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Abstract
Background: The analysis of high-throughput gene expression data sets derived from microarray
experiments still is a field of extensive investigation. Although new approaches and algorithms are
published continuously, mostly conventional methods like hierarchical clustering algorithms or
variance analysis tools are used. Here we take a closer look at independent component analysis
(ICA) which is already discussed widely as a new analysis approach. However, deep exploration of
its applicability and relevance to concrete biological problems is still missing. In this study, we
investigate the relevance of ICA in gaining new insights into well characterized regulatory
mechanisms of M-CSF dependent macrophage differentiation.

Results: Statistically independent gene expression modes (GEM) were extracted from observed
gene expression signatures (GES) through ICA of different microarray experiments. From each
GEM we deduced a group of genes, henceforth called sub-mode. These sub-modes were further
analyzed with different database query and literature mining tools and then combined to form so
called meta-modes. With them we performed a knowledge-based pathway analysis and
reconstructed a well known signal cascade.

Conclusion: We show that ICA is an appropriate tool to uncover underlying biological
mechanisms from microarray data. Most of the well known pathways of M-CSF dependent
monocyte to macrophage differentiation can be identified by this unsupervised microarray data
analysis. Moreover, recent research results like the involvement of proliferation associated cellular
mechanisms during macrophage differentiation can be corroborated.

Background
Since microarray technology has become one of the most

popular approaches in the field of gene expression analy-
sis, numerous statistical methods have been used to pro-
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vide insights into the biological mechanisms of gene
expression regulation. The high dimension of expression
data and the complexity of the regulatory mechanisms
leading to transcriptional networks still forces statisticians
and bioinformaticians to examine available methods and
to develop new sophisticated approaches. However, there
are already appropriate methods using different
approaches to examine the underlying biological mecha-
nisms determining the gene expression signatures and
profiles measured by microarray experiments. Supervised
methods using prior knowledge like Gene Set Enrichment
Analysis (GSEA) deliver useful results under certain condi-
tions. But there is still a lack of reliable data needed for
non-classical analysis. Widely used unsupervised
approaches, like hierarchical clustering and k-means clus-
tering, use correlations or other distance or similarity
measures to identify genes with similar behavior under
similar conditions. But these methods are not able to rep-
resent more complex structures and interdependencies in
the regulatory machinery.

In contrast to the algorithms mentioned above, independ-
ent component analysis (ICA) explores higher-order sta-
tistics to decompose observed gene expression signatures
(GES), which form the rows of the input data matrix, into
statistically independent gene expression modes (GEM),
which form the rows of matrix S according to the data
model XT = AS. ICA solves blind source separation (BSS)
problems, where it is known that the observed data set
represents a linear superposition of underlying independ-
ent source signals. But it can more generally be considered
a matrix decomposition technique which extracts inform-
ative features from multivariate data sets like, for example,
biomedical signals like EEG (Electroencephalography)
[1,2], MEG (Magnetoencephalography) [3] and fMRI
(functional magnetic resonance imaging) [4-6] record-
ings. ICA can also be considered a projective subspace
technique appropriate for noise reduction [7,8], or artifact
removal [9,10] if generated from independent sources.

In this work we will concentrate on the linear case, in
which each single microarray GES is considered a linear
superposition of unknown statistically independent GEM.
To decompose these mixtures into statistically independ-
ent components, ICA algorithms like FastICA or JADE
have been used. Typically, these GEMs can be interpreted
as being characteristic of ongoing, largely independent
biological regulatory processes. The philosophy behind
can be expressed as: co-expression means co-regulation. But
the complexity of gene regulation and the various interac-
tions of cellular processes demands a new interpretation
of our ICA-derived components. In the following we use
these extracted GEMs to generate sub-modes, which may
provide biological pathway information. The genes con-
tained in these pathway-associated sub-modes can be

regarded as more or less self-contained parts of larger reg-
ulatory networks, which can be represented by combining
these sub-modes into meta-modes according to the func-
tional role of the associated genes.

Here we used M-CSF dependent in vitro differentiation of
human monocytes to macrophages as a model process to
demonstrate that ICA is a useful tool to support and
extend knowledge-based strategies and to identify com-
plex regulatory networks or novel regulatory candidate
genes.

The major known pathways associated to M-CSF receptor
dependent signaling [11-13] include expansion of the role
of the MAP-kinase pathway [14,15] and Jun/Fos, Jak/Stat
and PI-3 kinase [16-18] dependent signal transduction.
Up-regulation of immune-regulatory components
involved in innate immunity response (e.g. MHC), spe-
cific (e.g. Fc) [19-21] and nonspecific (CRP, complement,
galectins) [22-26] opsonin receptors as well as charge and
motif pattern recognition receptors (e.g. SR-family, LRP,
Siglecs etc.) [27-30], is characteristic for monocyte/macro-
phage differentiation. Beyond this, an increase of mem-
brane biogenesis, vesicular trafficking and metabolic
pathways including amino acids, glucose, fatty acids and
sterols, as well as increased activity of lysosomal hydro-
lases that enhance phagocytotic function [31,32],
autophagy [33] and recycling is triggered through M-CSF
signaling as a hallmark of innate immunity [34]. These
mechanisms are tightly coupled to changes in cytokine/
chemokine response [35] and red/ox signaling (NOS e.g.
NADPH-Oxidase, Glutathione, Thioredoxin, Selenopro-
teins) that drive chemotaxis migration, inflammation
(e.g. NfκB), apoptosis (eg. Caspases, TP53, NfκB, cera-
mide) and survival [36-42].

Results and Discussion
M-CSF dependent monocyte to macrophage differentia-
tion involves the activation and regulation of many differ-
ent cellular pathways. In this study we used several
microarray experiments and combined them to a data set,
which we analyzed using the JADE algorithm. The
extracted GEMs were labeled from 1 to 14, according to
decreasing energy. Note that the extracted GEMs show
positive as well as negative components. They are parti-
tioned into a sub-mode containing the negative signals
only, denoted by i.1, and a corresponding sub-mode of the
positive signals, denoted by i.2, respectively. These sub-
modes were then combined into so-called meta-modes
according to the following super categories deduced from
the MeSH-filter used: Apoptosis, signal transduction, cell cycle
and regulatory sequences, see table. Sub-classification and
mapping to distinct pathways was then performed with
the extracted sub-modes using the BiblioSphere MeSH- and
GeneOntology-filter tools. Note that our method not only
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takes into account that one gene can be part of more than
one pathway, but also that one pathway can be involved
in more than one cellular event. This cannot be achieved
with classical clustering tools.

Signal Transduction
Within the meta-mode Signal transduction four sub-modes,
3.2, 6.2, 12.2 and 13.2 were combined together. The MAP-
kinase pathway (Figure 1) could be identified as the major
signal transduction pathway in sub-modes 3.2 and 12.2.
Sub-mode 6.2 encompassed the functions signal transduc-
tion and cell communication. The remaining sub-mode
13.2 could not be mapped to a defined pathway, but the
majority of genes within this sub-mode are associated with
innate immunity and defense functions. Among these we
identified relevant genes, also related to signal transduc-

tion, like CD86, BLNK. The transcription factors LMO2
and FLI1 were unique in sub-mode 13.2 whereas MMP9,
CD36, CTSK, C1QR1 and MYCL1 as a TF were also
present in several other sub-modes.

The 12 and 18 respectively, identified MAPK-pathway
genes were all unique within their sub-modes (Table 1),
except IL8 and DUSP1, which were present in both sub-
modes. IL8 is a member of the CXC chemokine family and
thus one of the major mediators of the inflammatory
response. It is also a potent angiogenic factor and has a
signalling function in the FAS-pathway, whereas DUSP1 is
assumed to play an important role in the human cellular
response to environmental stress, as well as in the negative
regulation of cellular proliferation. Another central gene
of the MAPK-pathway is caspase-1 (CASP1), which was

MAP kinase pathway analysis of the meta-modesFigure 1
MAP kinase pathway analysis of the meta-modes. Yellow boxes correspond to genes mapped to the apoptosis meta-mode, red 
boxes to regulatory sequences and blue to signal transduction meta-mode, respectively. Solid arrows indicate direct and dashed 
arrows indirect activation. (Detailed legend information can be found on the KEGG website [63])
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represented in sub-mode 12.2 (Figure 2). Caspase-1 is
responsible for the maturation of the multi-functional
cytokine interleukin-1β and as member of the FAS caspase
cascade it is involved in FAS mediated cell death [43]. Fur-
ther remarkable genes associated with MAP-kinase in this
sub-mode were S100A8, S100A9, GADD45B, CTSK, SOD2
and the transcription factors JUNB and ATF3, since they
were all represented in other sub-modes or pathways, or
play a central role in the MAPK-pathway.

Sub-mode 3.2 combined the MAPK-pathway with the
thioredoxin (TRX) reductase/thioredoxin system. TRX is
involved in a variety of oxidation reduction reactions that
regulate cell growth and survival decisions [44]. It reduces

ligand binding and DNA interaction by oxidizing cysteine
residues within the DNA binding domain of glucocorti-
coid hormone receptors. Furthermore, TXNDC14 and
TXNRD1 were found in this sub-mode. TRX also seems to
be up-regulated by NGF through MAPK1 [45]. Other
genes associated with the MAPK-pathway were: STK17A,
SH3BP5, RPS6KA1, CD44, G6PD, IL1RN and the tran-
scription factors EGR2.

In sub-mode 6.2 all of the 29 genes involved in signal trans-
duction were also related to the MeSH-term cell communi-
cation. Five of those signalling genes CFLAR, TXNDC1,
YWHAZ, NOTCH2 and PSEN1 were also involved in the
negative regulation of cell death.

Table 1: The table shows a comparison of the known M-CSF dependent macrophage differentiation pathways and the results of our 
gene expression mode analysis as described in the text. MM = meta-mode, PW = pathway, II & D = Innate immunity and defense, Cell 
C. = Cell communication, FAM = Fatty acid metabolism, DNA-P = DNA-protection.

Known M-CSF dependent differentiation 
pathways

Meta-mode (MeSH 
Terms)

Pathway Sub-
mode

Mapped genes

Total MM PW

Differentiation PI3Akt
JAK/STAT
MEK/ERK

Signal transduction MAPK 3.2 67 32 12

12.2 53 40 18

II & D 13.2 60 26 -

Cell C. 6.2 62 29 29

TP53 DNA protection Regulatory sequences JUN/FOS 4.1 43 22 3
10.1 48 22 10

FAM 11.2 47 23 12

TP53 (DNA-P.) 14.1 64 34 12

NF-κB Differentiation cell cycle TP53 (DNA-protection) 5.2 43 25 8
11.1 55 22 13
12.1 64 23 12

Apoptosis Survival Apoptosis TP53 (DNA-protection) 2.1 55 17 5
3.1 57 18 6
6.1 74 28 12
8.1 37 10 7
9.2 43 19 8
13.1 38 23 7

Survival Prenylated-proteins Rho kinase BAX 3.1 57 18 10
8.1 37 10 11
13.1 38 23 16

CALR 4.2 58 24 6

FAS 9.2 43 19 11
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Regulatory Sequences
The MeSH-term regulatory sequences is described as nucleic
acid sequences involved in gene expression regulation.
This meta-mode combines genes mapped to the TP53-
pathway (sub-mode 14.1) and genes related to the onco-
genes JUN/FOS (sub-mode 4.1 and 10.1), which are
members of a family of transcription factors containing
the basic-region-leucine zipper or bZIP motif. The Biblio-
Sphere software did not define a specific pathway for sub-
mode 11.2, but there were a couple of peptidases and pro-
teinases like LYZ, GGH and CPM as well as a remarkable
number of classical targets for the SREBP transcription fac-
tors, regulating cholesterol and fatty acid metabolism:
SQLE, CYP51A1, HMGCR, FDFT1, INSIG1, IDI1, SC5DL
and LDLR.

Sub-mode 14.1 represented an intersection of genes
involved in gene expression regulation and the TP53 path-
way. Genes which fulfill both criteria were ADM, CCND2,
CD59, CDC42, DUSP6, GADD45A, GCH1, IER3,

NDUFV2, PIM1, SLC2A3 and UBE3A. Moreover, sub-mode
14.1 received high significance values (Z-Score) for the
three other meta-mode categories and was also the sub-
mode with the highest amount of genes represented in
other sub-modes as well. This can be interpreted as an evi-
dence for the complex and networked nature of gene
expression regulation and the interactivity of cellular
pathways.

The transcription factor JUN also known as c-Jun belongs
to the family of c-Jun N-terminal kinases (JNKs) which are
important for development and survival of macrophages
[46]. Sub-modes 4.1 and 10.1 combined twelve genes with
a known relationship to the JUN/FOS pathway: CCND2,
CREM, CXCL1, GADD45A, IL1RN, JUN, MAPK13,
MARCKS, RALA, PLAU, S100A8 and SOD2.

Differentiation, Cell Cycle
The meta-mode cell cycle was completely governed by the
TP53 pathway. Although all three sub-modes 5.2, 11.1 and

BiblioSphere pathway view shows the mapped Genes of sub-mode 12.2. Genes passed the MAPK filter are highlighted blueFigure 2
BiblioSphere pathway view shows the mapped Genes of sub-mode 12.2. Genes passed the MAPK filter are highlighted blue. 
Cited relationships between two genes make up the edges. Display of edges is restricted to those that constitute the shortest 
path from the central node. If a gene that codes for a transcription factor is connected to a gene that is known to contain a 
binding site for this transcription factor in its promoter, the connecting line is colored green over half of its length near the 
gene containing the binding site. Arrowheads at the ends of a connecting line symbolize that gene X regulates gene Y.
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12.1 represented TP53 related genes, the intersection of
genes was marginal. Only the genes DUSP6, PCNA and
PRKCA were mapped to the TP53 pathway and were also
present in the sub-modes 5.2 and 12.1. Sub-mode 11.1 rep-
resented genes specialized in cell cycle pathways regulat-
ing the interphase and in particular the G1 phase, since it
contained the genes PPP1R15A, DUT, CD44, CDKN1A
and SMC4L1. Sub-modes 5.2 and 12.1 mainly represented
genes involved in cell growth and proliferation.

Sub-mode 5.2 was characterized by the TP53 related genes
DHFR, VCAN, APP, EIF2AK2 and the transcription factor
HMGB2 and HMGB3. Here, the latter has not been
mapped to TP53 pathway but is mentioned here because
of its strong relation to HMGB2.

The unique TP53 genes in sub-mode 12.1 were: CAMK1,
CTSB, GSTN1, NME1, HMGCR, GSN, CYP51A1 and
IL1RN.

Survival/Apoptosis
Apoptosis related pathways play a major role during the
differentiation of monocytes to macrophages. Here we
introduce the term "survival/apoptosis" for the MeSH term
apoptosis, because the identified apoptosis pathways here
function as survival mechanisms for the differentiating
cells. It has been shown, that an absence of M-CSF induces
apoptosis in cultivated monocytes [47]. Since apoptosis is
regulated through many different pathways and regula-
tory mechanisms, we could identify seven sub-modes (2.1,
3.1, 6.1, 8.1, 9.2, 13.1, 4.2) related to apoptosis. These
could be classified to four different pathways involved in
the regulation of apoptosis: TP53 pathway, BAX pathway,
FAS-pathway and calreticulin (CALR) regulated apoptosis.
Three of these sub-modes represented only one pathway.
Sub-modes 2.1, 6.1 were mapped to the TP53 pathway and
sub-mode 4.2 is governed by CALR regulated apoptosis,
whereas the others could be mapped to more than one
pathway.

Due to the strongly networked nature of biological regu-
latory mechanisms, a lot of genes involved in more than
one pathway can be regarded as connections between
those. Toshiyuki and Reed [48] showed that the human
BAX-gene is directly regulated by TP53 (TP53), whereas
BAX is participating in the regulation of endoplasmatic
reticulum Ca2+ [49] as well. In this way it acts as a gateway
for selected apoptotic signals. This was represented by the
sub-modes 3.1, 8.1 and 13.1 which could comparably be
mapped to the TP53 and BAX pathway. Sub-mode 8.1
here combined the most interesting combination of
genes. The genes CCL3, CCND3, PAICS, FYB, AKAB1,
IL1RN, CXCL1, MT1A and the TFs EGR2 and ATF3 could
be implicated with BAX. These genes overlapped with five
of the seven genes mapped to the TP53 pathway: ATF3,

BAX, CSPG2, EIF5B and IL1RN. Furthermore, the metallo-
thioneins which are suggested to regulate DNA binding
activity of TP53, MT1A, MT1F, MT1B and MT1X were rep-
resented in this sub-mode [50].

The role of CALR as a major Ca2+-binding (storage) pro-
tein in the lumen of the endoplasmatic reticulum is well
known [51]. Consequently, one might imagine that CALR
is involved in the regulation of apoptotic signals. The fol-
lowing genes of sub-mode 4.2 are related to CALR:
SLC11A1, CD93, PROCR, NME1 and ATP2B1. All of these
genes, except ATP2B1, passed the MeSH-filter apoptosis.
The link to the TP53 pathway is the transcription factor
FOXO1A (also found in sub-mode 6.1) and PRKCB1,
which is also involved in various other cellular signaling
pathways.

The member of the TNF-receptor superfamily FAS plays a
central role in the regulation of programmed cell death.
Sub-mode 9.2 contained eleven genes related to FAS:
GSTM1, RALGDS, ALOX5, VCAN, S100A9, S100A8, VIL2,
LY75, STAB1, HEBP2 and CD44.

Otherwise Classified
Although not all sub-modes could be mapped to specific
meta-modes, the remaining sub-modes still provide useful
information. While the genes sorted to sub-modes 7.1 and
7.2 deliver no significant pathway information, they share
common behavior. Genes of sub-mode 7.1 were all down-
regulated in macrophages or up-regulated in monocytes,
respectively, whereas genes of sub-mode 7.2 were up-regu-
lated in macrophages. Among these, known marker-genes
for the different cell types could be identified: MNDA,
FCN1 and the S100 calcium binding proteins S100A8,
S100A9 and S100A12 as monocyte and IGF2R, TSPAN4,
MMP9, CTSK, MMD, TNS1 and CALR as macrophage
genes.

Furthermore, the sub-modes 5.1, 4.1, 8.2 and 14.2 con-
tained Major Histocompatibility Class (MHC) genes.
Whereas the sub-mode 5.1 genes HLA-A and HLA-C belong
to MHC class I, the MHC genes of the three other sub-
modes belong to MHC class II which are: HLA-DQB1,
HLA-DQA1, HLA-DPB1, HLA-DPA1 and HLA-DMB.

Additional meta-mode tables are shown in Additional file
1.

Conclusion
It has been stated [52,53] that the use of ICA for the anal-
ysis of gene expression data is a promising tool, but there
is still a lack of a careful discussion of the results. Here we
emphasized the exploration of the biological relevance
and obtained a detailed insight into the networked struc-
ture of the underlying regulatory mechanisms. Two MAP
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kinase related pathways could be identified as the main
regulatory pathways during differentiation: the classical
MAP kinase pathway and the JNK and p38 MAP kinase
pathway, see figure 1. These results confirm expectations,
according to which the MAP kinase pathway is activated
by the M-CSF stimulus and functions as the main signal
transduction pathway triggering macrophage differentia-
tion and related pathways.

The conspicuous presence of TP53 associated pathways in
M-CSF induced monocyte differentiation is associated
with a dramatic regulation of cell-cycle and apoptosis
related genes. This leads to the assumption that human
mononuclear phagocytes, which are considered to be
arrested to non-proliferating cells, still preserve prolifera-
tive potential [54].

Furthermore, we could show that ICA is able to distin-
guish between monocytes and macrophages concerning
differential gene expression. This helpful attribute can be
used to find specific marker genes not only for different
cell types as it is shown here, but also for different tissues
or normal and tumor cells.

Moreover, we were able to identify different regulatory
mechanisms during M-CSF dependent differentiation.
Although signal transduction pathways are mainly regu-
lated by protein modifications like phosphorylation or
acetylation, genes associated to specific pathways
involved in macrophage differentiation could be sepa-
rated into sub-modes only by analyzing gene expression
signatures and their related gene expression modes. Fur-
thermore, this analysis could be improved by combining
gene expression sub-modes extracted from different micro-
array experiments into informative gene expression meta-
modes. The results are in full agreement with the experi-
mental literature on M-CSF dependent differentiation
[55] and illustrate the potential power of such informa-
tion-theory-based, unsupervised and data-driven analysis
methods, see Figure 3.

To fully explore the potential of such information-theory-
based unsupervised analysis tools and especially to deter-
mine the suitability and reliability of ICA for the analysis
of microarray datasets, further investigations are needed.
The algorithms still suffer from the fact, that the number
of estimated independent components, i.e. the extracted
gene expression modes, depends on the number of avail-
able gene expression signatures and the dimension of the
related gene expression profiles. Therefor, the availability
of greater datasets should lead to advancements, and as
shown here, greater datasets can be obtained by the care-
ful combination of smaller datasets.

Methods
Dataset
For our analysis we combined the gene-chip results from
three different experimental settings. In each experiment
human peripheral blood monocytes were isolated from
healthy donors (experiment 1 and 2) and from donors
with Niemann-Pick type C disease (experiment 3). Mono-
cytes were differentiated to macrophages for 4 days in the
presence of M-CSF (50 ng/ml, R&D Systems). Differentia-
tion was confirmed by phase contrast microscopy. Gene
expression profiles were determined using Affymetrix HG-
U133A (experiment 1 and 2) and HG-U133plus2.0
(experiment 3) GeneChips covering 22215 probe sets and
about 18400 transcripts (HG-U133A). Probe sets only
covered by HG-U133plus2.0 array were excluded from
further analysis. In experiment one pooled RNA was used
for hybridization, while in experiment two and tree RNA
from single donors were used. The final data set consisted
of seven monocyte and seven macrophage expression pro-
files and contained 22215 probe sets. After filtering out
probe sets which had at least one absent call, 5969 probe
sets remained for further analysis. The complete data set is
publicly available in the NCBI Gene Expression Omnibus
[56] through the accession number GSE9801.

Preprocessing
The bulk of preprocessing has been done using the
Affymetrix GeneChip Operating Software (GCOS), where
default presets were used. Additionally, we applied a log-
arithmic correction to the data. This has been done
because effects with multiplicative behavior, which may
contain biological relevant information, become linear
after logarithmic transformation. Another reason is that,
untransformed microarray expression profiles have a
strongly skewed, hence unbalanced distribution. This
means, that there is a large amount of expression values
near zero whereas only very few genes show high expres-
sion levels (Figure 4). To avoid adverse effects caused by
such unbalanced distributions, we applied a logarithmic
transformation. The final data are usually represented as a
data matrix whose columns represent expression signa-
tures of N genes while the rows represent M correspond-
ing gene expression profiles.

JADE-based extraction of gene expression modes
The Joint Approximative Diagonalization of Eigenmatrices
(JADE) algorithm has been proposed by Cardoso and
Souloumiac [57,58]. It is a nearly exact algebraic approach
to perform ICA.

The algorithm JADE is based on fourth-order cumulant ten-
sors Tz of pre-whitened input data z = Qx given by
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with the kurtosis  = Cum(zizizizi) being the corre-

sponding autocumulant. Associated with these cumulants
is a fourth-order signal space (FOSS) which defines the

range of all mappings Tz : M → Tz(M)

The corresponding matrices [Tz (M)]ij will be called cumu-
lant matrices in the following. Note that the dimensional-
ity m of the FOSS equals at most the number of sources.

A spectral representation of the cumulant matrices can be
obtained using the column vectors of the whitened mix-
ing matrix with the corresponding eigenvalues related to
the kurtosis of the independent components. This spectral
representation can be used to obtain an eigenmatrix
decomposition of the cumulant tensor according to

Tz(E(q)) = µqE(q) (3)

Cum z z z z E z z z z E z z E z z

E z z E z z
i j k l i j k l i j k l

i k l j

( , , , ) { } { } { }

{ } { }

= −
−
−− E z z E z zi l j k{ } { }

(1)

k i
( )4

m Cum z z z z Mij z ij i j k l kl

k l

m

→ =
=

−

∑[ ( )] ( , , , )
,

T M
0

1

(2)

Overview over the main pathways involved in M-CSF dependent differentiationFigure 3
Overview over the main pathways involved in M-CSF dependent differentiation. The blue, purple, green and red colored boxes 
mediate proliferation, differentiation, actin re-organization and apoptosis. The yellow box mediates those common to prolifer-
ation and differentiation. Genes or gene products colored in intense yellow could be identified with our ICA analysis.
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with 0 ≤ q ≤ m2 symmetric eigenmatrices E(q) = uq  and

uq the q-th column of the mixing matrix U, and µq being a

scalar eigenvalue.

After whitening, a m × m – dimensional orthogonal matrix
D = [d(0) ... d(m-1)], which jointly diagonalizes all eigenma-
trices of Tz, is found by maximizing the joint diagonality cri-
terion

where Diag(·) denotes the vector of diagonal matrix ele-
ments. The joint diagonalizer D is then equivalent to the
whitened mixing matrix U, hence the unknown inde-
pendent component expression mode can be estimated
easily.

Sub-modes and meta-modes
As result of an ICA analysis of a set of gene expression sig-
natures representing the rows of the transpose data matrix
XT, we obtain a matrix S of independent components (the
rows of S) which represent independent gene expression
modes (GEMs) as well as a matrix A of basis vectors of the
new feature space. To deduce meaningful biological infor-
mation from the GEMs, the discovery of specific biologi-
cal processes, which determine the modes, is the goal of
our expression mode analysis. After decomposing the data
matrix with ICA, each GEM has been split into two sub-
modes which can be considered to feature genes which are
co-expressed, thus co-regulated by the underlying regula-
tory process. A GEM consists of scores of gene contribu-
tions to the sub-modes which account for the observation
that excitatory as well as inhibitory regulations exist. In
order to extract the most significant genes, various statisti-
cal tools can be applied which, however, often suffer from
the small M large N case. Therefore, in most cases a thresh-
old is simply applied, or, after ranking, a fixed number of

uq
T

c Diag T q

q

m

( ) ( )D D E D= ( )
=

−

∑ 2

0

12

(4)

Histograms and expression profiles of an untransformed (A) and logarithmic corrected (B) microarray expression data setFigure 4
Histograms and expression profiles of an untransformed (A) and logarithmic corrected (B) microarray expression data set.
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top and bottom genes are chosen and further analyzed
[59]. The rational behind these methods is that each
extracted gene expression sub-mode is best represented by
its most active genes. However, the choice of threshold or
number of active genes is non-trivial, and will influence
the results considerably. In this study we assume instead
that mapping to distinct pathways is most non-ambigu-
ous by using a relatively small number of genes.

Here, we took a different approach by selecting genes that
are extremal with respect to some probabilistic model. For
each GEM y(i) ∈ �, where i indexes the genes, we calcu-
lated the first four central moments corresponding to
mean, standard deviation, skewness and kurtosis of the
underlying data distribution. These shape parameters are
then used to fit a density according to the Pearson family
[60] using maximum-likelihood, see Figure 5. We chose a
Pearson density as prior since it allows for flexible mode-
ling with respect to these first four moments, which
seemed crucial as for example skewness varies considera-
bly between modes, see Figure 5, and high kurtotic as well
as close-to-Gaussian modes were present.

We then used the estimated Pearson densities to deter-
mine the 1 - α and α percentiles for α = 1%. Samples that
lie below the 1-percentile are denoted as significantly
down-regulated genes, and genes above the 99-percentile
as significantly up-regulated genes. The corresponding
sub-modes were labeled as i.1 for down-regulation and i.2
for up-regulation. In Table 2 we list the number of signif-
icant genes in each sub-mode.

Mode analysis

We analyzed the gene sub-modes with BiblioSphere [61].
BiblioSphere is a data mining tool intended to provide
gene relationships from literature databases and genome-
wide promoter analysis. The probe sets were mapped to
transcripts and to known genes with use of the Genomatix
database. To uncover the biological meaning of the genes
in the sub-mode, we applied the MeSH-Filter (Medical Sub-
ject Headings) to our data, which is the National Library
of Medicine's controlled vocabulary thesaurus. We
decided to use the category biological sciences as filter crite-
rion. Co-citations between the genes of the sub-mode were
taken into account by using the literature mining tool of

Maximum-likelihood Pearson fit of the EM-densities, for EM number 3 in (a) and number 12 in (b)Figure 5
Maximum-likelihood Pearson fit of the EM-densities, for EM number 3 in (a) and number 12 in (b). The corresponding four 
moments are µ(y3) = 1.4, σ(y3) = 1.0, skewness(y3) = -0.95 and kurtosis(y3) = 4.0 for (a) and µ(y3) = -0.84, σ(y3) = 1.0, skew-
ness(y3) = 0.49 and kurtosis(y3) = 4.4 for (b).

Table 2: Number of selected down- and up-regulated genes in 
each gene expression mode (GEM).

EM ndown nup

1 68 112
2 59 59
3 69 79
4 54 64
5 74 47
6 88 65
7 54 68
8 43 64
9 59 51

10 51 38
11 64 59
12 71 62
13 43 73
14 79 34
Page 10 of 12
(page number not for citation purposes)



BMC Bioinformatics 2008, 9:100 http://www.biomedcentral.com/1471-2105/9/100
the BiblioSphere software. Interesting terms were identi-
fied through Z-Scores which indicate over-representation
of genes in the referring biological categories. Z-Scores are

given by Z - Score = (n - )/σn where n is the number of

observed genes meeting any given criterion,  is the cor-

responding expected number and σn gives the standard

deviation of n. All terms mentioned in this work are sig-
nificant with respect to the Genomatix guidelines.

Depending on our filter analysis we defined several meta-
modes, where we combined sub-modes with similar catego-
ries. In some cases we subclassified sub-modes within one
meta-mode. In this way 4 meta-modes could be generated,
whereas 17 of 28 sub-modes could be mapped to at least
one meta-mode. For some meta-modes we displaced the
MeSH-Term category with additional categories with
respect to the underlying biology.

Additionally we used the KEGG pathway database for bio-
chemical pathway analysis to more thoroughly character-
ize the biological relevance of a meta-mode. The genes
corresponding to the meta-modes were mapped on data-
base pathways using Pathway-Express which is part of the
Onto-Tools provided by Intelligent Systems and Bioinfor-
matics Laboratory [62].
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