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Abstract

Background: As the number of fully sequenced genome increases, the need is greater for
bioinformatics to predict or annotate genes of a newly sequenced genome. Ever since Eisenberg
and his colleagues introduced phylogenetic profiling for assigning or predicting protein functions
using comparative genomic analysis, the approach has been used in predicting function of some
prokaryotic genomes quite successfully. Very little work has been reported in functional prediction
of eukaryotes such as mouse and Homo sapiens species from phylogenetic profiles.

Results: We have proposed a general methodology for validating the hypothesis underlying
phylogenetic profiling techniques, and have demonstrated it using eukaryotic target genomes such
as Homo sapiens and mouse. The gene ontology is used as the gold standard for validating functional
similarity among the genes in each cluster.

We compute the functional cohesiveness of each cluster and the results appeared to be not
encouraging towards finding functionally cohesive phylogenetic profiles. This result complements
one recent work on the poor performance on functional linkage in some eukaryotic genome using
phylogenetic profiling techniques. If we introduce a broad interpretation for functionally related
genes as functional sub-clustering within a phylogenetic profile, then we have a very strong support
for the hypothesis as we have shown in the paper.

Background

The set of genes encoded in a genome plays a pivotal role
in the growth, development and survival of a species. Over
a long period of evolution, each species has perfected its
genome so as to survive and thrive in an adapted environ-
ment. A pair of genes are said to be co-evolved if they are
consistently present or absent in a set of reference
genomes. Such co-evolved genes are believed to share

similar functions. Strong functional association among
the genes of similar phylogenetic profiles has been
reported for some prokaryotic genes such as bacterial
organisms [1-3]. Very little work has been done in demon-
strating the functional similarity among the genes of a
cluster of eukaryotic genomes using phylogenetic profil-
ing technique. In this work we propose a general method-
ology for empirically validating the hypothesis behind
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phylogenetic profiling and we have demonstrated the
methodology using eukaryotic genomes.

As the numbers of fully sequenced genomes are increas-
ing, the need is greater for bioinformatics to predict or
annotate genes of newly sequenced genome. While the
final phylogeny of species is not yet completed, it is
widely believed that a phylogeny is classified into three
domain system namely Archaea, Eukaryota and Bacteria.
Large numbers of genomes are fully sequenced by various
sequencing centers and many of them are collectively
available in few sources such as NCBI and Cogent. For this
study, we have downloaded the protein sequences of
these completed genomes that include 22 archaea, 24
eukaryotes and 197 Bacteria.

Basis of phylogenetic profiling

Suppose we are profiling a gene, say g, against n genomes.
A profile of a gene g is a binary string of 1 and 0 respec-
tively indicating the presence or the absence of the
homolog of g in the reference genome corresponding to
the position. Let us arrange the k genomes in some order
and we denote the genome at position r by genome,. If
profile, [m| denotes the mt value of the profile of gene g
then profile, [m] = 1 if g¢ has a homolog or ortholog in
genome,,, otherwise it is zero.

The profiles of some hypothetical genes of a target
genome against some N reference genomes are illustrated
in Table 1.

A gene is said to have a homolog in a genome when a gene
of the reference genome has a significant alignment score
with the target gene. While the alignment can be done
with nucleotides or amino acid sequences, we prefer to
use amino acid sequences for aligning against the refer-
ence genome to avoid further computational complexity
due to alternate splicing etc.

Clustering of genes based on profiling

Several clustering algorithms including K-means, and
hierarchical clustering have been used in the literature to
group objects with similar patterns. Similarity between a
pair of profiles can be measured by Pearson's correlation
coefficient or by the cosine angles between the pair of vec-
tors corresponding to the two profiles in a N-dimensional

Table I: Example of phylogenetic profiling
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vector space where N is the number of reference genomes,
which is also the length of the profile.

The Pearson correlation coefficient between a pair of gene
profiles, say g;and g, is given by

Gij

where o;; is the covariance of the gene
(0;*0;

S lml] =

profiles of i and j, and o;and o; are the standard deviation

of the profiles of gene i and gene j respectively. The simi-
larity has to be computed for each pair of profiles and
hence the time complexity of such computation will be
O(N?2).

For the purpose of validating the hypothesis, we group the
genes with identical profile patterns and such patterns will
have Pearson correlation 1. The complexity of selecting
such clusters is O(N) from N by N Pearson correlation
matrix. The overall complexity of such clustering algo-
rithm is O(N2). We provide pseudo code for such naive
algorithm in Figure 1. The total number of genes in a typ-
ical genome is in the order of few thousands, for example,
human genome has over 34,000 genes and any improve-
ment in a clustering algorithm will help to reduce the
overall time. A careful observation reveals that each pat-
tern encodes an integer and hence identical patterns will
map onto the same number. Mapping all the profiles,
which are binary strings, onto numbers will take O(N)
time and sorting numbers will take O(N log N) time using
efficient sorting algorithms such as merge sort. Hence,
clustering of profiles based on identical patterns will take
O(N log N) time. The pseudo code of an efficient algo-
rithm is given in Figure 2.

Introduction to gene ontology

The gene ontology (GO) project [4] provides structured
controlled vocabularies to address gene products consist-
ently over several databases including FlyBase (Dro-
sophila), the Saccharomyces Genome Database (SGD) and
the Mouse Genome Database (MGD). The ontology
describes gene products in terms of their associated bio-
logical processes, cellular components and molecular
functions for each annotated gene. Each description of a
gene product is arranged in a hierarchy from more general
to very specific and the corresponding graph forms a

Target Genome Genome, Genome, Genome; ... Genomey
Gene, | | 0 . 0
Gene, | 0 | . |
Geney 0 | | . |
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Naive Clustering (Profiles) // for grouping identical patterns
profiles[] < all the profiles // assign all the N profiles

to an array
For i =1 to N {

Cluster « {1}
For j = 1 to N{

If (profiles[i] equal profiles[j])

Cluster < U {]J}

H

If (|Cluster| >1)

Phylo_clusters < U {Cluster}
Cluster <« {} // reset the cluster

}
Return Phylo cluster

Figure |
Naive algorithm for clustering Phylogenetic profiles.

directed acyclic graph (DAG) in which each node corre-
sponds to a GO term and the label on the arc corresponds
to the relationship between the terms. The relationship
between a pair of GO terms includes part_of and is_a. The
DAG in Figure 3 shows a partial view of biological process
hierarchy in GO. The terms in any level of the hierarchy
inherits all the properties of its ancestors, for example sig-

Empirical validation

We describe an empirical validation methodology and we
demonstrate it by validating the hypothesis underlying
phylogenetic profiling: "the co-evolved genes as deter-
mined by phylogenetic profiling are functionally related."
For validating any hypothesis, a reference or a gold stand-
ard must be established. For functional annotations, we

nal transduction is a cellular process.

Naive Clustering (Profiles) // for grouping identical patterns
profiles[] ¢ all the profiles // assign all the N profiles
to an array
For 1.=1 to N {

Cluster « {1}
For 7 = 1 to N{
If (profiles[i] equal profiles[j])
Cluster < U {]}
i
If (|Cluster| >1)
Phylo clusters <«  {Cluster)}

Cluster <« {} // reset the cluster
i
Return Phylo cluster

Figure 2
An efficient algorithm for clustering Phylogenetic profiles (O(N Log N)) time.
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A partial view of gene ontology (GO) terms graph.

use gene annotation, the GO ontology, as a reference or
the gold standard.

The work flow of our proposed empirical validation
method has the following steps:

1. Select noise free set of sequenced genomes as reference
genome

2. Select functionally annotated sequenced genome(s) as
target genome(s)

3. Obtain the phylogenetic profile of each gene in the tar-
get genome.

4. Cluster the genes based on their profiles
5. In each cluster, remove homolog or group them
together so as to form a pseudo gene representing the

homolog group

6. Obtain the functional annotation for the genes in each
cluster

7. Compute the functional cohesiveness of each cluster

8. If all the clusters are functionally cohesive, the hypoth-
esis is empirically validated.

For each gene from the target genome, a phylogenetic pro-
file against the reference genomes is obtained first. By
applying an algorithm described in Figure 2, the profiles
are clustered. To avoid homolog genes in a cluster affect-
ing the final results in validating the hypothesis or to test
the functional similarity, we group each set of homolog
genes of a cluster and consider each group as a single entry
in a cluster. Suppose g;,, 8,,.--- 8 are the genes of cluster
1, and gy,,,.., g, are homolog then the cluster is considered
to be consisting of g1, &2 81/ 8hel--r 81k This
applies for other homolog genes in the cluster.

We test the validity of the hypothesis by testing functional
similarity of the genes in a phylogenetic cluster. In terms
of GO ontology [5,6], functional similarity refers to both
the molecular function and biological processes. Many of
the genes in both the mouse and human genome have
annotation in gene ontology. Since a gene maps onto
many molecular functions, we use average and the best
similarity between a pair of genes. Similarly, we apply the
same idea to test the biological process similarity.

The annotation of a gene can be obtained through the cor-
responding GO term(s) associated with the gene. Similar-
ity between a pair of genes becomes the similarity
between the sets of GO terms corresponding to the respec-
tive genes. GO terms are arranged in a hierarchy from
more general to very specific and the corresponding
graphs form a directed acyclic graph (DAG). To measure
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the similarity between a pair of GO terms, one can possi-
bly measure the links between them, but it does not reflect
the semantic relations between those terms. We prefer to
use information content of nodes with respect to a
genome to account for the similarity of pair of GO terms.
We start with obtaining the number of times each GO
term occurs in a selected target genome. Since GO terms
are organized as a directed acyclic graph, a GO term inher-
its its entire descendant's occurrence. The probability of a
GO term, say f, occurrence in a genome is obtained by
dividing t's occurrence count by the roots occurrence
count. The information content of a GO term, , is defined
as -log(p,) where p, is the probability of 's occurrence in
the genome.

Using Resnik's [7] approach, similarity between a pair of
GO terms is defined as the maximum information con-
tent of the subsuming parent and it is defined as

Sim(ty, t,) = max(—log(p(c))
ceS(t1,t2)

where S(t;, t,) is the set of common ancestor terms of t;
and ¢, in the GO term hierarchy. Using this measure, the
similarity varies from 0 to infinity where O reflects very lit-
tle or no similarity.

Lin [8] proposed some variation to Resnik's similarity
measure and it normalizes the similarity from 0 to 1. Lin's
similarity of pair of terms t, and t, is defined as

Sim(t;, t;) = 2xmax(log(p(c))/ (log(p(11)) + log(p(t2)))
ceS(t1,¢2)

We use Lin's metric to measure the similarity between a
pair of GO terms. A gene usually may have many GO
terms, hence to measure the similarity of pair of genes we
have to consider all the GO terms corresponding to these
pair of genes. Suppose, a gene g, has GO terms t;;, t;,,...,
t;;and g, has GO terms t,;, ty,,..., . The average similar-
ity of the pair of genes can be defined as the average of all
the similarities corresponding to their GO term pairs as
defined

i=r,j=k
Aver_Sim(g;,g,) = 2 Sim(ty;,t5;) /(rxk)
i=1,j=1

This represents the average similarity between g, and g,.
We also can obtain the closest or the best similarity
between the pair of genes by taking the best similarity
value among the corresponding pairs of GO terms. It is
defined as

Best_Sim(g;, 8,) = max;_; j_, k(sim(ty; tzj))

http://www.biomedcentral.com/1471-2105/8/S7/S25

Each row of a cluster represents a protein or a group of
homolog proteins. We obtain the corresponding GO
terms for each row and create average and best similarity
matrices for each cluster. Note here that we ignore the pro-
teins that do not have corresponding GO terms. Let
Aver_M, [i, j] and Best_M, [i, j] respectively represent aver-
age and the best similarity of row i and j of similarity
matrix of cluster k. We can compute similarity density for
each cluster to measure the cohesiveness of the genes or
proteins in a cluster based on their molecular function or
biological processes.

i=n-1,j=n

X mlij]
i=1, j=i+1

n(n—1)
For average cohesiveness of a cluster, say k, m [i, j] repre-
sents the average similarity of row i and j of similarity
matrix while for best cohesiveness of the cluster, m [i, j]
represents the best similarity of row i and j ofsimilarity
matrix. n represents the number of rows of the similarity
matrix of cluster k.

Cohesiveness) = 2x

Cohesiveness of each cluster is obtained so as to validate
the hypothesis.

Objective

The objective of this work is (1) to describe an empirical
validation method for testing the hypothesis behind phy-
logenetic profiling technique with large reference
genomes, and (2) to demonstrate the method using
eukaryotic target genomes such as mouse and Homo sapi-
ens.

Results

Phylogenetic profiles

We have created phylogenetic profiles of mouse and
Homo sapiens genomes across the reference genomes
using raw sequence score of BLASTP. These profiles with
reference to 243 genomes are clustered based on exact
profile patterns. To avoid the influence of homolog
sequences in a cluster to the final analysis, we group
homolog proteins within a cluster and consider each
homolog group as a single element or a pseudo gene in a
cluster.

Mapping onto GO terms

In the context of gene ontology a function refers to molec-
ular function and biological process, hence each phyloge-
netic cluster maps onto the corresponding molecular
functional group or biological process group. Each row of
a phylogenetic cluster is map onto GO terms (molecular
functional or biological process) so as to form molecular
functional group or biological process group. We ignored
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the proteins or rows in a cluster that do not have corre-
sponding GO terms.

Empirical validation

We use external or knowledge based validation tech-
niques to test the molecular functional cohesiveness or
biological process cohesiveness of each of the phyloge-
netic clusters. The cohesiveness of a cluster is the same as
the similarity density of a cluster. A cluster is said to be
functionally cohesive if its cohesiveness or cluster density
is closer to 1. Lower value indicates that a cluster has pro-
teins that are functionally diverse. In Table 2, we provide
the best and the average cluster cohesiveness of each clus-
ter in Homo sapiens. The functional cohesiveness of clus-
ters for Homo sapiens with the best pairwise similarity is
shown in Figure 4.

A gene usually maps onto many GO terms. To find gene
similarity between a pair of genes using GO terms, average
pairwise GO terms as well as the best pairwise GO terms
are used in the literature. To determine the cluster similar-
ity, it is preferable to use the best pairwise similarity.
Among the sixteen clusters, four of them have acceptable
close similarity in terms of molecular functions and bio-
logical processes. We can state that about 25% of the phy-
logenetic clusters satisfy functional similarity as per the
hypothesis.

In Table 3 we provide the best and the average cluster
cohesiveness of each cluster in the mouse genome. The
functional cohesiveness of clusters for mouse with the
best pairwise similarity is shown in Figure 5.

Table 2: Cluster Cohesiveness for homo sapiens genome.

http://www.biomedcentral.com/1471-2105/8/S7/S25

Among the twenty four clusters, six of them have accepta-
ble close similarity in terms of molecular functions and
biological processes. That is, about 17% of the clusters in
the mouse genome satisfy the hypothesis.

The cohesiveness of many clusters is quite low and
thereby offering weak support to the hypothesis. To
understand the functional distribution or associations of
the genes within a cluster, we had examined tow largest
clusters; clustl from Homo sapiens and the clust2300
from mouse genome. The genes in each cluster are
grouped using functional similarity among the genes as
features. We have applied hierarchal clustering [9] and the
genes seem to nicely cluster into few functional groups as
shown in Figures 6 through 9. The corresponding sub-
cluster cohesiveness is shown in Tables 4 and 5.

The hierarchal clustering of the 396 genes in the phyloge-
netic cluster clustl of Homo sapiens with average link dis-
tance and Pearson correlation coefficient is shown in
Figures 6 and 7. Even though the overall functional cohe-
siveness of clustl is quite low, 0.262 for molecular func-
tion and 0.402 for biological process, the functional
clustering of clustl shows remarkable functional cohe-
siveness as illustrated in Table 4.

The hierarchal clustering of the 434 genes in the phyloge-
netic cluster clust2300 of mouse genome with average
link distance and Perason correlation coefficient is shown
in Figures 8 and 9. Even though the overall functional
cohesiveness of clust2300 is low, 0.487 for molecular
function and 0.475 for biological process, the functional
clustering of clust2300 shows remarkable functional
cohesiveness as illustrated in Table 5.

Cohesiveness with average pairwise similarity

Cobhesiveness with the best pairwise similarity

Cluster Cluster Elements Molecular Function Biological Process Molecular Function Biological Process
clust79 4 0.088 0.176 0.458 0.304
clust30 5 0.198 0318 0.491 0.807
clust104 6 0.309 0.432 0.800 0.816
clustl4 6 0.635 0.455 1.000 1.000
clust55 I 0.199 0.168 0.502 0.428
clust0 12 0.139 0.195 0.303 0.345
clust29 I5 0.095 0.144 0.163 0.278
clust53 17 0.114 0.174 0.211 0.293
clust72 22 0.625 0.962 1.000 1.000
clust3 24 0.104 0.259 0.287 0.491
clust9 25 0.094 0.194 0.158 0.310
clust4 48 0.154 0.255 0.514 0.583
clust2l 64 0.621 0.406 1.000 1.000
clust7 69 0.159 0.226 0.308 0.431
clust2 229 0.145 0.177 0.436 0.578
clustl 396 0.122 0.155 0.262 0.402
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Figure 4
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Functional cohesiveness of clusters for Homo sapiens. Table 2 provides the number of genes in each cluster.

Table 3: Cluster Cohesiveness for mouse genome.

Cohesiveness with average pairwise similarity

Cohesiveness with the best pairwise similarity

Cluster Cluster Elements Molecular Function Biological Process Molecular Function Biological Process
clustl 41 3 0.000 0.333 0.000 0.333
clust200 3 0.189 0.280 1.000 1.000
clust48 3 0.326 0.443 1.000 0.946
clust239 4 0.651 0.874 1.000 1.000
clust24 4 0.113 0.000 0.226 0.000
clust60 4 0.208 0.218 0.281 0.438
clustl30 5 0.198 0.212 0.864 0.615
clust66 5 0.180 0.172 0.573 0.633
clust79 5 0.072 0.205 0.185 0.241
clust96 5 0.354 0.396 1.000 0.813
clust44 9 0.129 0.146 0.167 0.304
clust54 10 0.215 0.283 0.928 0.595
clustl8 I 0.144 0.117 0.259 0.237
clust9 I 0.105 0.205 0.247 0.454
clust26 12 0.091 0.246 0.281 0.373
clust78 I5 0.124 0.212 0.204 0.272
clust72 21 0.113 0.295 0.287 0.521
clust3 43 0.908 0.893 1.000 0.986
clust2| 59 0.155 0.307 0.479 0.617
clust5 63 0.134 0.211 0.242 0.382
clust0 66 0.751 0.676 1.000 0.925
clust2 205 0.157 0.180 0.507 0.519
clust4 333 0.119 0.142 0.232 0.276
clust2300 434 0.121 0.193 0.487 0.475
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Discussion

Ever since phylogenetic profiling was introduced by Eisen-
burg's group [1] in 1999, it has been successfully used for
predicting functional linkage among genes. Many success-

ful works [2,3,10,11] including the pioneer work was
focused on prokaryotes. Very little or no work has been
reported in genome wide testing of functional linkage in
either homo sapiens or mouse genome using phyloge-

Table 4: Functional cohesiveness of the clusters obtained by using hierarchal clustering method on Phylogenetic Cluster | of Homo

sapiens.

Molecular Functional clusters from Figure 6

Biological Process Clusters from Figure 7

Cluster Cluster Elements Cohesiveness Clusters Cluster Elements Cohesiveness
cluslf 90 0.538 clustlp 157 0.858
clust3f 50 0.887 clust2p 5 0.642
clust4f 14 0.878 clust3p 46 0.699
clustéf 21 0.508 clust4p 19 0.820
clust7f 8 0.670 clust7p 5 1.000
clust8f 109 0.890 clust8p 80 0.671
clust9f 31 0.907 clust9p 10 0.731
clustl If 15 0.851 clust10p 9 0.972
clust|2f Il 0.731 clustl Ip 33 0.658
clust | 4f 31 1.000 clustl2p 5 1.000
clustl3p 22 1.000
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Table 5: Functional cohesiveness of the clusters obtained by using hierarchal clustering method on Phylogenetic Cluster 2300 of mouse

genome.

Molecular Functional clusters from Figure 8

Biological Process Clusters from Figure 9

Cluster Cluster Elements Cohesiveness Clusters Cluster Elements Cohesiveness
clustlf 139 0.98065 clustlp 202 0.762925
clust2f 71 0.87505 clust2p Il 0.800765
clust3f 6 | clust3p 55 0.788301
clust4f 27 0.886282 clust5p 44 0.709067
clust5f 7 0.98122 clust7p 28 0.929553
clustéf 7 0.905767 clust9p 59 0.862122
clust7f 8 | clust10p I |

clust8f 64 0.689033

clust9f 48 0.943796

clustl If 6 0.707794

clust|2f 26 0.691272

clust| 3f 7 |

clust|4f 6 |

netic profiling, hence we were unable to compare the cur-
rent work with others.

The objective of this study is to validate the basic hypoth-
esis of phylogenetic profiling, that is, co-evolved genes as
determined by phylogenetic profiling are functionally
close together. If the hypothesis would have been true,
then genes among a phylogenetic cluster should be func-
tionally close together and thus functional cohesiveness
of each cluster must be very high. The results show that
phylogenetic profiling does not create functionally cohe-
sive clusters in the mouse or in the Homo sapiens species.
The profile is a binary sequence of string of length 243. We
use identical profile patterns to cluster the profiles and we
have generated over 1,800 clusters in each target genome.
When homolog within each cluster was removed or
grouped, and clusters with less than three members were
filtered out, the phylogenetic clusters reduced to 16 in
Homo sapiens and 24 in the mouse genome. In Homo
sapiens only 25% of the clusters show close functional
cohesiveness while only 17% have similar cohesiveness in
the mouse genome. The poor performance can be attrib-
uted to many factors including the selection of reference
sequences, or the hypothesis may not be valid for a
broader class of applications.

Many successful results in predicting functional linkages
using phylogenetic profiles were reported on prokaryotic
genomes. In those works, very high percentage of refer-
ence genomes is also prokaryotes. In the current work, we
have created phylogenetic profiles using 243 reference
genomes with the following compositions: 22 Archaea,
24 Fukaryotes and 197 Bacteria. Only about 10% of the
reference genomes are from Eukaryotes. The lack of
eukaryotes in reference genomes may have caused poor
results and we cannot verify the statement since there are
not many completely sequenced eukaryotes.

Recently Sun et al [2,12] studied composition of reference
genome for effective functional prediction in prokaryotic
genomes using phylogenetic profiling techniques. We are
not sure to what extent the results will be applicable in
functional prediction in eukaryotic genomes. We believe
it is worth looking into further investigation on selecting
reference genome based on some evolutionary history.

Beyond the annotation such as molecular function and
biological processes associated with the genes in these
clusters, we examined for possible interaction among
them. We found only a very few protein to protein inter-
actions in the clusters. It is also possible that these genes

# of ltems Left = 388

Minimum Similarity = 0.847 # of Clusters = 14 # of Alones = 8

Bl Al

Figure 6

Functional clustering (molecular function) of Clus| of Home sapiens. Table 4 provides the details on functional cohesiveness.
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Figure 7

ey

Functional clustering (biological process) of Clus| of Home sapiens. Table 4 provides the details on functional cohesiveness.

in a cluster may be co-regulated or share binding sites. As
a future work, we plan to explore the possible regulatory
relations among the genes in a cluster.

To understand low cohesiveness in some phylogenetic
clusters, we had examined the largest cluster in each target
genome. When the genes of the phylogenetic cluster
clustl are functionally clustered using hierarchical
method with average linkage and Pearson correlation,
they form cohesive functional groups as illustrated in
Table 4, and in Figures 6 and 7. Similarly, the genes of the
phylogenetic cluster clust2300 form cohesive functional
groups as illustrated in Table 5, and in Figures 8 and 9
when clustered using hierarchical method with average
linkage and Pearson correlation. This result is very encour-

aging.

Conclusion

We have outlined a general methodology for validating
the hypothesis behind phylogenetic profiling and have
demonstrated it with eukaryotic species mouse and Homo
sapiens. We use gene ontology annotations, which has
about 60% coverage in the target genomes, for measuring
functional density in each phylogenetic cluster.

As we discussed in the previous section, the functional
cohesiveness among the clusters are weak in the eukaryo-
tic target genomes, which is in contrast to some spectacu-
lar success in functional prediction in prokaryote. While
the success in prokaryotic function prediction may be
attributed to the large number of prokaryotic reference
genome, the failure in eukaryotic function may be attrib-

uted to the low number of eukaryotic reference genome,
which is only about 10% of the whole reference genome.
We anticipate that different mixture of reference
sequences based on evolutionary history may help to
improve the performance in functional prediction in our
target genome. The investigation of transcriptional rela-
tions among the clustered genes is underway.

The hypothesis as stated as "co-evolved genes as deter-
mined by phylogenetic profiles are functionally related"
may be viewed as having two interpretations. The narrow
one may state that genes of a phylogenetic cluster must be
functionally cohesive and a broad interpretation maybe
viewed as the genes of a phylogenetic cluster may belong
to few cohesive functional groups. Our results show weak
support for the narrow interpretation of the hypothesis
while the empirical study shows a strong support for the
broad interpretation of the hypothesis. Overall, the phyl-
ogenetic profiling is still a very useful technique for pre-
dicting function of an unknown protein sequence.

Methods

Data sets

We use raw sequence score for obtaining phylogenetic
profiles. We have downloaded the protein sequences of
243 fully sequenced genomes consisting of 22 Archaea, 24
Eukaryotes and 197 Bacteria from NCBI and Cogent. We
tested the functional links among the clustered genes of
the target eukaryotes mouse and the Homo sapiens and
verified the underlying hypothesis of phylogenetic profil-
ing.

# of ltems Left = 425

Minimum Similarity = 0.885 # of Clusters = 14 ¥ of Alones = 9
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Figure 8
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Functional clustering (molecular function) of Clus2300 of mouse genome. Table 5 provides the details on functional cohesive-

ness.
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Figure 9
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Functional clustering (biological process) of Clus2300 of mouse genome. Table 5 provides the details on functional cohesive-

ness.

Generation of phylogenetic profiles

The phylogenetic profile of a gene can be obtained by
determining the presence or the absence of its homolog
across different species either by examining orthology
databases, such as COG [13,14], or by using raw sequence
similarity scores, such as BLASTP [15] E-value. For larger
coverage and for automating profile construction, we
favored sequence similarity for phylogenetic construction.

We have downloaded BLAST software from the NCBI site
[16] and ran BLASTP for each protein sequence in the tar-
get genome matching against the sequences from each
one of the reference genomes. We use BLOSUM 62 substi-
tution matrix and we set the acceptable E-value threshold
to 10-10. From each run of BLASTP of a target genome
against a reference genome, we construct a column of the
profile matrix.

Clustering of profiles

For each target genome, namely Homo sapiens and
mouse we constructed phylogenetic profiles as described
in the previous section. Each protein in the target genome
is identified or denoted by the sequence GI number and it
is represented as the first column in the profile matrix.
Each of the remaining 243 columns represents a reference
genome.

We cluster profiles of similar patterns together. For the
purpose of validating the hypothesis, we use very stringent
measurement for clustering, that is, identical patterns are
used for clustering. With identical patterns, we gathered
large number of clusters over 1,800 in each genome. Some
of the genes or the proteins in each cluster may be
homolog and they may incorrectly influence the results of
validation, hence we remove or group them together by
running BLAST on itself for each group of sequences cor-
responding to each cluster. The substitution matrix and
the threshold E-value were set to the same values as used
for obtaining phylogenetic profiles. Homologs within a
cluster are gathered together and each set forms a row.

Validation

There are numerous works reported on validating clusters
in the literature [17-20]. In this work, we are only inter-
ested in validating whether the phylogenetic similarity
translates into functional similarity. This is very much
similar to external validation or the knowledge directed
validation techniques as has been used by the data mining
community. The gene ontology (GO) project [4] provides
structured controlled vocabularies to address gene prod-
ucts consistently over several databases including our tar-
get species. When we talk about functional relations, it
precisely translates into either molecular function or bio-
logical process or both. For many proteins in our target
genome, we can precisely find the corresponding GO term
from the GO ontology and hence it provides an elegant
way to validate functional similarity among proteins in
each cluster.
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