. Since i is a linear sum of xi and εi, the kth Gaussian

component can be augmented as

p( i|k; θk) = ( i|μk, Σk + diag(νi))  (10)

We therefore augment the mixture model to account for
the measurement error of each data point,

Ideally, the covariance matrix should be of full rank to
obtain the largest flexibility of the model. However, this
will increase the complexity of the model. Since in (11)

the additive measurement error diag(νi) accounts for

inherent variability in the data, especially for extremely
noisy gene expression data, the unequal volume spherical

model (VI) described in [10] with the covariance Σk = I

is adopted. This model allows the spherical components
to have different variances which accounts for the variabil-
ity within different gene function groups. Therefore, in

this model the gene-specific variance νi is known and

obtained from a probabilistic probe-level analysis model
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and the function-specific variance  is to be estimated

from the mixture model via the EM algorithm. The param-

eters are denoted θk = {μk, } for Gaussian component

k and θ = {θ1, θ2,..., θk } for all components, where K is the

number of components. Using the K-means algorithm,

one can obtain the initial parameters θ0 for all compo-
nents. Equal probability of the component prior is also
assumed for the initial value of P(k), P0(k). At the E-step,
for each data point xi the posterior probability of belong-

ing to component k is calculated as,

At the M-step, the component prior and the parameters of
components are optimised,

Equation (14) cannot be solved analytically due to the
incorporation of νi in the variance terms. However, with
fast optimisation methods available such as SNOPT [36]
and donlp2 [37], it is easy to calculate the optimal param-
eters numerically at the M-step. In our R implementation,
pumaclust, we use donlp2.

Model selection
In the previous section the covariance matrix of the Gaus-
sian mixture model is specified and the parameters are
worked out via an EM algorithm for a given K. In practice
the most appropriate number of clusters should also be
determined. In mixture models, the Bayesian Information
Criterion (BIC [31]) is usually used to decide the appro-
priate number of clusters. For model m with the number
of clusters K, the calculation of BIC is

BICm = -2log p(D| m) + dm log(n),  (15)

where D is the dataset, dm is the number of free parameters

to be estimated in model m, n is the number of genes and

m are the estimated maximum likelihood parameters

obtained by the EM algorithm. For the unequal volume
spherical model (VI), the number of free parameters is dm

= K(p + 2) - 1. MCLUST also uses BIC to select the most
appropriate class of covariance model.

Adjusted rand index

The adjusted Rand index gives a measure of agreement
between clustering results. Given a set of n data points D

= {x1,..., xn}, suppose C1 = { ,..., } and C2 = { ,...,

} represent two different partitions of the data points

in D. Assume that nij is the number of data points belong-

ing to cluster  and , and ni. and n.j are the number of

data points in cluster  and  respectively. The adjusted

Rand index can be calculated by
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