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Abstract
Background: In recent years, several authors have used probabilistic graphical models to learn expression modules and
their regulatory programs from gene expression data. Despite the demonstrated success of such algorithms in
uncovering biologically relevant regulatory relations, further developments in the area are hampered by a lack of tools
to compare the performance of alternative module network learning strategies. Here, we demonstrate the use of the
synthetic data generator SynTReN for the purpose of testing and comparing module network learning algorithms. We
introduce a software package for learning module networks, called LeMoNe, which incorporates a novel strategy for
learning regulatory programs. Novelties include the use of a bottom-up Bayesian hierarchical clustering to construct the
regulatory programs, and the use of a conditional entropy measure to assign regulators to the regulation program nodes.
Using SynTReN data, we test the performance of LeMoNe in a completely controlled situation and assess the effect of
the methodological changes we made with respect to an existing software package, namely Genomica. Additionally, we
assess the effect of various parameters, such as the size of the data set and the amount of noise, on the inference
performance.

Results: Overall, application of Genomica and LeMoNe to simulated data sets gave comparable results. However,
LeMoNe offers some advantages, one of them being that the learning process is considerably faster for larger data sets.
Additionally, we show that the location of the regulators in the LeMoNe regulation programs and their conditional
entropy may be used to prioritize regulators for functional validation, and that the combination of the bottom-up
clustering strategy with the conditional entropy-based assignment of regulators improves the handling of missing or
hidden regulators.

from Probabilistic Modeling and Machine Learning in Structural and Systems Biology
Tuusula, Finland. 17–18 June 2006

Published: 3 May 2007

BMC Bioinformatics 2007, 8(Suppl 2):S5 doi:10.1186/1471-2105-8-S2-S5

<supplement> <title> <p>Probabilistic Modeling and Machine Learning in Structural and Systems Biology</p> </title> <editor>Samuel Kaski, Juho Rousu, Esko Ukkonen</editor> <note>Research</note> </supplement>

This article is available from: http://www.biomedcentral.com/1471-2105/8/S2/S5

© 2007 Michoel et al; licensee BioMed Central Ltd. 
This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), 
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 15
(page number not for citation purposes)

http://www.biomedcentral.com/1471-2105/8/S2/S5
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/


BMC Bioinformatics 2007, 8(Suppl 2):S5 http://www.biomedcentral.com/1471-2105/8/S2/S5
Conclusion: We show that data simulators such as SynTReN are very well suited for the purpose of developing, testing
and improving module network algorithms. We used SynTReN data to develop and test an alternative module network
learning strategy, which is incorporated in the software package LeMoNe, and we provide evidence that this alternative
strategy has several advantages with respect to existing methods.

Background
For the past 45 years, research in molecular biology has
been based predominantly on reductionist thinking, try-
ing to unravel the complex workings of living organisms
by investigating genes or proteins one at a time. In recent
years, molecular biologists have come to view the cell
from a different, more global perspective. With the advent
of fully sequenced genomes and high-throughput func-
tional genomics technologies, it has become possible to
monitor molecular properties such as gene expression lev-
els or protein-DNA interactions across thousands of genes
simultaneously. As a consequence, it has become feasible
to study genes, proteins and their interactions in the con-
text of biological systems rather than in isolation. This
novel paradigm has been named 'systems biology' [1].

One of the goals of the systems approach to molecular
biology is to reverse engineer the regulatory networks
underlying cell function. Particularly transcriptional regu-
latory networks have received a lot of attention, mainly
because of the availability of large amounts of relevant
experimental data. Several studies use expression data,
promoter motif data, chromatin immunoprecipitation
(ChIP) data and/or prior functional information (e.g. GO
classifications [2] or known regulatory network struc-
tures) in conjunction to elucidate transcriptional regula-
tory networks [3-17]. Most of these methods try to unravel
the control logic underlying specific expression patterns.
This type of analysis typically requires elaborate computa-
tional frameworks. In particular probabilistic graphical
models are considered a natural mathematical framework
for inferring regulatory networks [8]. Probabilistic graph-
ical models, the best-known representatives being Baye-
sian networks, represent the system under study in terms
of conditional probability distributions describing the
observations for each of the variables (genes) as a function
of a limited number of parent variables (regulators),
thereby reconstructing the regulatory network underlying
the observations. Friedman et al. pioneered the use of
Bayesian networks to learn regulatory networks from
expression data [3,4]. In these early studies, each gene in
the resulting Bayesian network is associated with its indi-
vidual regulation program, i.e., its own set of parents and
conditional probability distribution. A key limitation of
this approach is that a vast number of structural features
and distribution parameters need to be learned given only
a limited number of expression profiles. In other words,
the problem of finding back the real network structure is

typically heavily underdetermined. An attractive way to
remedy this issue is to take advantage of the inherent
modularity of biological networks [18], specifically the
fact that groups of genes acting in concert are often regu-
lated by the same regulators. Segal et al. [6,19] first
exploited this idea by proposing module networks as a
mathematical model for regulatory networks. Module
networks are probabilistic graphical models in which
groups of genes, called modules, share the same parents
and conditional distributions. As the number of parame-
ters to be estimated in a module network is much smaller
than in a full Bayesian network, the currently available
gene expression data sets can be large enough for the pur-
pose of learning module networks [6,11,12,19].

Despite the demonstrated success of module network
learning algorithms in finding biologically relevant regu-
latory relations [6,11,12,19], there is only limited infor-
mation about the actual recall and precision of such
algorithms [12] and how these performance measures are
influenced by the use of alternative module network
learning strategies. Having the means to answer the latter
question is key to the further development and improve-
ment of the module networks formalism.

The purpose of the present study is twofold. First, we
introduce a novel software package for learning module
networks, called LeMoNe, which is based on the general
methodology outlined in Segal et al. [6] but incorporates
an alternative strategy for inferring regulation programs.

Second, we demonstrate the use of SynTReN [20], a data
simulator that creates synthetic regulatory networks and
produces simulated gene expression data, for the purpose
of testing and comparing module network learning algo-
rithms. We use SynTReN data to assess the performance of
LeMoNe and to compare the behavior of alternative mod-
ule network learning strategies. Additionally, we assess the
effect of various parameters, such as the size of the data set
and the amount of noise, on the inference performance.
For comparison, we also use LeMoNe to analyze real
expression data for S. cerevisiae [21] and investigate to
what extent the quality of the module networks learned
on real data can be automatically assessed using struc-
tured biological information such as GO information and
ChIP-chip data [9].
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Methods
Data sets
We used SynTReN [20] to generate simulated data sets for
a gene network with 1000 genes of which 105 act as regu-
lators. The topology of the network is subsampled from
an E. coli transcriptional network [29] by cluster addition,
resulting in a network with 2361 edges. All parameters of
SynTReN were set to default values, except number of cor-
related inputs, which was set to 50%. SynTReN generated
expression values ranging from 0 (no expression) to 1
(maximal expression) which we normalized to log2 ratio
values by picking one of the experiments as the control.
Except where indicated otherwise, the list of true regula-
tors was given as the list of potential regulators for LeM-
oNe and Genomica.

For the tests performed on real data, we used an expres-
sion compendium for S. cerevisiae containing expression
data for 173 different experimental stress conditions [21].
The data were obtained in prenormalized and preproc-
essed form. We used the mean log2 values of the expres-
sion ratios (perturbation vs. control).

To assess the quality of the regulatory programs learned
from real data, we used data on genome-wide binding and
phylogenetically conserved motifs for 102 transcription
factors from Harbison et al. [9]. For a given transcription
factor, only genes that were bound with high confidence
(significance level α = 0.005) and showed motif conserva-
tion in at least one other Saccharomyces species (besides S.
cerevisiae) were considered true targets.

Module networks
Module networks are a special kind of Bayesian networks
and were introduced by Segal et al. [6,30]. To each gene i
we associate a random variable Xi which can take contin-
uous values and corresponds to the gene's expression
level. The distribution of Xi depends on the expression
level of a set of parent genes Pai chosen from a list of
potential regulators. If the network formed by drawing
directed edges from parent genes to children genes is acy-
clic, we can define a joint probability distribution for the
expression levels of all genes as a product of conditional
distributions,

This is the standard Bayesian network formalism.

In a module network we assume that genes are partitioned
into different sets called modules, such that genes in the
same module share the same parameters in the distribu-
tion function (1). Hence a module network is defined by

a partition of {1,...,N} into K <<> N modules k such

that  = {1,...,N} and k ∩ k' = ∅ for k ≠ k', a

collection of parent genes ∏k for each module k, and a

joint probability distribution

The conditional distribution pk of the expression level of

the genes in module k is normal with mean and standard
deviation depending on the expression values of the par-
ents of the module through a regression tree that is called
the regulation program of the module. The tests on the
internal nodes of the regression tree are of the form 
for some split value s, where x is the expression value of
the parent associated to the node (Figure 1).

The Bayesian score is obtained by taking the log of the
marginal probability of the data likelihood over the
parameters of the normal distributions at the leaves of the
regression trees with a normal-gamma prior (see [30] and
Additional file 1 for more details; the actual expression for
the score is in eq. (S5)). Its main property is that it decom-
poses as a sum of leaf scores of the different modules:

where � denotes the experiments that end up at leaf �

after traversing the regression tree. A normal-gamma prior
ensures that Sk( �) can be solved explicitly as a function

of the sufficient statistics (number of data points, mean
and standard deviation) of the leaves of the regression tree
(see Additional file 1).

Learning module regulation programs

For a given assignment of genes to modules, finding a
maximum for the Bayesian score (3) consists of finding
the optimal partitioning of experiments into 'leaves' � for
each module separately, i.e., find a collection of subsets

� ⊂ {1,...,M} such that (� � = {1,...,M}, � ∩ � = ∅

for � ≠ �', and

is maximal. In particular we do not have to define the par-
ent sets ∏k of the modules in order to find an optimal par-
tition.

p x x p x x jN i i j
i

N
( ,..., ) ( |{ : }).1

1

1= ∈ ( )
=
∏ Pai


∪k

K
k=1  

p x x p x x jN k i j
ik

K

k

( ,..., ) ( |{ : }).1
1

2= ∈ ∏ ( )
∈=
∏∏ k


x s  �

S S= = ( )∑ ∑∑k
k

k
k

S ( ),A
A

3





   

Sk kS= ( )∑ ( )A
A

4

Page 3 of 15
(page number not for citation purposes)



BMC Bioinformatics 2007, 8(Suppl 2):S5 http://www.biomedcentral.com/1471-2105/8/S2/S5
We use a bottom-up hierarchical clustering method to
heuristically find a high-scoring partition. At each step of
the process we have a collection of binary trees Tα which

represent subsets α of experiments. The binary split of

Tα into its children  and  corresponds to a partition

of the set α into two sets: α =  ∪ . The initial

collection consists of trivial trees without children repre-
senting single experiments. To proceed from one collec-

tion of trees to the next, the pair of trees with highest
merge score is merged into a new tree, and the collection
of binary trees decreases by one, eventually leading to one
hierarchical tree T0 representing the complete experiment

set 0 = {1,...,M}. The simplest merge score is given by

the possible gain in Bayesian score by merging two exper-
iment sets:


Tα1

Tα2

  α1
α2



r S S Sk k kα α α α α α1 2 1 2 1 2
5, ( ) ( ) ( ).= ∪ − − ( )   

Sample module learned from the Gasch data setFigure 1
Sample module learned from the Gasch data set. Sample module learned from the Gasch data set [21]. Red and green 
hues indicate upregulation resp. downregulation. The pairs (x, y) under each split in the regulation tree represent the Bayesian 
score gain over the split, normalized on the number of genes in the complete network (x), and the regulator assignment 
entropy (y).
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In Additional file 1 we define an alternative merge score
related to the Bayesian hierarchical clustering method of
[31]. This merge score takes into account the substructure

of the trees below  and  in addition to the Bayesian

score difference (5), and tends to produce more balanced
trees. In the final step, we need to cut the hierarchical tree
T0. To this end we traverse the tree from the root towards

its leaves. If we are at a subtree node Tα with children 

and , we compute the score difference (5). If this dif-

ference is negative, the total score is improved by keeping
the split Tα, and we move on to test each of its children

nodes. If the difference is positive, the total score is
improved by not making the split Tα, and we remove its

children nodes from the tree. The experiment set α

becomes one of the leaves of the regulation program, con-
tributing one term in the sum (4).

The pseudocode for the regulation program learning algo-
rithm is given in Figure S3 in Additional file 1. In [6,30],
regulation programs are learned top-down by considering
all possible splits on all current leaves with all potential
regulators, so regulation trees and regulator assignments
are learned simultaneously. As a result missing regulators
or noise in the regulator data might lead to a suboptimal
partitioning of the experiments in a module. In our
approach we have focused on finding an optimal parti-
tion of the module regardless of the set of potential regu-
lators. A module collects the data of many genes and
therefore this partition will be less affected by noise or
missing data than when it is determined by exact splits on
single regulators.

Regulator assignment

At a given internal node Tα of the regulation tree T0, the

experiment set α is partitioned into two distinct sets

 and  according to the tree structure. Given a reg-

ulator r and split value s, we can also partition α into

two sets

where xr,m is the expression value of regulator r in experi-
ment m.

Consider now two random variables: E which can take the

values α1 or α2, and R which can take the values 1 or 2,

with probabilities defined by simple counting, p(E = α1) =

| |/| α|, p(R = 1) = | 1|/| α|, etc. We are interested

in the uncertainty in E given knowledge (through the
data) of R, i.e., in the conditional entropy [32]

H(E | R) = p1h(q1) + p2h(q2),  (6)

where pi = p(R = i), h is the binary entropy function

h(q) = -q log(q) - (1 - q) log(1 - q),

and qi are the conditional probabilities

In the presence of missing data, the probabilities pi and qi
need to be modified to take into account this extra uncer-
tainty, details are given in Additional file 1.

The conditional entropy is nonnegative and reaches its
minimum value 0 when q1 = 0 or 1 (and consequently q2

= 1, resp. 0), which means the  and  partitions are
equal and the regulator – split value pair 'explains' the
split in the regulation tree exactly. Hence we assign to each
internal node of a regulation tree the regulator – split
value pair which minimizes the conditional entropy (6).
Since this assignment has to be done only once, after the
module networks score has converged, the best regulator
– split value pairs can be found by simply enumerating
over all possibilities, even for relatively large data sets. The
actual algorithm for assigning regulators to all nodes
operates first on nodes closer to the roots of the trees
where the most significant splits are located, and takes
into account acyclicity constraints on the module net-
work. It is presented in pseudocode in Figure S4 in Addi-
tional file 1.

Learning module networks
To find an optimal module network, learning of regula-
tion trees is alternated with reassigning genes to other
modules until convergence of the Bayesian score. Module
initialization can be done using any clustering algorithm.
Here, we used k-means [33], and reassigning is done like
in [30] by making all single-gene moves from one module
to another which improve the total score.

Network comparison
To obtain a gene network from a module network, we put
directed edges from the regulators of a module to all the
genes in that module. We compare inferred to true net-
work by computing the number of edges that are true pos-
itive (tp), false positive (fp) and false negative (fn).

Tα1
Tα2

Tα1

Tα2




α1

α2



 
 

1

2

= ∈ ≤
= ∈ >

{ : }

{ : },
,

,

m x s

m x s
r m

r m

α

α

α1
  

q p E R i ii
i

i
= = = =

∩
=( | )

| |

| |
, , .α α

1
1 1 2

 


 
Page 5 of 15
(page number not for citation purposes)



BMC Bioinformatics 2007, 8(Suppl 2):S5 http://www.biomedcentral.com/1471-2105/8/S2/S5
Standard measures for the inference quality are precision
and recall. Precision (denoted P) is defined as the fraction
of edges in the inferred module network that is correct,
and recall (denoted R) as the fraction of edges in the true
network that is correctly inferred, i.e.,

The F-measure, defined as the harmonic mean of preci-

sion and recall, , can be used as a single meas-

ure for inference quality.

The module content for different module networks can be
compared by computing for each module in one network
how many genes of it are also grouped together in one
module in the other network, and averaging over the
number of modules. We call this the average module over-
lap.

GO overrepresentation analysis
GO enrichment P-values for all modules were determined
using the BiNGO tool [34], which was incorporated into
the LeMoNe package. The overrepresentation of GO Bio-
logical Process categories was tested using hypergeometric
tests and the resulting P-values were corrected for multiple
testing using a False Discovery Rate correction.

Software
The latest version of SynTReN can be downloaded from
[35] and the latest version of Genomica from [27]. LeM-
oNe is implemented in Java and available for download in
source or executable form [36].

Results and discussion
Implementation differences in LeMoNe versus Genomica
As a starting point for the development of LeMoNe, we re-
implemented the methodology described by Segal et al.
[6], which is incorporated in the Genomica software pack-
age. Briefly, Genomica takes as input a gene expression
data set and a list of potential regulators. After an initial
clustering step, the algorithm iteratively constructs a regu-
latory program for each of the modules (clusters) in the
form of a regression tree, and then reassigns each gene to
the module whose program best predicts the gene's
expression behavior. These two steps are repeated until
convergence is reached. In this process, the algorithm
attempts to maximize a Bayesian score function that eval-
uates the model's fit to the data [6].

We used the same overall strategy and the same Bayesian
score function in LeMoNe. However, with respect to the
original methods described by Segal et al. [6], LeMoNe
incorporates an alternative strategy for inferring regula-

tory programs that offers some advantages (see Methods).
First, LeMoNe uses a Bayesian hierarchical clustering strat-
egy to learn the regulation trees for the modules from the
bottom up instead of from the top down. Furthermore,
contrary to Genomica [6], the partitioning of expression
data inside a module is not dependent on the expression
profiles of the potential regulators, but only on the mod-
ule data itself. This should allow the program to better
handle missing or 'hidden' regulators (see further). As an
additional advantage, the assignment of regulators to reg-
ulation program nodes can be postponed until after the
final convergence of the Bayesian score, which leads to
considerable time savings (see further).

A second modification in LeMoNe is that regulators are
assigned to the splits in the regulation tree (data splits)
based on an information theoretic measure, namely the
conditional entropy of the partition of the regulator's
expression profile dictated by the data split, given the par-
tition imposed by a particular split value (see Methods).
As a consequence, a data split does not impose, but
merely prefers, a clean partition of the best-matching reg-
ulator's expression values around a certain split value. In
comparison with Genomica, where only such clean parti-
tions are used, this strategy has the advantage that poten-
tial noise in the regulator's expression is taken into
account. Additionally, the conditional entropy can be
used to estimate the quality of the regulator assignment,
and thus suggest missing potential regulators for splits
without a low-entropy regulator. Information theory has
been used before to analyze and cluster gene expression
data [13,22-26]. Our method introduces elements of
information theory into the module networks formalism.

In the following sections, we use SynTReN data to test
LeMoNe in a completely controlled situation in which
simulated microarray data is analyzed for a known under-
lying regulatory network of reasonable size, and we assess
the performance effects of the aforementioned methodo-
logical changes with respect to Genomica [6]. The LeM-
oNe package and the source code are freely available
under the GPL license (see Software section).

Modularity
A fundamental assumption of the module networks for-
malism is that real biological networks have a modular
structure [18] that is reflected in the gene expression data,
and therefore groups of genes can share the same param-
eters in the mathematical description of the network. In
LeMoNe, as in other module network learning programs
[6,11], the desired number of modules has to be given as
an input parameter to the inference program, and a main
question is how the optimal module number has to be
determined.

P R=
+

=
+

tp
tp fp

tp
tp fn
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F
PR

P R
=

+
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Fewer modules means lower computational cost and
more data points per module. This results in a better esti-
mation of parameters, but possibly entails oversimplify-
ing the network and missing important regulatory
relations. More modules means more specific optimiza-
tion of the network at higher computational cost. When
modules become too small, there could be too few data
points per module for a reliable estimation of the param-
eters. In this section we use the Bayesian score to estimate
the optimal number of modules.

Throughout this manuscript, we make use of a SynTReN-
generated synthetic network encompassing 1000 genes of
which 105 act as regulators (see Methods). Unless other-
wise stated, we use all 105 regulators in this network as
potential regulators while inferring module networks. Fig-
ure 2 shows the Bayesian score, normalized by the
number of genes times the number of experiments, for
this network and different numbers of experiments. In all
three panels, the score reaches a maximum. The top panel
(data set with 10 experiments), which has a true maxi-
mum for the score, illustrates that the network inference
problem is underdetermined for very small data sets.
Increasing the number of modules beyond the location of
the maximum lowers the fit of the model to the data. For
larger data sets (middle and bottom panel, 100, resp. 300
experiments), the score saturates and after a certain point
the model does not improve anymore by increasing the
number of modules. Hence, the optimal number of mod-
ules should be situated around the point where the Baye-
sian score starts to level off. For increasing number of
experiments, the optimal number shifts to the right. This
suggests that increasing amounts of data enable the algo-
rithm to uncover smaller and more finetuned modules.
However, the rightbound shift of the optimum becomes
less pronounced for increasing number of experiments.
This reflects the fact that only a limited number of mod-
ules are inherently present in the true network.

We define the number of modules in the true network as
the number of gene sets having the same set of regulators
(taking into account activator or repressor type). This
number is 286 for the 1000 gene synthetic network we
consider here, among which there are 180 with at least 3
genes and 126 with at least 5 genes. The saturation behav-
ior of the score curves for 100 and 300 experiments in Fig-
ure 2 more or less reflects the modularity in the true
network.

Network inference performance
A more detailed analysis of network inference perform-
ance is obtained by comparing the set of regulator to gene
edges in the true (synthetic) network and in the inferred
module network. We use standard measures such as recall,
precision, and F-measure (see Methods).

Figure 3 shows the recall as a function of the number of
modules for different numbers of experiments. The loca-
tion of the recall maxima seems to agree well with the sat-
uration points of the corresponding Bayesian score curves
(Figure 2). As expected the maximal recall, and hence the
total number of true positives, increases for data sets with
more experiments, saturating between 30 and 35% for
data sets with ≥100 experiments.

A similar saturation with increasing number of experi-
ments is seen for the precision curves (Figure S1 in Addi-
tional file 1) and the F-measure curves (Figure S2 in
Additional file 1). Whereas the precision continues to
increase with the number of modules, the F-measure sat-
urates, but does so at a higher number of modules than
the Bayesian score. Taking into account the modular com-
position of the true network (see previous section), the
Bayesian score and the recall curves seem to generate bet-
ter estimates of the optimal number of modules than the
F-measure curves.

We also investigated whether the inferred regulation pro-
grams provide any information regarding the quality of
the regulators. When analyzing real data, such informa-
tion could be useful to prioritize regulators for experimen-
tal validation. A first property which we tried to relate to a
regulator's quality is its hierarchical location in the regula-
tion program. It seems that regulators deeper in the regu-
lation tree become progressively less relevant. Figure 4
illustrates this effect by showing separately the precisions
for the roots of the regulation trees (level 0), the children
of the roots (level 1), and the grandchildren (level 2) for
data sets with 100, 200, and 300 experiments. The preci-
sions for the various regulatory levels remain within each
others standard deviation across the tested range of exper-
iments, but the precision clearly diminishes with increas-
ing levels in the regulation program. For each data set and
inferred module network we created an additional net-
work where each module is assigned a random regulator
set of the same size as in the inferred network. The preci-
sion for these random regulation programs is shown in
the bottom most curves in Figure 4. For regulation levels
beyond level 2, the precisions fall in this region of random
assignments and they add almost exclusively false posi-
tives (results not shown). In general, we can say that the
top regulators are far more likely to represent true regula-
tory interactions.

An additional layer of information is provided by the reg-
ulator assignment entropies. A low value of the entropy
corresponds to a regulator matching well with a split in
the expression pattern of the regulated module. Hence we
expect regulators with low entropy to have a higher prob-
ability to be true regulators. This is illustrated in Figure 5.
For the data set with 100 experiments and 150 modules,
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the subnetwork generated by all regulators with an
entropy lower than, e.g., 0.1 has precision 0.334, almost
twice as high as the precision of 0.176 for the whole mod-
ule network. For the subnetwork generated by the regula-
tors at the roots of the regulation trees, the precision
increases from 0.42 to 0.53 by introducing the same
entropy cut-off. Other data sets show similar behavior
(data not shown).

Performance of LeMoNe versus Genomica
Next, we compared the performance of LeMoNe and
Genomica [6,27]. Both programs heuristically search for
an optimal module network and are therefore bound to

end up at a (different) local maximum of the Bayesian
score. We simulated 10 different data sets with 100 exper-
iments for the same 1000 gene network as before and
inferred a network with 150 modules (corresponding to
the point where the score function in Figure 2 starts to sat-
urate). The average precisions are 0.196 ± 0.015, resp.
0.155 ± 0.013, and average recalls 0.255 ± 0.016, resp.
0.381 ± 0.021, for LeMoNe, resp. Genomica. The average
F-measure is 0.222 ± 0.015, resp. 0.220 ± 0.016. The sim-
ilarity in performance at the level of the whole module
network, with a bias for higher precision in LeMoNe and
higher recall in Genomica, is further seen in Figure 6,
where we plot recall – precision pairs for both programs at

Bayesian score as a function of the number of modules and experimentsFigure 2
Bayesian score as a function of the number of modules and experiments. Bayesian score as a function of the number 
of modules for data sets with 10, 100 and 300 experiments (top to bottom). The score is normalized by the number of genes 
times the number of experiments. The curves are least squares fits of the data to a linear non-polynomial model of the form 

 with x the number of modules and n = 6.
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different noise levels. For each of the plotted series, lower
noise levels correspond to points in the upper right of the
series plot, and higher noise levels to points in the bottom
left, illustrating a general decrease in performance for
more noisy data.

The average module overlap between the module net-
works generated by LeMoNe and Genomica is 0.46 ± 0.02.
Both programs, although featuring similar performance,
attain a different local maximum of the Bayesian score,
and the differences in the corresponding module net-
works can be quite substantial. In general we can say that
both module network inference programs suffer from a

high number of false positive edges. When using LeMoNe,
false positives can to some extent be filtered out by look-
ing only at the highest levels in the regulation tree (Figure
4). To see whether this is also the case for Genomica, we
calculated the recall and precision for the subnetworks
generated by the top regulators alone (Figure 6).

The recall for these subnetworks is generally lower as they
contain far fewer edges than the complete module net-
work. For LeMoNe this decrease in recall is compensated
by a large increase in precision. For Genomica the
decrease in recall is bigger, with only a slight increase in
precision. There is no analogue of the assignment entropy

Recall as a function of the number of modules and experimentsFigure 3
Recall as a function of the number of modules and experiments. Recall as a function of the number of modules for 
data sets with 10 (magenta), 50 (cyan), 100 (red), 200 (green), and 300 (blue) experiments. The curves are least squares fits of 

the data to a linear non-polynomial model of the form  with x the number of modules and n = 3.
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in Genomica, so we cannot compare the gain in precision
by imposing an entropy cut-off.

One of the major differences in LeMoNe with respect to
Genomica is the fact that the regulatory tree structures
learned by LeMoNe are only dependent on the expression
data inside the module, and not on the expression profiles
of potential regulators. We hypothesized that this might
allow LeMoNe to better handle missing or hidden regula-
tors, a situation which might for instance occur if the true
regulator is missing from the list of potential regulators. In
order to test this hypothesis, we simulated 10 different

data sets with 100 experiments for the same 1000 gene
network and inferred module networks with 150 modules
using both LeMoNe and Genomica. In each of the ten
runs we randomly left out 20% of the potential regulators
from the regulator list (i.e., we used 84 instead of 105
potential regulators). The average F-measure of the result-
ing networks is 0.183 ± 0.025 for LeMoNe, versus 0.126 ±
0.012 for Genomica. Compared to the results when taking
into account all 105 potential regulators (see above), the
performance drop for LeMoNe is clearly less pronounced
(17.6%) than for Genomica (42.7%), indicating that
LeMoNe is indeed better at handling missing regulators.

Precision at different regulation tree levelsFigure 4
Precision at different regulation tree levels. Precision as a function of the number of modules for subnetworks generated 
by regulation tree levels 0 (roots), 1 and 2, and for random assignments of regulators to regulation tree nodes (top to bottom) 
for data sets with 100 (red), 200 (green) and 300 (blue) experiments. The curves are least squares fits of the data to a linear 

non-polynomial model of the form  with x the number of modules and n = 3.
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Regarding the speed of LeMoNe versus Genomica, we can
say that LeMoNe is considerably faster for larger data sets.
This is mainly due to the fact that in LeMoNe the regula-
tors need only be assigned to the regulation programs
once, after the final convergence of the Bayesian score.
This saves a considerable amount of time on scanning
possible split values and performing acyclicity checks at
each iteration. Roughly, LeMoNe and Genomica per-
formed equally in terms of speed on the SynTReN data set
containing 1000 genes and 100 experiments. On a real
data set with 173 experiments [21], LeMoNe was about
twice as fast as Genomica when limiting the number of
genes to 1000, and ten times faster when considering the
whole data set (2355 genes).

Biological data
For real biological data sets the underlying regulatory net-
work is generally not known (indeed, the primary pur-
pose of module network learning algorithms is precisely
to infer the regulatory network) and hence it is difficult to
assess the quality of an inferred network. This is one of the
main reasons why microarray data simulators such as Syn-
TReN have to be used to validate the methodology. How-
ever, given the fact that data simulators seldom capture all
aspects of real biological systems, any results obtained on
simulated data should be approached critically and,
where possible, validated on biological data sets. Here, we
investigate to what extent module networks inferred from
real expression data can be validated using structured bio-
logical information.

Cumulative distribution of precision as a function of regulator entropyFigure 5
Cumulative distribution of precision as a function of regulator entropy. Cumulative distribution of precision as a 
function of regulator entropy for the data set with 100 experiments and 150 modules: each point at an entropy value x (spaced 
at 0.01 intervals) gives the precision of all (blue) or top (red) regulators with assignment entropy ≤x.
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For S. cerevisiae, there is partial information on the under-
lying network structure in the form of ChIP-chip data and
promoter motif data [9], and more profusely in the form
of GO annotations [2]. We learned module networks for
budding yeast from an expression compendium contain-
ing data for 2355 genes under 173 different stress condi-
tions [21] (the Gasch data set) using the same number of
modules (50) and the same list of potential regulators as
Segal et al. [6]. We then calculated the F-measure between
the resulting regulatory network and the ChIP-chip net-
work of Harbison et al. [9], considering in the former net-
work only regulators that were tested by ChIP-chip. In
general, the resulting recall and precision values are sub-
stantially lower than for simulated data of the same size,
namely 0.0195, resp 0.0218. When looking at individual

modules, only 13 out of 50 regulatory programs feature at
least one regulator that is to some extent confirmed by
ChIP-chip data. In addition, we tried to relate the regula-
tory program of a module to the module's gene content in
functional terms using GO annotation. Overall, only 8
out of 50 programs possess one or more regulators
belonging to a yeast GOSlim Biological Process category
that is overrepresented in the module (considering only
the leaf categories in the GOSlim hierarchy). Remarkably,
only 3 of these 8 programs overlap with the 13 regulatory
programs featuring overlap with the ChIP-chip data. This
observation suggests that both data types can actually be
used only to a limited extent to infer the quality of regula-
tion programs. Indeed, many factors limit the use of ChIP-
chip and GO data as 'gold standards'. Both types of data

Comparison of heuristic search methodsFigure 6
Comparison of heuristic search methods. Comparison of heuristic search methods by recall – precision pairs for data 
sets with 100 experiments and different noise levels, for the complete module network, and for the subnetwork generated by 
the top regulators in the regulation programs.
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are noisy and offer incomplete information. For example,
Harbison et al. [9] mainly profiled transcription factor
binding in rich medium conditions, whereas the Gasch
data set contains primarily stress conditions. The parts of
the transcriptional network that are active under these
conditions may substantially differ [9,10]. Moreover, the
expression profile of a transcription factor is often not
directly related to the expression profile of its targets, for
example due to post-translational regulation of transcrip-
tion factor activity. As a consequence, indirect regulators
such as upstream signal transducers may feature in the
regulation programs instead of the direct regulators, i.e.,
the transcription factors [6].

As for GO, many regulators appear not to be annotated to
the GO Biological Process categories of their target genes.
Taking these factors into account, the limited overlap with
the available ChIP-chip and GO data does not necessarily
reflect the quality of the inferred regulatory programs.

On the contrary, we established that the regulatory pro-
grams do in fact contain a considerable amount of rele-
vant and potentially valuable information. Indeed, by
manually investigating individual modules in more
detail, we could in many cases qualitatively relate the reg-
ulators to the module's gene content. For example, the
module shown in Figure 1 is enriched in a.o. genes
involved in the main pathways of carbohydrate metabo-
lism (P = 1.0596E - 4), energy derivation by oxidation of
organic compounds (P = 1.2046E - 4) and alcohol biosyn-
thesis (P = 1.3185E - 2). None of the 5 regulators of this
module could be related to the module's gene content
based on ChIP-chip or GO information. However, based
on their description in the Saccharomyces Genome Data-
base (SGD) [28], all 5 regulators could be linked to glu-
cose sensing or the response to (glucose) starvation,
processes that can arguably influence the expression of
carbohydrate metabolism genes.

However, one must keep in mind that it remains impossi-
ble to infer complete and accurate regulatory networks
from gene expression data alone. Expression data only
provides information on one regulatory level, namely the
transcriptional level. Information on (post-)translational
regulation is lacking. The current expression-based mod-
ule network algorithms (e.g. [6], this study) try to remedy
this problem by including signal transducers in the list of
potential regulators in addition to transcription factors, in
the hope to capture some of this non-transcriptional reg-
ulation from the expression profiles of key signal trans-
ducers. However, this trick can only be expected to
uncover a fraction of such non-transcriptional regulatory
interactions, and moreover the direct targets of these reg-
ulatory interactions are not identified. A potential remedy
for this shortcoming would be to include other types of

data, such as data on protein expression levels and protein
phosphorylation, in the module network learning frame-
work. Unfortunately, such data are not yet available on a
large scale.

In summary, our results indicate that structured biological
information such as ChIP-chip data or GO can not (yet)
be used to measure the performance of module network
algorithms in an automated way. This is a strong argu-
ment for using data simulators such as SynTReN for the
purpose of developing, testing and improving such algo-
rithms.

Conclusion
We developed a module network learning algorithm
called LeMoNe and tested its performance on simulated
expression data sets generated by SynTReN [20]. We
found that the Bayesian score can be used to infer the opti-
mal number of modules, and that the inference perform-
ance increases as a function of the number of simulated
experiments but saturates well below 1.

We also used SynTReN data to assess the effects of the
methodological changes we made in LeMoNe with respect
to the original methods used in Genomica [6]. Overall,
application of Genomica and LeMoNe to various simu-
lated data sets gave comparable results, with a bias
towards higher recall for Genomica and higher precision
for LeMoNe. However, LeMoNe offers some advantages
over the original framework of Segal et al. [6], one of them
being that the learning process is considerably faster.
Another advantage of LeMoNe is the fact that the algo-
rithm 'lets the data decide' when learning the regulatory
tree structure. The partitioning of expression data inside a
module is not dependent on the expression profiles of the
potential regulators, but only on the module data itself. As
a consequence, the assignment of 'bad' regulators (in
terms of assignment entropy) to 'good' module splits (in
terms of Bayesian score) might suggest missing or hidden
regulators. This situation might occur if the true regulator
is missing from the list of potential regulators, or if the
expression of the targets cannot be related directly to the
expression of the regulator, e.g., due to posttranslational
regulation of the regulator's activity. We have also shown
that filtering the module network by the location of regu-
lators in the regulation program or by introducing an
entropy cut-off improves the inference performance.
When inferring regulatory programs from real data, these
criteria may prove useful to prioritize regulators for exper-
imental validation.

Finally, we explored the extent to which module networks
inferred from real expression data could be validated
using structured biological information. For that purpose,
we learned module networks from a microarray compen-
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dium of stress experiments on budding yeast [21]. We
found that the resulting regulatory programs overlapped
only marginally with the available ChIP-chip data and
GO information. However, more detailed manual analy-
sis uncovered that the learned regulation programs are
nevertheless biologically relevant, suggesting that an auto-
mated assessment of the performance of module network
algorithms using structured biological information such
as ChIP-chip data or GO is ineffective. This underscores
the importance of using data simulators such as SynTReN
for the purpose of testing and improving module network
learning algorithms.
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