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Abstract
Background: Second-generation sequencing has the potential to revolutionize genomics and
impact all areas of biomedical science. New technologies will make re-sequencing widely available
for such applications as identifying genome variations or interrogating the oligonucleotide content
of a large sample (e.g. ChIP-sequencing). The increase in speed, sensitivity and availability of
sequencing technology brings demand for advances in computational technology to perform
associated analysis tasks. The Solexa/Illumina 1G sequencer can produce tens of millions of reads,
ranging in length from ~25–50 nt, in a single experiment. Accurately mapping the reads back to a
reference genome is a critical task in almost all applications. Two sources of information that are
often ignored when mapping reads from the Solexa technology are the 3' ends of longer reads,
which contain a much higher frequency of sequencing errors, and the base-call quality scores.

Results: To investigate whether these sources of information can be used to improve accuracy
when mapping reads, we developed the RMAP tool, which can map reads having a wide range of
lengths and allows base-call quality scores to determine which positions in each read are more
important when mapping. We applied RMAP to analyze data re-sequenced from two human BAC
regions for varying read lengths, and varying criteria for use of quality scores. RMAP is freely
available for downloading at http://rulai.cshl.edu/rmap/.

Conclusion: Our results indicate that significant gains in Solexa read mapping performance can be
achieved by considering the information in 3' ends of longer reads, and appropriately using the base-
call quality scores. The RMAP tool we have developed will enable researchers to effectively exploit
this information in targeted re-sequencing projects.

Background
The main technological advances that accompanied the
genomic and post-genomic eras are high-throughput
sequencing and hybridization microarrays. Sequencing
technology enabled scientists to obtain the full genomic
sequence for many species, including the human and
many model organisms. Sequencing technology is also
being used to selectively re-sequence the human genome

to detect genome variations such as single nucleotide pol-
ymorphisms or large-scale structural variations. Because
understanding these variations can immediately impact
medical sciences, making sequencing more efficient and
accessible is imperative. However, traditional methodolo-
gies used to sequence the first mammalian genomes
remain expensive, time consuming, and labor intensive.
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Oligonucleotide microarray technology, used to interro-
gate the RNA or DNA content of a sample, has emerged as
a widely accessible and effective tool for studying gene
expression or detecting protein-DNA interactions (i.e.
ChIP-chip). Microarrays have also been used to detect
genome variations, like SNPs or structural variations.
Array-based hybridization also has limitations. For exam-
ple, probes can behave in highly non-uniform ways, and
the effects of cross-hybridization and resolution limits are
poorly understood. Although significant research efforts
are focused on these problems, they remain inherent in all
hybridization-based methods.

The new sequencing technology referred to as "second-
generation" shows promise to eliminate many of the
problems associated with traditional sequencing technol-
ogy and also those with oligonucleotide microarray tech-
nology. Second-generation sequencers are able to
sequence more quickly and at lower cost in terms of both
money and labor. New sequencing technologies are devel-
oped to sequence at greater depth, meaning that a clone
can be sequenced from a sample even when that clone
exists at very low abundance (i.e. 1 molecule per cell).

Several second-generation technologies have been devel-
oped using diverse methods. Two recent second-genera-
tion sequencers are from 454 Life Sciences (Roche
Diagnostics) and Solexa (Illumina). The 454 sequencers
use an emulsion method for DNA amplification and a
pyrosequencing protocol for sequencing by synthesis
(SBS) at picolitre-scale volumes. Current 454 sequencers
can produce 25–50 M nt of sequence in a single run, in the
form of reads with length up to 500 nt (a number
expected to increase), enabling this technology to be used
for de-novo sequencing in addition to re-sequencing [1].

Solexa/Illumina 1G sequencers also use sequencing by
synthesis, with DNA amplified on the surface of a flow
cell, resulting in a random array of dense clusters [2]. The
Solexa technology is faster and cheaper than that used in
454 sequencers, producing 1G nucleotides of sequence in
one run but producing much shorter reads. Each individ-
ual read is roughly 25 to 50 bases in length (also expected
to increase slightly in coming years). The Solexa sequenc-
ing technology has recently started producing break-
through results. Research described in [3] and [4]
employed Solexa sequencers to obtain high-resolution
genomic maps of several histone modifications, as well as
localization data for the DNA-binding proteins. Effective-
ness of ChIP-sequencing has also been demonstrated by
[5], who used Solexa sequencing to obtain locations of
STAT1 binding sites in HeLa S3 cells before and following
IFN-γ stimulation.

Mapping reads from the Solexa sequencer presents an
obvious algorithmic challenge: tens of millions of reads
must be mapped to a large (e.g. mammalian) genome in
a reasonable amount of time. Strong efforts to design
short-read mapping algorithms have resulted in methods
that are effective in particular contexts. The mapping algo-
rithm implemented as part of the Solexa analysis pipeline
is named ELAND (Efficient Large-Scale Alignment of
Nucleotide Databases). ELAND is optimized to map very
short reads, with length at most 32 nt, and ignores the
additional bases when the sequenced reads are longer.
ELAND also only allows at most two mismatches between
the read and the genomic sequence to which it maps,
which will clearly be too few for longer reads. Despite
these restrictions, ELAND remains very useful for many
mapping tasks because it is extremely efficient. The SXO-
ligoSearch algorithm (by Synamatix) can quickly map
reads of varying length, using different criteria, with per-
formance depending on both the read length and map-
ping criteria. The performance of SXOligoSearch depends
on use of the proprietary SynaBASE data structure. This
data structure is a heavily compressed and annotated
index for the reference genome that retains all non-redun-
dant information. The gains in mapping speed by using
such a data structure come at a cost in terms of the mem-
ory required for the SynaBASE data structure. Extreme
memory requirements of the data structure makes SXOli-
goSearch unsuitable for use on hardware available in
most labs.

In most re-sequencing applications accuracy of mapping
is a primary concern. We must know with great accuracy
what part of the genome was actually sequenced. There
are several reasons why it might be difficult to determine
the location in the reference genome from which a read
was derived, or even if a read was derived from the refer-
ence genome. These include problems with the experi-
ments, such as sequencing errors or sample
contamination. Mapping is also made more difficult by
repeats in the genome, and by polymorphisms. While
mapping algorithms cannot be expected to be robust to all
such problems, effort should be made to make the algo-
rithms as robust as possible.

Two sources of information with the potential to improve
mapping accuracy are the 3' ends of longer reads, which
are often ignored because they contain a higher frequency
of errors, and the base-call quality scores. The quality
scores describe the confidence of bases in each read.
Sequencing quality scores, introduced in the Phred algo-
rithm [6,7], assign a probability to the four possible nucle-
otides for each sequenced base. The Solexa analysis
pipeline, for example, includes a program called BUS-
TARD to calculate quality scores. Because the bases with
lower quality scores are more likely to be sequencing
Page 2 of 8
(page number not for citation purposes)



BMC Bioinformatics 2008, 9:128 http://www.biomedcentral.com/1471-2105/9/128
errors, any potential mapping for a read should be penal-
ized less for mismatching at positions with lower scores.
The quality scores are especially important for mapping
longer reads, since the 3' ends of longer reads are known
to have a higher frequency of sequencing errors.

To investigate whether these sources of information can
be used to improve accuracy when mapping reads, we
developed the RMAP tool, which can map reads having a
wide range of lengths and allows base-call quality scores
to determine which positions in each read are more
important when mapping. The only requirement on the
base-call quality scores for use in RMAP is that they
increase monotonically with the inverse of the error prob-
ability for a particular base call. Our results indicate that
significant gains in mapping performance can be achieved
by considering the information in 3' ends of longer reads,
and appropriately using the quality scores.

Results and Discussion
The mapping criteria
We designed RMAP to use two different mapping criteria,
both based on approximate matching of the read and the
reference genome. The first criterion is a simple count of
mismatches between a read and the aligned genomic seg-
ment. Under this criterion, any unknown nucleotides in
the reference genome (i.e. Ns) will induce a mismatch
with any nucleotide. Uncalled positions, where the
sequencing was unable to determine the nucleotide, also
induce a mismatch. For a fixed read length, by allowing a
greater number of mismatches, more reads can be
mapped to reference genome. We refer to this simple mis-
match criterion as RMAPM (RMAP using mismatch
scores).

The second criterion, also based on mismatch-counts,
makes use of the base-call quality scores. A cutoff for the
base-call quality score is used to designate positions as
either high-quality (HQ) or low-quality (LQ), depending
on whether the quality score of the highest-scoring base at
that position exceeds the cutoff. Low-quality positions
always induce a match (i.e. act as wild-cards). To prevent
the possibility of trivial matches, a quality control step
eliminates reads with too many low-quality positions. As
with the first criterion, mapping accuracy can be control-
led by manipulating the number of allowed mismatches
when mapping. But for the second criterion, manipulat-
ing the quality-score cutoff provides another means of
adjusting sensitivity and specificity, and allows positions
to contribute when they are of high-quality, but not be
penalized if they are low-quality. We refer to this criterion
as RMAPQ (RMAP using quality scores).

Evaluating mapping accuracy
Measuring mapping accuracy
In measuring mapping accuracy, we want to quantify both
sensitivity and specificity by using reads sequenced from
DNA samples from selected genomic regions instead of
the entire genome. By mapping those reads to the
genome, we can evaluate how accurately they are mapped
to the target region. However, there are theoretical and
practical limits to how well these can be measured. Inabil-
ity to map a read correctly can be attributed to sequencing
errors (arising from any part of the experiment), to varia-
tion between the sampled genome and the reference
genome, or can result from ambiguities caused by repeats
in the reference genome. These diverse sources of error
make it difficult to measure accuracy in terms of tradi-
tional sensitivity and specificity.

Ambiguous reads, under a given mapping criterion, are
reads that map to more than one location in the reference
genome. Reads that map to a single location are called
uniquely mappable (or simply mappable) reads. All reads
that are not mapped uniquely to some location in the ref-
erence genome are said to be unmappable (which
includes ambiguous reads). We define target region cover-
age (or simply coverage) as the number of bases in the tar-
get region covered by at least one mappable read, divided
by the total number of bases in the target region. In order
to compare the coverage values for different read lengths,
we use only the first base of each read to represent that
read. By counting bases covered, rather than number of
reads that map to the target region, greater target region
coverage is achieved when the reads map uniformly in the
target region. We define mapping selectivity as the number
of mappable reads that map inside the target region,
divided by the total number of mappable reads. A read is
said to map inside the target region if any part of the read
overlaps the target region. The selectivity shows how well
the mapping criterion places mappable reads inside the
target region. In this study, when we refer to mapping
accuracy, we are referring to both coverage and mapping
selectivity (and we formally treat accuracy as the mean of
these two measures).

Evaluation data
We used the data from samples of two BACs provided for
sequencer validation by Solexa, which covers 162 kb of
the chromosome 6 MHC region in an A1-B8-DR3 alter-
nate haplotype assembly based on sequence data from the
COX library [8]. We chose one lane of reads sequenced by
the 1G sequencers at the CSHL Genome Center. The total
number of raw 36 nt reads in this data set is 3.4 million,
with the quality score of each base ranging from -5 to 40
(as called by the BUSTARD program from the Solexa anal-
ysis pipeline). As reference genome we used hg18, all
chromosomes except chr6, which we replaced entirely
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with chr6_cox_hap1, the A1-B8-DR3 alternate haplotype
assembly. We chose to include this alternate haplotype in
the reference because it is the origin of the BAC that was
sequenced. We excluded the ordinary chr6 because it has
high similarity with chr6_cox_hap1, and including both
of these would have resulted in a high proportion of reads
mapping ambiguously to chr6 and chr6_cox_hap1 (see
additional file 1).

Evaluation procedure
To investigate how information is distributed within the
reads, we ran RMAP on all reads with lengths ranging
from 25–36 nt, allowing mismatches in the range of 0 to
10, and using both the RMAPM and RMAPQ criteria. For
the RMAPQ criterion, we chose {4, 8, 12, 16, 20, 24} as
the set of quality-score cutoffs to evaluate. Reads with
fewer than 10 contiguous HQ bases (i.e. bases scoring
above the quality-score cutoff) were considered unmap-
pable and removed from consideration, as the algorithm
requires a minimum number of high-quality bases for
efficiency (see Methods section for details). Any read lack-
ing 10 consecutive high-quality bases would likely have a
very high overall amount of error.

Mapping longer reads with more mismatches increases 
accuracy
The Solexa sequencer can produce reads of more than 50
bases, and longer reads contain more sequence informa-
tion. Although it is known that the quality of sequenced
bases in reads decreases toward the 3' end of the read,
especially as read length increases, it remains to be shown
how much useful information may still exist in bases at
the 3' ends of longer reads. Making use of any additional
bases is only expected to improve mapping accuracy if the
additional bases contain information of sufficient quality.
When the BAC reads were mapped to the human genome
using the RMAPM criterion, with length from 25–36 nt,
and different number of allowed mismatches, we found
that there is generally a great deal of information in 3' end
bases up to 36 nt. These results are presented in Figure 1
and Supplementary Table 1 (see additional file 2) (We
remark that the accuracy of RMAP using the RMAPM cri-
terion for reads shorter than 32 nt, allowing at most 2 mis-
matches, is the same as that of ELAND). The BAC coverage
always increased with length of mapped reads, except
when only one or zero mismatches are allowed. The map-
ping selectivity decreases monotonically with read length
when zero or at most one mismatch is allowed. When
multiple mismatches are allowed, the mapping selectivity
first increases with read length, then decreases slightly.
Taking the mean of these two measures as overall map-
ping accuracy, we see that the combined target region cov-
erage and mapping selectivity is maximized when read
length is 36 nt and up to 4 mismatches are allowed. Com-
paring read lengths between 25 nt and 36 nt, the mapping

Comparison of mapping accuracy of RMAPM criterion under different parameter combinationsFigure 1
Comparison of mapping accuracy of RMAPM crite-
rion under different parameter combinations. Com-
parison of mapping accuracy for reads of different lengths, 
and allowing different numbers of mismatches without using 
quality scores. Both the target (BAC) region coverage (a) and 
the mapping selectivity (b) are displayed. The mean of these 
two measures is presented in (c) as mapping accuracy. Stand-
ard error of displayed values was always ≤ 1.0% and usually < 
0.1%, as estimated by mapping reads obtained from the sec-
ond lane of the same sequencing run of the same BAC 
regions (this applies also to values in Figure 2).
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selectivity increases 6.4% while the BAC region coverage
increases 8.6%. By extrapolating our results, even greater
improvements are expected as read lengths increase
beyond 36 nt.

Using quality score information increases accuracy
We tested different cutoffs for defining high quality bases
to estimate the ability of the RMAPQ criterion to most
effectively use the quality information in the reads. We
achieve better mapping performance in both BAC cover-
age and mapping selectivity when using longer reads with
high quality score cutoff of 4 to 24 than without using
quality score filtering (See Figure 2, and additional file 2).
This is due to a larger number of reads being mapped
unambiguously to the genome by the RMAPQ criterion,
and a larger number of those being mapped to the target
(BAC) regions. The best mapping accuracy was achieved
when reads were of length 36 nt, a quality-score cutoff of
8 was used, and when at most one mismatch was allowed.
For these settings, the mapping selectivity further
improved almost 3% with the same BAC coverage, com-
pared with the best accuracy of RMAP using the RMAPM
criterion. These results demonstrate that the way in which
the quality scores are incorporated into RMAP results in
improved accuracy.

The reads derived from the BACs provided by Solexa for
the purpose of validation are of very high quality. For a
given 162 Kb BAC region, most of these 3.4 million reads
can be mapped almost perfectly. This introduces a satura-
tion effect, leaving limited space for improvement, as
highly accurate mapping is achieved easily. RMAP still
makes significant improvements within this narrow
range. In many applications, without this ceiling effect,
the improvement is expected to be even more pro-
nounced.

We also compared the mapping accuracy of RMAP with
another available, but presently unpublished, method
called MAQ [9]. Using default parameter setting, we ran
MAQ to map the set of 3.4 M reads from the BAC.
Although MAQ had speed and memory usage similar to
RMAP, we found MAQ to have lower mapping accuracy
(see additional file 3) when allowing at most 2 mis-
matches.

Discussion
Widely-accessible second-generation sequencing technol-
ogies promise to revolutionize many areas of bio-medical
research. In addition to de novo sequencing of new species,
these technologies make targeted re-sequencing a reality.
Re-sequencing will provide more accurate means of inter-
rogating the oligo-nucleotide content of samples, and of
identifying important genome variations, such as disease-
related SNPs. Mapping reads to genomes is a critical step

in re-sequencing data analysis, and both the algorithmic
and software technology must keep pace with surging
advances in the throughput of sequencing instruments.

In order to maximize the use of available information in
mapping Solexa reads, we developed the RMAP tool,
which incorporates base-call quality scores to improve
accuracy. RMAP responds to an urgent need for such an
algorithm by providing both the accuracy to handle
emerging mapping tasks. Our results in applying RMAP
have shown that more reads can be mapped into the target
regions when using the RMAPM criterion to map longer
reads and allow more mismatches. We have also shown
that the way in which quality scores are used in RMAP (the
RMAPQ criterion) significantly increases both coverage
and mapping selectivity.

Although second-generation sequencing technology is
currently producing many important results, there is still
little understanding of how this technology should
behave with respect to sequencing errors and what are the
general properties of typical re-sequencing data sets. As
more knowledge accumulates about typical results from
this new sequencing technology, more information can be
incorporated into algorithms for mapping reads and other
associated analysis tasks.

In theory we could move toward an ideal mapping crite-
rion by predictive modeling, where a model would be
trained to identify the location from which each read was
derived. Although the best mapping criteria may not be
amenable to high-throughput computation, some
approximation of those criteria could be developed.
Cross-validation and the use of a wide range of data sets
could be used to ensure that the trained criteria are suffi-
ciently general. In practice such a procedure would require
high-quality training data, and an extreme amount of
computing time to train and evaluate such models.

RMAP does not consider insertions or deletions (indels),
which are potentially important in certain sequencing
applications (e.g. indel polymorphisms). The straight-for-
ward strategy for handling indels is to extend initial seed
matches using a Smith-Waterman-style alignment, as is
commonly done in database search programs like BLAST
[10]. For short reads, with length ≤ 50 bases, providing
this greater flexibility will require careful investigation
into scoring the alignments, because using simple scoring
schemes for indels may result in higher rate of false-posi-
tive mappings and ambiguities. In addition, because
indels have nothing analogous to the base-call quality
scores, it will be more difficult to distinguish errors from
real genotypic variations during the mapping stage of
analysis. We have observed that data sets containing a
high proportion of low-complexity reads, such as single
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nucleotide repeats, cause a decrease in execution speed of
RMAP. This is explained by such low complexity seeds
resulting in a large increase in the number of full compar-
isons (between reads and regions of the reference
genome), that are induced by these highly-common
seeds. The exclusion strategy used in RMAP is also heavily
used by popular programs for searching sequence data-
bases. Research effort toward improving the structure of
seeds used in these algorithms has also led to improve-
ments in the algorithms themselves [11], and similar
improvements might be observed by developing seeds
specifically for the short read mapping problem.

The filtration strategy used in RMAP can also be extended
to "multiple filtration", as described by [12]. This uses
multiple criteria for excluding possible mappings, and
would result in the algorithm performing fewer full com-
parisons between reads and genomic regions. Unlike
many other applications of approximate matching, the
extreme volume of data that must be mapped means that
algorithms for mapping reads must be conscious of the
memory required. In the framework of RMAP, the most
straight-forward implementation of multiple filtration
would use larger (multidimensional) or additional hash-
tables, which generally requires a great deal more mem-

Mapping accuracy of RMAPQ criterion under varying parametersFigure 2
Mapping accuracy of RMAPQ criterion under varying parameters. Reads with length from 25–36 nt were mapped 
and 0,1, or 2 mismatches were allowed at high quality bases defined by quality score cutoffs of 4 (d) or 8 (a-d). For reference, 
mapping performance of RMAPM criterion with at most 2 mismatches is also shown. (a) The BAC coverage; (b) the mapping 
selectivity; (c) the overall mapping accuracy (equal to the mean of the BAC coverage and selectivity).(d) 2-D performance com-
parison in both BAC coverage and selectivity of RMAPM and RMAPQ.
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ory. For short reads, as produced by the Solexa sequencer,
the full comparisons can be computed very fast, so
another concern is keeping the work required to imple-
ment more powerful filtration less than that required to
do the extra comparisons.

Aside from further processing on the set of reads, effi-
ciency improvements can be gained by indexing the refer-
ence genome. This is the strategy used by SXOligoSearch,
through the proprietary SynaBASE data structure. Because
the reference genome will likely remain static for many
mapping tasks (e.g several experiments using the hg18
genome), this indexing can be done off-line, so the time
required to build such an index is not important. The
usual problem with indexing the genome is that such
index structures are often several times larger than the
genome itself. The more information built into the index
to facilitate searches, the larger the index must be. As
stated above, hardware currently available for mapping
usually has a few GB of memory, and this restricts the
kinds of indexing that can be done on entire genomes. To
make genome index structures practical, they must either
be small, or support on-line processing so that only a
small portion of the structure must reside in memory at
once. It is likely that special purpose data structures for
indexing the genome can be developed to fit these
requirements, and greatly improve efficiency of mapping
reads. Specifically with respect to RMAP, adding any
means of eliminating exact genomic repeats during map-
ping will greatly improve efficiency.

Conclusion
Our results indicate that significant gains in Solexa read
mapping performance can be achieved by considering the
information in 3' ends of longer reads, and appropriately
using the base-call quality scores. The RMAP tool we have
developed will enable researchers to effiectively exploit
this information in targeted re-sequencing projects.

Availability and Requirements
The RMAP tool is freely available for downloading at
http://rulai.cshl.edu/rmap/.

Methods
Design of the RMAP algorithm
In this section we describe the algorithmic strategy used in
RMAP. We treat the mapping problem as approximately
matching a set of patterns in a text – the set of patterns
being the reads, and the text being the genome. This prob-
lem has been well studied, and several general algorithmic
strategies have emerged for solving it (see [13] for a
detailed treatment). The major motivation for developing
the RMAP algorithm was to incorporate base-call quality
scores to weight mismatches and improve mapping accu-
racy. In addition to having high mapping accuracy, RMAP

was designed under the restrictions that it must be capable
of (1) mapping reads with length exceeding 50 bases (for
the applications discussed in the introduction), (2) allow-
ing the number of mismatches to be controlled (not being
restricted to a small fixed number), and (3) completing
mapping tasks under reasonable time constraints on
widely available computing hardware.

The algorithm implemented in RMAP uses the filtration
method described by [14]. For reads of length n, and map-
ping with up to k mismatches, each read is partitioned
into k + 1 contiguous seeds (each seed is a substring of the
read, and has length &#x230A;n/(k + 1)&#x230B;).
Because there can only be k mismatches in a mapping,
and there are k + 1 seeds for each read, any mapping must
have at least one seed with no mismatches. The algorithm
first identifies locations in the genome where the seeds
match exactly. Exact matching can be done much more
quickly than approximate matching, and evaluating the
approximate match between a read and a genomic region
only needs to be done for those regions surrounding an
exactly-matching seed.

To efficiently implement the filtration strategy, RMAP pre-
processes the set of reads, building a hash-table (which we
refer to as the seed-table) indexed by the seeds. The table
entry for a particular seed lists all reads containing that
seed, along with the offset of that seed within the read. For
a set of r reads, each having length n, if k mismatches are
allowed in the search, the seed table has size O(4n/k + rk).
The mapping proceeds by scanning the genome, with a
window of size equal to the seed size. Each segment of the
genome is tested as a seed by hashing that segment to
determine the set of reads that must be compared in their
entirety with a larger genomic region surrounding the seg-
ment of the genome currently being scanned. This is a
common strategy to implement the filtration stage of
approximate matching. The influence of the size of the
genome in the time complexity of RMAP is therefore lin-
ear, and importantly the space complexity of RMAP is
independent of the size of the genome.

The step of comparing the full read to portions of the
genome where a seed has been found is implemented to
require time that is logarithmic in the length of the reads.
The comparison takes advantage of bit-wise operations,
and the reads are encoded in a binary format (see addi-
tional file 4 for supplementary method). A series of logical
operations produce a vector indicating the locations of
mismatches between the read and the genomic segment
being compared, and the weight of the bit-vector indicat-
ing mismatches computed using a well-known technique
described by [15].
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RMAP is sufficiently fast that several million reads can be
mapped to a mammalian genome in one day on a com-
puter with a single processor. No portion of the reference
genome is maintained by RMAP, and the size of the seed
table dominates the space requirements. Because these
requirements are sufficiently small, RMAP can be run on
widely available hardware. This includes the nodes typi-
cally used in cluster computers, and allows the processing
to be easily and effectively parallelized by simply parti-
tioning the set of reads. On a test data set generated by
randomly sampling one million 50 nt segments (simu-
lated reads) from the hg18 genome, and randomly chang-
ing up to 4 bases in each read, our current
implementation of RMAP was able to map the reads back
to the hg18 genome in 140 minutes using roughly 620
MB of memory.
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