
BioMed CentralBMC Bioinformatics

ss
Open AcceResearch
A novel Bayesian approach to quantify clinical variables and to 
determine their spectroscopic counterparts in 1H NMR 
metabonomic data
Aki Vehtari*1, Ville-Petteri Mäkinen1, Pasi Soininen2, Petri Ingman3, 
Sanna M Mäkelä4, Markku J Savolainen4, Minna L Hannuksela4, 
Kimmo Kaski1 and Mika Ala-Korpela*1

Address: 1Laboratory of Computational Engineering, Systems Biology and Bioinformation Technology, Helsinki University of Technology, P.O. 
Box 9203, FI-02015 HUT, Finland, 2Department of Chemistry, University of Kuopio, P.O. Box 1627, FI-70211 Kuopio, Finland, 3Department of 
Chemistry, Instrument Centre, Vatselankatu 2, FI-20014 University of Turku, Turku, Finland and 4Department of Internal Medicine, Clinical 
Research Center, University of Oulu, P.O. Box 5000, FI-90014 Oulu, Finland

Email: Aki Vehtari* - aki.vehtari@hut.fi; Ville-Petteri Mäkinen - vmakine2@lce.hut.fi; Pasi Soininen - pasi.soininen@uku.fi; 
Petri Ingman - petri.ingman@utu.fi; Sanna M Mäkelä - sanna.makela@oulu.fi; Markku J Savolainen - markku.savolainen@oulu.fi ; 
Minna L Hannuksela - minna.hannuksela@oulu.fi; Kimmo Kaski - kimmo.kaski@hut.fi; Mika Ala-Korpela* - mika.ala-korpela@hut.fi

* Corresponding authors    

Abstract
Background: A key challenge in metabonomics is to uncover quantitative associations between multidimensional
spectroscopic data and biochemical measures used for disease risk assessment and diagnostics. Here we focus on
clinically relevant estimation of lipoprotein lipids by 1H NMR spectroscopy of serum.

Results: A Bayesian methodology, with a biochemical motivation, is presented for a real 1H NMR metabonomics data
set of 75 serum samples. Lipoprotein lipid concentrations were independently obtained for these samples via
ultracentrifugation and specific biochemical assays. The Bayesian models were constructed by Markov chain Monte Carlo
(MCMC) and they showed remarkably good quantitative performance, the predictive R-values being 0.985 for the very
low density lipoprotein triglycerides (VLDL-TG), 0.787 for the intermediate, 0.943 for the low, and 0.933 for the high
density lipoprotein cholesterol (IDL-C, LDL-C and HDL-C, respectively). The modelling produced a kernel-based
reformulation of the data, the parameters of which coincided with the well-known biochemical characteristics of the 1H
NMR spectra; particularly for VLDL-TG and HDL-C the Bayesian methodology was able to clearly identify the most
characteristic resonances within the heavily overlapping information in the spectra. For IDL-C and LDL-C the resulting
model kernels were more complex than those for VLDL-TG and HDL-C, probably reflecting the severe overlap of the
IDL and LDL resonances in the 1H NMR spectra.

Conclusion: The systematic use of Bayesian MCMC analysis is computationally demanding. Nevertheless, the
combination of high-quality quantification and the biochemical rationale of the resulting models is expected to be useful
in the field of metabonomics.
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Background
Genomics is increasingly complemented by metabonomics
– the quantitative measurement of the time-related multi-
parametric metabolic responses of multicellular systems
to (patho)physiological stimuli or genetic modification
[1]. Mass spectrometry and nuclear magnetic resonance
(NMR) spectroscopy have become the two key technolo-
gies in the metabonomic field [2]. An appealing feature of
NMR spectroscopy for metabonomic applications is its
specific yet non-selective nature: proton (1H) NMR can
efficiently produce information on a large number of
metabolites in biological samples like human serum. The
abundance of protons and the inherently narrow as well
as heterogeneous chemical shift range of 1H NMR results
in highly informative spectra that contain heavily overlap-
ping resonances [3].

Recently, a call for applying 1H NMR metabonomics to
facilitate disease risk assessment and clinical diagnostics
has emerged [1,2,4-8]. A key issue in bringing metabo-
nomics for clinical use will be to bridge the gap between
biochemistry – as revealed by 1H NMR spectroscopy – and
the relevant measures of current clinical practice. In a 1H
NMR spectrum, one metabolite can manifest several
peaks, and the spectral intensities are both biochemically
and (patho)physiologically related. Furthermore, the data
sets are extensive but redundant: one measurement can
yield tens of thousands of data points, but the effective
dimensionality is much less due to a smaller number of
NMR-visible compounds. Consequently, there are meth-
odological challenges in trying to quantitatively associate
1H NMR metabonomics data to relevant biochemical var-
iables as well as to understand and visualise the underly-
ing metabolic features that relate to various biomedical
applications [8].

A key clinical application of 1H NMR spectroscopy is to
quantify lipoprotein lipids directly from plasma or serum
samples [3,7,9-13]. One of the strategic reasons to use 1H
NMR to study lipoproteins is the avoidance of their tedi-
ous physical isolation from plasma via repetitive ultracen-
trifugations and thus the consequent potential to analyse
extensive clinical data sets beyond current biochemical
methodologies. Various 1H NMR spectroscopy applica-
tions have focused on the main lipoprotein fractions,
namely very low, intermediate, low and high density lipo-
proteins (VLDL, IDL, LDL and HDL, respectively), since
these relate to general clinical guidelines to assess an indi-
vidual's risk for atherosclerosis [3,6,12]. Interestingly, one
of the advanced methods, already in clinical use, to deter-
mine plasma lipoproteins is a commercial 1H NMR based
assay named NMR LipoProfile® by LipoScience Inc [13].
Thus, 1H NMR spectroscopy and metabonomics of serum
provides an extensively studied and demonstrative case of
complex overlapping resonances with well-known bio-

chemical rationale and spectral characteristics [3,6,7,9-
13].

Biomedical research relies heavily on the statistical analy-
sis of empirical findings and extrapolation from limited
sample sets to larger populations. Currently, hypothesis
testing with pre-selected parametric formulations is the
prevailing technique and statistical uncertainty is
expressed indirectly by comparing the observations to a
given null hypothesis. In multi-dimensional applications
such as 1H NMR metabonomics the null hypothesis is
obtainable only for the simplest formulations, which are
often inadequate to describe the data efficiently. In con-
trast, Bayesian theory [14,15] explicitly incorporates
uncertainty in the form of probability distributions, hence
the null hypothesis is no longer required as the reference
point. Furthermore, the parametric formulations need not
be pre-selected heuristically, but can be included in the
modelling process itself. Hence, the analysis becomes
more dependent on the data and prior knowledge, and
less dependent on arbitrary practical restrictions such as
analytical tractability. However, applications of Bayesian
methodology in NMR spectroscopy are sparse [16-18],
perhaps due to the lack of computing power until recent
years. A Bayesian spectral decomposition has produced
promising results for metabonomic NMR data [19] but, to
our knowledge, this is the first biomedical application of
Bayesian inference on spectral quantification with special
modelling emphasis on the metabolic rationale.

Thus, this work has two key objectives to establish. First,
to quantify broad overlapping resonances from 1H NMR
spectra of serum using specific Bayesian models, and, sec-
ond, to relate the resulting model kernels to the known
biochemical characteristics of the spectra. This study
focuses on a clinically significant application of 1H NMR
spectroscopy of serum for quantifying lipoprotein lipid
concentrations used for the assessment of individuals' risk
for coronary heart disease. A set of biochemically charac-
terised serum samples, for which VLDL and IDL triglycer-
ides (VLDL-TG and IDL-TG, respectively) as well as IDL,
LDL and HDL cholesterol (IDL-C, LDL-C and HDL-C,
respectively) concentrations are independently measured,
is the origin for the 1H NMR spectra. A Markov chain
Monte Carlo (MCMC) in Bayesian inference is used to set
up quantitative models based on these 1H NMR spectra
and to automatically define the number and locations of
Gaussian kernels to indicate the spectral features corre-
sponding to each biochemical variable.

Methods
Serum samples and biochemical lipoprotein lipid analysis
The serum samples and the biochemical lipoprotein lipid
analyses were available from 75 individuals, representing
a wide range of plasma lipoprotein lipid concentrations.
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The blood samples were drawn after an overnight fast of
12 hours into EDTA-containing tubes or tubes without
anticoagulant for serum separation. Blood samples for
serum separation were incubated at room temperature for
30 min prior to centrifugation. Serum and plasma were
separated by centrifugation at 1200 g–1500 g for 10–15
min at 4°C. The main lipoprotein fractions were isolated
from plasma by sequential ultracentrifugation using den-
sity ranges of ≤ 1.006 g/ml, 1.006–1.019 g/ml, 1.019–
1.063 g/ml, and 1.063–1.210 g/ml for VLDL, IDL, LDL,
and HDL, respectively [20]. Cholesterol and triglyceride
concentrations in lipoproteins were determined with Spe-
cific Chemistry Analyser (Kone, Finland) using enzymatic
colorimetric methods (kits by Boehringer Diagnostica,
Mannheim GmbH, FRG) and expressed as mmol/l
plasma.

1H NMR spectroscopy
The 1H NMR data were recorded at the physiological tem-
perature of 310 K on a Bruker AVANCE spectrometer
operating at 500.13 MHz equipped with a 5 mm BBI
probehead. A double tube system facilitating absolute
metabolite quantification was used [8,10]. The external
reference tube (o.d. 2 mm, supported by a Teflon adapter)
containing the reference substance (sodium 3-trimethyls-
ilyl[2,2,3,3-d4]propionate (TSP) 40 mmol/l, MnSO4 0.6
mmol/l in 99.8% D2O) was placed coaxially into the
NMR sample tube (o.d. 5 mm) containing 430 μl of each
sample. No water suppression was used and 128 tran-
sients were collected with a 90 degree flip angle using a
spectral width of 5252 Hz and 64 k data points. Acquisi-
tion time of 6.2 s and a relaxation delay of 0.1 s were used.
Prior to Fourier transformation, the measured free induc-
tion decays were zero filled and multiplied by an expo-
nential window function with a line-broadening of 1.0
Hz. The PERCH NMR software was used for pre-process-
ing the data [21]. The metabolite intensities in each spec-
trum were scaled according to the corresponding TSP
reference signal before the Bayesian analyses.

Bayesian spectral analysis
The aliphatic regions of the 1H NMR spectra (from 0.40 to
3.30 ppm; 18 093 data points) were analysed from the
serum samples of those individuals that had the lipopro-
tein lipid concentrations for VLDL-TG, IDL-TG, IDL-C,
LDL-C and HDL-C available. The biochemical assays for
these lipid variables and the 1H NMR spectra are physi-
cally independent. Thus, by modelling the quantitative
relation between the 1H NMR metabonomics data and the
clinical variables, the concentrations of these lipid frac-
tions can be estimated from the serum spectra alone. A
separate Bayesian model was constructed for VLDL-TG,
IDL-TG, IDL-C, LDL-C and HDL-C.

One could assume that all the data points are independ-
ent, but clearly this is not true just by looking at the
smooth spectral curves. In addition, such assumption
would lead to unnecessary methodological problems
[14]. Here, the spectroscopic fact that adjacent data points
are strongly correlated is not ignored but an unknown and
non-constant correlation length is allowed. This is
achieved by representing adjacent points collectively
through a Gaussian kernel with a given width and loca-
tion. Specifically, the dot product between the spectral
intensity vector of a sample and the Gaussian density
function (truncated at 3σ) represents the value of the cor-
responding kernel. The minimum width was constrained
to fulfil the known molecular characteristics in the NMR
spectra [3,8], that is, kernel widths larger than 4 Hz were
favoured.

Based on the application specific knowledge, it was rea-
sonable to assume that a linear model of the target varia-
bles and kernel outputs was appropriate [7,10]. This does
not imply a fully linear model, since the mapping from
the raw spectra to the kernel space is non-linear, especially
since the kernel number is among the targets of the infer-
ence. In addition to the kernels, the mean level of each
spectrum was used as a covariate. Student's t-distribution
was preferred over the Gaussian distribution as a more
robust residual model and the posterior inference was
made by Markov chain Monte Carlo (MCMC) [14]. A use-
ful property of our model specification is that marginal
likelihoods, obtained by analytically integrating over the
linear model weights, can be used to significantly improve
the sampling quality [15]. Kernel locations and widths,
and the degree of freedom for the residual model were
inferred by slice sampling. In addition, the number of ker-
nels was sampled by reversible jump MCMC in which the
proposal distributions for new parameters were the corre-
sponding prior distributions. The rest of the model
parameters were updated using Gibbs' sampling with con-
ditional distributions [14]. Interestingly, by allowing the
selection of input variables to be among the targets of
modelling, the effect of prior assumptions can be reduced
if compared to conventional statistics. A Bayesian ration-
ale and a brief mathematical formulation of the Bayesian
modelling for the 1H NMR spectra of serum are given in
Additional file 1.

An intuitive and practical consideration of the Bayesian
methodology used here is as follows. First, the kernel out-
puts are computed, as specified by the locations and
widths, i.e., the dot products of every kernel vector and
every spectrum are computed. This generates a new n × k
input matrix ϕ, where n is the number of spectra and k the
number of kernels. These kernel features can now be con-
nected to the target variable y through the (simplified) lin-
ear regression equation y = wϕ + ε, where w is the weight
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vector and ε represents the noise. To incorporate the
uncertainties to the model, a sample of w is drawn accord-
ing to the analytical posterior distribution (given current
ϕ and noise distribution) instead of finding the algebrai-
cally optimal weight vector. Next, the shape parameters of
the noise distribution are sampled in a similar fashion,
given the current w and ϕ. Finally, the number of kernels
k is changed (given current w, ϕ and noise distribution) to
try if another number could produce better results. The
above cycle is repeated until convergence seems stable and
enough samples of the parameters have been obtained to
construct histograms that serve as approximations of the
posterior parameter distributions. Note that this is only a
simplified account of the algorithm used (see Additional
file 1 for a more detailed methodology).

In general, the distributions of all parameters converged
fast and mixed well, although the number of kernels
turned out to be somewhat slow in mixing. For a single
MCMC run, reliable results are obtainable at 10000 itera-
tions or one hour on a 1 GHz Alpha EV6.8CB processor.
Before inference, the first 2000 iterations were discarded
and only every 20th of the rest were included. Conver-
gence was verified by comparing 10 independent chains.
Replicates from the predictive distribution of the model
were computed to serve as a test set in estimating the pre-
dictive performance. In a preliminary phase, a 10-fold
cross-validation was used as a more robust strategy to
check that the predictive replicate approach produced
meaningful results. After the posterior distribution has
been constructed, predictions for new spectra can be com-
puted almost instantaneously.

The computations were performed using the MCMCstuff
toolbox [22], which is a collection of Matlab functions for
Bayesian inference by Markov chain Monte Carlo meth-
ods.

Results and discussion
Quantitative models
Figure 1 shows the results of the separate quantitative
Bayesian models for the VLDL-TG, IDL-C, LDL-C and
HDL-C. In Figure 1 correlation coefficients (R) between
predictions and observations are shown to allow consist-
ent comparison to previous studies ([3,12] and refs.
therein). Since the same observations are used to update
the posterior and to compute R, these correlation values
are optimistic with regard to the predictive performance of
the models for future data. Thus, we also estimated the
predictive correlation coefficients (predictive R) by inte-
grating over the uncertainty related to future observations;
these predictive R-values then describe how well the mod-
els can predict the corresponding lipoprotein concentra-
tions in the case of 1H NMR spectra of new individuals.
The predictive R-values/R-values are 0.985/0.990 (n = 75),

0.787/0.900 (n = 72), 0.943/0.983 (n = 72) and 0.933/
0.959 (n = 67) for the VLDL-TG, IDL-C, LDL-C and HDL-
C, respectively. It is notable that the predictive R calcu-
lated for IDL-C clearly reflects the rather large uncertain-
ties related to the experimental determinations of low
concentrations. In general, these values represent excel-
lent quantitative correspondence in this extensively stud-
ied complex application [3,6,7,9-13]. Particularly, in the
case of IDL-C and HDL-C the current results appear
slightly better than those previously reported (see [12] for
a comparison for the quantitative performance of differ-
ent methods used). Thus, these results verify the high-
quality quantification ability of the presented Bayesian
MCMC approach in the case of broad overlapping reso-
nances in the 1H NMR spectra of serum. This is an impor-
tant prerequisite to facilitate the assessment of the
biochemical rationale of the Gaussian model kernels in
relation to each lipoprotein fraction and the 1H NMR
spectroscopic characteristics of serum. The general quanti-
fication aspects of lipoprotein lipids using 1H NMR spec-
troscopy of serum (or plasma) have been extensively
handled in the literature [[3,6,7,9-13] and refs. therein]
and will not be discussed in detail here.

We also tried to set up an equivalent Bayesian model to
quantify IDL-TG. However, a properly quantitative model
was not achieved (a predictive R-value of only 0.608, n =
72; data not shown). Concerning quantification of IDL-
TG and IDL-C somewhat varying results have been pub-
lished [7,9,12,13]. The IDL fraction is included in the
recently improved NMR LipoProfile® method [23] and
previously the application of neural network analysis have
resulted in reasonable (semi)quantitative models [9,12].
It is also notable that all the IDL-C and IDL-TG concentra-
tions for the current sample set are below 0.4 mmol/l.
Thus, a likely reason to affect the modelling is the fact that
biochemically measured concentrations below 0.5 mmol/
l can contain experimental inaccuracies of several tens of
percent [12]. Why the quantitative Bayesian model here
for IDL-C appears rather good but the model for IDL-TG
leads to more inaccuracies is not currently clear. Neverthe-
less, the resulting quantitative model for IDL-C can be
used here to assess how the Gaussian model kernels relate
to the known 1H NMR spectroscopic characteristics of the
IDL particles.

Since kernel selection was part of our modelling, it is pos-
sible to estimate the marginal distributions for the
number of kernels, as depicted in Figure 2. Before any
interpretation, though, the coefficient prior of the linear
regression model that connects the kernel outputs and the
target variable has an effect on kernel number. Fortunately
the predictions are not sensitive to this since the kernel
number is integrated out, but the phenomenon may dis-
criminate models with only a few kernels and large coeffi-
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cients. In any case, IDL-C and LDL-C are clearly more
dispersed than VLDL-TG and HDL-C and this also trans-
lates to Figure 3, where both VLDL-TG and HDL-C are
dominated by a few kernels, but IDL-C and LDL-C pro-
duce clear associations at numerous locations. Note, how-
ever, that for a pair of highly correlated but non-adjacent
spectral regions you might get two strong associations, but
during the MCMC simulation you might get only one of
them at a time. In this respect, the number of kernels pro-
vides an additional insight to the nature of the multi-var-
iate dependencies within the kernels.

The biochemical rationale of the Bayesian model kernels
Typical aliphatic resonances in an experimental 1H NMR
spectrum of human serum are illustrated in Figure 3. The
characteristic spectral features include broad overlapping
resonances originating mainly from different lipid mole-
cules in lipoprotein particles, for example, the -CH3
groups of triglycerides, cholesterol compounds and phos-
pholipids at around 0.80 ppm and the surface phosphol-
ipid -N(CH3)3 groups at around 3.18 ppm. Also
resonances from glucose and some low-molecular-weight
metabolites, such as lactate, are clearly visible in the spec-

The kernel distributions in the Bayesian modelsFigure 2
The kernel distributions in the Bayesian models. The marginal posterior distribution for the number of kernels in the 
Bayesian models for the VLDL-TG (orange), IDL-C (lime), LDL-C (sherry) and HDL-C (olive).

The quantitative performance of the Bayesian modelsFigure 1
The quantitative performance of the Bayesian models. The results of the Bayesian models for the VLDL-TG (n = 75) 
(orange), IDL-C (n = 72) (lime), LDL-C (n = 72) (sherry) and HDL-C (n = 67) (olive). The correlation coefficients (R) shown are 
between predictions and observations (for predictive R-values see Results and discussion). The straight black lines show a 1:1-
relationship and are drawn only to guide the eye.
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A representative 1H NMR spectrum of serum and the spectroscopic characteristics of the Bayesian model kernelsFigure 3
A representative 1H NMR spectrum of serum and the spectroscopic characteristics of the Bayesian model ker-
nels. Illustration of the aliphatic spectral region of a representative experimental 1H NMR spectrum (black) together with the 
main Bayesian model kernels for the VLDL-TG (orange), IDL-C (lime), LDL-C (sherry) and HDL-C (olive). The assignments for 
the resonances refer to fatty acids in triglycerides, cholesterol compounds and phospholipids in various lipoprotein particles, 
the cholesterol backbone -C(18)H3 and the -N(CH3)3 groups of surface phospholipids. Thus, it should be noted that all the 
lipoprotein fractions present in serum contribute to all of these resonances. The insets show the choline -N(CH3)3 region and 
the lipid (-CH2-)n region in mode detail. The highest intensity kernel for each lipoprotein fraction was scaled to 1.0. The dotted 
horizontal line shows the zero level.
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trum. The broad underlying hump in the aliphatic spectral
region is arising mostly from serum albumin and the
albumin bounds fatty acids [3]. A fundamental aspect to
keep in mind here is that all the lipoprotein fractions
present in serum contribute to all of the lipid resonances
(cf., Figure 3). It is also known that the chemical shifts of
the lipid resonances are size-dependent [3,7,24], i.e., the
low frequency sides of the lipid resonances represent the
smaller HDL particles and the high frequency sides the
larger VLDL particles. Thus, the contributions from the
intermediately sized IDL and LDL particles are situated in
the middle regions of the lipid resonances. The composi-
tional differences between the different lipoprotein frac-
tions are also known to cause some characteristic features
for the 1H NMR spectra. These include the distinct reso-
nance of VLDL-TG in the high frequency side of the (-
CH2-)n resonance at around 1.2 ppm [3,9] and the pro-
nounced contribution of the cholesterol compounds in
LDL particles for the -CH3 and -C(18)H3 resonances at
around 0.8 ppm and 0.6 ppm, respectively [3,9,13]. Also,
the prominent contribution of HDL particles for the -
N(CH3)3 resonance at around 3.18 ppm has recently been
highlighted [7].

The resulting Gaussian kernel models for each lipoprotein
fraction are illustrated in Figure 3 with colour coding:
orange for VLDL-TG, lime for IDL-C, sherry for LDL-C and
olive for HDL-C. The highest intensity kernel for each
lipoprotein fraction is scaled to 1.0. It is evident from Fig-
ure 3, that the most influential kernel for both VLDL-TG
and HDL-C is located exactly at the frequency position
expected by the aforementioned well-known biochemical
background and characteristics of the 1H NMR spectra of
serum. Thus, the high frequency side of the (-CH2-)n reso-
nance at around 1.2 ppm and the majority of the choline
-N(CH3)3 resonance at around 3.18 ppm seem to be the
most important locations for the quantitative Bayesian
models of VLDL-TG and HDL-C, respectively. Though the
contributions of the other kernels for VLDG-TG and HDL-
C are far less pronounced they also match the spectro-
scopic characteristics remarkably well. In the case of
VLDL-TG there is a tiny contribution from the high fre-
quency side of the choline resonance and the small nega-
tive kernels within the -CH3 resonance region are also
correctly situated at the high frequency side of the reso-
nance. For HDL-C a clear kernel appears at the low fre-
quency side of the (-CH2-)n resonance. The two small
kernels close to 0.9 ppm are likely to relate to resonances
from cholesterol compounds, known to be fairly pro-
nounced especially in the case of HDL2 particles [7]. Con-
sequently, the biochemical rationales as indicated by the
resulting Gaussian kernel models for VLDL-TG and HDL-
C are fully coherent with the known characteristics of the
1H NMR spectra of serum.

The kernel models for VLDL-TG and HDL-C contain fewer
kernels and are much simpler than the corresponding
models for IDL-C and LDL-C. This result and these differ-
ences are likely to represent the overlap of the lipoprotein
resonances in the 1H NMR spectra. The molecular signals
arising from the VLDL and HDL particles situate at the
high and low frequency sides of the lipid resonances,
respectively, while the contributions from the IDL and
LDL particles are in the middle of the corresponding reso-
nances [3,9,13]. This seems to have a marked effect on the
Gaussian kernel models. Some of the individual kernels
can be interpreted on the basis of the known characteris-
tics of the 1H NMR spectra, for instance, the influential
kernels for LDL-C at 0.6 ppm and at 0.8 ppm (cf., the dis-
cussion above) and the expected frequency positioning of
all the lipoprotein kernels within the (-CH2-)n resonance
region as pointed up in the inset for Figure 3. Conversely,
there are also several kernels that cannot be justified as
clearly as those. The situation is similar in the case of the
kernels for IDL-C and LDL-C. In general, the spectroscopic
and biochemical aspects of the kernels for all the above
discussed lipid concentrations also compare well with
results from a previous approach in which neural network
weights for different spectral points for different quantita-
tive lipoprotein lipid models were assessed [9].

The quantification accuracy achieved via the Bayesian
modelling is excellent also for LDL-C and good for IDL-C.
The resulting more complex kernel models for IDL-C and
LDL-C than for VLDL-TG and HDL-C are thus likely to
represent the more severe signal overlap for IDL-C and
LDL-C than for VLDL-TG and HDL-C. Since clear reso-
nances identifiable to IDL-C or LDL-C are non-resolvable
in the 1H NMR spectra of serum, the Bayesian logic seems
to give rise to quite balanced combinations of several ker-
nels at frequency locations where some information on
the modelled biochemical measure is (known to be)
available. In the case of severe signal overlap, however, the
optimisation of the quantification and the resulting ker-
nel models seems to take place at the expense of the bio-
chemical interpretability.

The analysis of 1H NMR spectra seems to benefit from sev-
eral characteristics of the Bayesian approach. First, feature
extraction and selection from the high-dimensional raw
data can be included as parts of the model. Second, any
prior knowledge about the parameters can be explicitly
incorporated into the framework. Third, no null hypothe-
sis needs to be constructed. Additionally, in contrast to
standard computational methods used in the area of NMR
metabonomics [8], the Bayesian approach produces
results that are tightly connected to the statistics and yet
rather easy to interpret biochemically.
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Conclusion
A set of 1H NMR spectra of serum samples, for which clin-
ically relevant lipoprotein lipid concentrations were bio-
chemically characterised, were analysed using an
automated MCMC Bayesian inference. This real metabo-
nomic case of 1H NMR spectroscopy to quantify lipopro-
tein lipids directly from serum represents a biomedically
relevant application with a well-known biochemical back-
ground and spectroscopic characteristics. To the best of
our knowledge this is the first Bayesian application to
quantify biomedical 1H NMR spectra and to relate the
resulting model kernels to the known biochemical charac-
teristics of the spectra. The results illustrate a high-quality
quantification ability of the presented Bayesian MCMC
approach in the case of broad overlapping 1H NMR reso-
nances. If the signal overlap is severe, the resulting kernel
models seem to form at the cost of the biochemical justi-
fication. In the case of more clearly resolvable resonances,
the biochemical rationale of the uncomplicated kernel
models appeared fully consistent with the known spectro-
scopic characteristics of the application. Hence, even
though the Bayesian MCMC analysis is computationally
demanding, it is anticipated to provide an advantageous
complement to the currently used data analysis methods
in the NMR metabonomics arena, not only in quantitative
modelling but also in revealing metabolic rationale of the
models and biomedical applications.
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