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Abstract
Background: The topology of signaling cascades has been studied in quite some detail. However,
how information is processed exactly is still relatively unknown. Since quite diverse information has
to be transported by one and the same signaling cascade (e.g. in case of different agonists), it is clear
that the underlying mechanism is more complex than a simple binary switch which relies on the
mere presence or absence of a particular species. Therefore, finding means to analyze the
information transferred will help in deciphering how information is processed exactly in the cell.
Using the information-theoretic measure transfer entropy, we studied the properties of
information transfer in an example case, namely calcium signaling under different cellular
conditions. Transfer entropy is an asymmetric and dynamic measure of the dependence of two
(nonlinear) stochastic processes. We used calcium signaling since it is a well-studied example of
complex cellular signaling. It has been suggested that specific information is encoded in the
amplitude, frequency and waveform of the oscillatory Ca2+-signal.

Results: We set up a computational framework to study information transfer, e.g. for calcium
signaling at different levels of activation and different particle numbers in the system. We
stochastically coupled simulated and experimentally measured calcium signals to simulated target
proteins and used kernel density methods to estimate the transfer entropy from these bivariate
time series. We found that, most of the time, the transfer entropy increases with increasing particle
numbers. In systems with only few particles, faithful information transfer is hampered by random
fluctuations. The transfer entropy also seems to be slightly correlated to the complexity (spiking,
bursting or irregular oscillations) of the signal. Finally, we discuss a number of peculiarities of our
approach in detail.

Conclusion: This study presents the first application of transfer entropy to biochemical signaling
pathways. We could quantify the information transferred from simulated/experimentally measured
calcium signals to a target enzyme under different cellular conditions. Our approach, comprising
stochastic coupling and using the information-theoretic measure transfer entropy, could also be a
valuable tool for the analysis of other signaling pathways.
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Background
The simulation of complex biochemical networks has
become very important to gain insight into the dynamic
behavior of cellular processes [1-3]. Signaling pathways,
in particular, often evade intuitive, and therefore rather
static, explanations because of their highly nonlinear
dynamics and many cross-links. However, despite the
emergence of sophisticated high-throughput and in vivo
imaging techniques, there is still a lack of high-quality sin-
gle-cell multivariate data.

Such data would be very helpful in elucidating the nuts
and bolts of many signaling mechanisms. In this study we
use calcium signaling as an example. Calcium signaling
represents one of the most versatile second-messenger
pathways and, in many cell types, Ca2+ (calcium) ions
control a variety of cell functions from fertilization, secre-
tion, enzyme activation and gene expression to cell death
[4,5].

An intriguing fact is that, even in non-excitable cells like
hepatocytes, the concentration of cytosolic calcium can
display regular (spiking) or more complex (bursting)
oscillations or prolonged elevated levels [6] after stimula-
tion by an agonist and depending on the nature of this
agonist. This oscillatory behavior is not only believed to
save the cell from the toxic effects of sustained high
cytosolic calcium levels and from desensitization, but has
also been shown to increase the efficiency of calcium sig-
naling [7]. In addition to these temporal patterns of cal-
cium dynamics, interesting spatio-temporal patterns (e.g.
calcium puffs and waves) have been described [4,8]. How-
ever, we will concern ourselves in this study with temporal
patterns only.

Due to its importance for the functioning of many cell
types and its interesting dynamics [9], calcium signal
transduction has attracted numerous theoretical studies.
Many different models of calcium signaling have been
proposed, ranging from simple one-pool models [10] to
more elaborate ones [11] incorporating many different
processes. For a review on calcium models, see Schuster et
al. 2002 [12].

Since a range of different agonists such as hormones (e.g.
vasopressin) or nucleotides (e.g. ATP) trigger calcium
responses and, on the other hand, a range of different tar-
gets (e.g. Ca2+ dependent proteins such as calmodulin,
CaM kinase II, protein kinase C, phosphorylase kinase or
transcription factors e.g. NF-AT or NF-κB) exist in the cell
[13], specific information is likely to be encoded in the
calcium signal and decoded again later on. It has been
proposed that information might be encoded in the
amplitude, frequency, duration, waveform or timing of
calcium oscillations and the search for this calcium code

has attracted a number of experimental and theoretical
studies (for a review, see [14]).

On the experimental side, mainly the frequency decoding
of spiking calcium oscillations has been examined. De
Koninck and Schulman 1998 [15] demonstrated the sen-
sitivity of immobilized CaM kinase II to Ca2+ oscillation
frequency by in vitro rapid superfusion. Li et al. 1998 [16]
found that NF-AT is activated optimally at a Ca2+ oscilla-
tion frequency of about 1/min and Dolmetsch et al. 1998
[7] studied the differential regulation of T-cell NF-AT and
NF-κB by Ca2+oscillations of different frequencies. The
interesting work of Oancea and Meyer 1998 [17] describes
the activation of protein kinase C γ (PKC γ) by diacylglyc-
erol (DAG) combined with high-frequency Ca2+ spikes,
which points to a joint code of calcium and DAG in that
case.

Most theoretical studies also limit themselves to the spik-
ing mode of calcium oscillations. Dupont et al. 2003 [18]
could successfully reproduce the findings of [15] in a
model. Gall et al. 2000 [19] examined the activation of
liver glycogen phosphorylase by modeling a de-/phos-
phorylation cycle. Salazar et al. 2004 [20] studied the acti-
vation of target proteins by Ca2+ oscillations in terms of
efficiency, speed and specificity. Marhl et al. [21,22] inves-
tigated the decoding of time-limited calcium oscillations
by downstream proteins. Recently, the bursting mode of
Ca2+oscillations has been investigated by Larsen et al.
2004 [11] and Schuster et al. 2005 [23]. Using a simple
model of calcium oscillations [11] and artificially gener-
ated calcium bursts [23] respectively to drive protein acti-
vation, these studies showed that specific information can
be encoded in the waveform of bursting oscillations and
thus that different proteins can be activated differentially
at the same time. Rozi and Jia [24] studied the activation
of glycogen phosphorylase by spiking as well as bursting
calcium oscillations.

Even though information-theoretic measures [25] are in
widespread use for physiological data [26] and neural
information transfer [27], their application to biochemi-
cal systems is restricted to only relatively few studies. For
instance, Prank et al. 1998 [28] and Kropp et al. 2005 [29]
studied the encoding of hormonal signals in intracellular
calcium signals using the so-called coding fraction and
mutual information. The authors drive a deterministic
model of calcium spiking with a specific form of gener-
ated noise and estimate the amount of information trans-
ferred. In [30] the same group couples a deterministic
model of CaM kinase activation to experimentally meas-
ured data from HIT (hamster insulin-secreting tumor)-
cells, but here the results are not analyzed in an informa-
tion-theoretic manner.
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We propose to use the information-theoretic measure
transfer entropy [31] to estimate the information trans-
ferred by spiking or bursting calcium oscillations under
different conditions. Transfer entropy has advantages over
conventional measures such as (time-lagged) correlations,
in that it detects all statistical dependencies (linear and
non-linear), it is asymmetric, i.e. it distinguishes between
information source and target, and it considers shared
information due to a common history of the source and
target by using conditioned transition probabilities.
Transfer entropy has been applied to physiological data
[26,32], financial time series [33], geological data [34]
and others [35,36], but, so far, not to biochemical data.
We used both simulated and experimentally measured
time series for the estimation of transfer entropy. The sim-
ulated data were generated by a stochastic version of the
simple calcium oscillations model in [37], extended by a
stochastically simulated activation of target protein. We
set up a framework for stochastic simulation of the cal-
cium system, stochastic coupling of the enzyme activation
process and estimation of the transfer entropy using ker-
nel density estimation methods. We used this framework
to investigate calcium information transfer in systems
with different levels of activation and particle numbers.

Since multivariate experimental data is scarce, we devised
a method, inspired by hybrid deterministic/stochastic
simulation techniques, which allows the stochastic cou-
pling of the enzyme activation process to arbitrary univar-
iate calcium time series. We took experimental data from
single-cell measurements on rat hepatocytes and coupled
the activation of the stochastically simulated enzyme to
them in order to get bivariate data. Finally we used these
semi-experimental data as input for the estimation of the
information transfer.

Results
In this study we used a simple receptor-operated model
[37] with three variables (Gα, PLC, cytosolic Ca2+) to gen-
erate calcium time series. This model was simulated sto-
chastically by Gillespie's algorithm [38] (cf. Methods for
details on the model and the stochastic simulation algo-
rithm). Fig. 1 shows simulated time series of the Ca2+ con-
centration under different cellular activation levels. The
model is able to display understimulation (data not
shown), spiking (panel A), bursting (panel B) and irregu-
lar behavior (panel C) as well as overstimulation (panel
D). Spiking and bursting behavior is observed experimen-
tally when hepatocytes are stimulated with vasopressin
and ATP respectively.

The concentration of the active form of a simulated Ca2+-
dependent enzyme, which was stochastically coupled to
the calcium data, is also shown. We implemented a sto-
chastic coupling scheme to be able to couple the simu-

lated enzyme to arbitrary, simulated or experimental,
calcium time series. This method is described in detail in
Methods.

The coupling of the simulated enzyme to experimental
data leads to semi-experimental time-series, one of which
is shown in Fig. 2. Here an experimentally measured time
series of the Ca2+ concentration in a single rat hepatocyte
(see Methods for further details) was computationally
coupled to a simulated target enzyme according to Eq. (1).
The hepatocyte was stimulated with ATP, which led to a
bursting mode of calcium oscillations. The integrating
character of the enzyme, which was shown elsewhere [11]
to permit frequency decoding of the calcium oscillations,
can easily be seen.

Using these simulated and semi-experimental time series
we investigated the information transferred from the cal-
cium signal to the enzyme by estimating the transfer
entropy (see Methods). In Fig. 3 an example of a scan over
a range of bandwidths ε for the kernel density estimation
is shown. The calcium system has been simulated in the
bursting mode (k2 = 2.85) and with different values for the
volume leading to different particle numbers. We used
time courses of length 10000 s, sampled every second,
after a transient of 10000 s has been cut off. For the den-
sity estimation we used a rectangular kernel and set the
length of the Theiler window to 20 and the minimal
number of neighbors to 5. As shown in the diagram, the
estimates are biased towards zero for ε → 0. For small ε
values more and more samples are missing enough neigh-
bors within the kernel bandwidth and those "lonely sam-
ples" are excluded from the estimation. For ε → ∞ the
kernel eventually covers the whole attractor, which also
results in a value of zero for the transfer entropy. In
between, there is a plateau-like range, where the estimate
is almost independent of the ε value and which is sup-
posed to be the best estimate of the true information
transfer. We plotted the corresponding maxima in the dia-
gram (horizontal lines). In the following we will always
use those maximal values of the ε scans as estimates of the
transfer entropy (see Discussion).

We also tested our estimation process by using surrogate
data (constrained realizations, [39]). We estimated the
transfer entropy of time series in which the temporal order
of the calcium signal was destroyed by shuffling the sam-
ples (data not shown). This removed all dependencies,
while the marginal probability distributions were pre-
served. Indeed, here the estimated transfer entropy
showed values near zero (~0.02 – 0.07).

To investigate how the information transfer changes with
varying particle numbers in the system, we simulated the
calcium model using a range of different volumes. Sys-
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tems with low volumes, corresponding to low particle
numbers, usually display strong random fluctuations,
which could hamper the information transfer. Therefore
our hypothesis was that a minimal number of particles are
needed to allow for the faithful transfer of a certain
amount of information. In fact, this is the case. Fig. 4
shows a scan of the transfer entropy of simulated systems
in the bursting mode (k2 = 2.85) with different volumes.
Here the information transfer increases with increasing
volume (and particle numbers) until it seems to flatten
out at about 0.6 bit/sample for volumes greater than 5 ×
10-10 [arbitrary units]. Interestingly, this corresponds to
the particle numbers where the simulations display quasi-
deterministic behavior [40]. With even higher volumes
the system should eventually converge to the determinis-
tic limit. In this case, also the coupling would be quasi-
deterministic and the estimation of the transfer entropy

should diverge (see Discussion). Therefore, regimes where
the transfer entropy does not increase uniformly with
increasing volume deserve further study, since this would
be a helpful indicator that the transition to quasi-deter-
ministic behavior is not uniform [40]. However, the huge
computational cost prevented us from testing whether or
not the apparent flattening is statistically significant in
this case.

We also investigated the information transfer when the
calcium system is in different dynamical modes (cf. Fig.
1). Fig. 5 shows a scan of transfer entropy estimates for dif-
ferent volumes (between 1 × 10-13 and 5 × 10-9) where we
varied the value of the bifurcation parameter k2 to get dif-
ferent dynamics, such as understimulation (k2 = 1), spik-
ing (k2 = 2), bursting (k2 = 2.5, 2.85), irregular behavior/

Different calcium dynamics and coupled enzymeFigure 1
Different calcium dynamics and coupled enzyme. Coupling of the stochastically simulated activation of an enzyme to 
simulated calcium time series with different dynamical behavior according to Eq. (1). From top left to bottom right we see a 
spiking (A), bursting (B), irregular (C) behavior and overstimulation (D). k2 values 2, 2.85, 2.99 and 3.2, respectively, and vol-
ume 10-12 [arbitrary units]. x-axis: time [s]. y-axis: concentration of Ca2+ and the active form of the enzyme Pact and the 
enzyme's KM value.
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Experimental data and simulated enzyme activationFigure 2
Experimental data and simulated enzyme activation. 
Coupling of the stochastically simulated activation of an 
enzyme to an experimentally measured calcium time series 
according to Eq. (1). Here the hepatocyte was stimulated 
using ATP (1.5 μM). x-axis: time [s]. y-axis: concentration of 
Ca2+ and the active form of the enzyme Pact and the simulated 
enzyme's KM value (reaction volume of the simulated enzyme 
10-10 [arbitrary units]).
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Kernel density estimation of transfer entropyFigure 3
Kernel density estimation of transfer entropy. Scan of 
the estimated transfer entropies from Ca2+ to active protein 
Pact in the stochastically simulated system (k2 = 2.85, burst-
ing). x-axis: ε values. y-axis: estimates of the transfer entropy 
in simulated systems of volumes 10-12 to 10-9 [arbitrary units] 
respectively. Also, the estimating process was applied to a 
deterministically simulated calcium signal (det. signal). In this 
case, the reaction volume of the (stochastically) simulated 
enzyme was 10-10.
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Transfer entropy versus volumeFigure 4
Transfer entropy versus volume. Maximum values of the 
estimated transfer entropy for different volumes in systems 
with k2 = 2.85 (bursting). x-axis: volume. y-axis: estimates of 
the transfer entropy.
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Transfer entropy of different dynamic modes and 
volumes. Maximum values of the estimated transfer entropy 
for different volumes and different k2 values corresponding to 
different dynamic modes (1 understimulation, 2 spiking, 2.5, 
2.85 bursting, 2.99 irregular/elevated oscillations, 3, 3.2 over-
stimulation) in the simulated system. x-axis: volume. y-axis: 
estimates of the transfer entropy.
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elevated oscillations (k2 = 2.99) and overstimulation (k2 =
3, 3.2).

In the case of under- or overstimulation (k2 = 1 or k2 =
3.2), the system is in a (noisy) steady state and this results
in low values for the transfer entropy. For k2 = 1 the cal-
cium concentration is near its resting level, which is far
below the KM value of the enzyme. No enzyme gets acti-
vated and no information can be transferred. For k2 = 3.2
the calcium steady state lies above the enzyme's KM value
and the amount of active enzyme reaches its maximum. In
contrast to understimulation, here the information trans-
fer is not exactly zero, even though it takes low values of
~0.2. The reason for this is that now the noisy steady state
is near the KM value of the enzyme and it can pick up some
random fluctuations in calcium concentration. If the sys-
tem is in an oscillatory mode, such as spiking (k2 = 2) or
bursting (k2 = 2.5, 2.85), the transfer entropy increases
with increasing volume until it seems to flatten out for
volumes above 5 × 10-10, as shown above.

An interesting effect can be observed for k2 = 2.99 and k2 =
3, where the deterministic limits of the calcium dynamics
are elevated oscillations and an elevated steady state,
respectively. However, the stochastic system shows irregu-
lar behavior with small volumes. For high volumes, oscil-
lations are observed even for k2 = 3. For both parameter
values, the generally very high level of transfer entropy is
due to the position of the center of their oscillations. It is
near the KM value of the enzyme, so that the enzyme is
responsive even to minute variations in the calcium level.
Interestingly, for k2 = 3 the transfer entropy shows a max-
imum at the volumes 1 × 10-9 and 5 × 10-10. An explana-
tion for this effect is that for the higher volume 5 × 10-9,
the system is already near the deterministic limit, which is
just a rather uninteresting elevated steady state with rela-
tively low information transfer. On the other hand, for
smaller volumes, the information transfer gets degraded
because of increasing stochastic fluctuations. Those fluc-
tuations are especially pronounced in this parameter
range, because the sensitivity of the system (measured by
the divergence) is high (see [40] for details). Those two
opposed trends lead to a maximum in a range where the
system is still oscillatory, but not yet too noisy.

If we look at the estimates for a volume of 5 × 10-9 only
(the biggest systems considered in this study), there is a
slight increase in estimated transfer entropy from spiking
to increasingly complex bursting oscillations (see Table
1). The transfer entropy is very high for elevated oscilla-
tions near the enzyme's KM value and it drops to a very low
value in the case of an elevated steady state, e.g. overstim-
ulation. Intuitively, one would think that the information
transfer should be correlated to the complexity (spiking,
bursting or irregular oscillations) of the calcium oscilla-

tions, since more complex input signals can potentially
carry more information. However, this can only be hinted
at from our experiments. One should be wary not to over-
interpret the absolute numbers, since we found them very
much dependent on the estimation process used. Also,
they are subject to statistical fluctuations. Furthermore,
the enzyme is most sensitive for calcium levels near its KM
value. For the input signal to generate a high information
transfer, it is important to meet that range. The transfer
entropy nicely detects this for the oscillatory regime with
k2 = 2.99 and high volumes, where the oscillations exactly
meet the KM value. Here the estimated transfer entropy is
high, even though the dynamics is apparently less com-
plex than in the bursting mode.

To compare simulations with experimental data we cou-
pled an experimentally measured calcium time series
from a single hepatocyte to the stochastic model of
enzyme activation. In this case the cell was stimulated
using 1.5 μM ATP and showed bursting behavior (see Fig.
6, inset). We monitored the calcium concentration over a
time period of 3904 s (one sample per second). The reac-
tion volume of the simulated enzyme was set to 10-10

[arbitrary units]. For the kernel density estimation, we
used a Theiler window of length 20 and reduced the min-
imal number of neighbors to 2 because of the smaller
number of samples available. Fig. 6 shows a scan of the
transfer entropy estimates from this semi-experimental
time series over a range of ε values. The estimated transfer
entropy has a maximum at about 0.35 bit.

Transfer entropy of semi-experimental dataFigure 6
Transfer entropy of semi-experimental data. Scan of 
the estimated transfer entropy from an experimentally meas-
ured Ca2+ time series (3904 s) to the simulated target 
enzyme Pact according to Eq. (1). Here the hepatocyte was 
stimulated using ATP (1.5 μM). x-axis: ε values. y-axis: esti-
mates of the transfer entropy. (reaction volume of the simu-
lated enzyme 10-10 [arbitrary units]).
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For a direct comparison, we calculated 10 stochastically
simulated calcium time series of length 3904 s showing
bursting behavior (k2 = 2.85). One of them can be seen in
the inset of Fig. 7. We then coupled these time series to the
same enzyme process and estimated the transfer entropy
using the same set of parameters as before. We plotted the
results of the 10 different simulations plus the mean value
in Fig. 7. The mean of the estimated transfer entropies has
a maximum of about 0.57 bit. The variance of the esti-
mated values is biggest in the plateau region with a maxi-
mum in standard deviation of approximately 0.03.

The significantly higher transfer entropy values of the sim-
ulated system can partly be explained by the existence of
two episodes in the experimental data without bursts (The

calcium-mobilizing agonist was absent from the experi-
mental medium for the duration of these two episodes).
We removed these episodes and repeated the estimation
which yielded a transfer entropy maximum of roughly
0.39 bit. An explanation for the remaining discrepancy is
that the simulated bursts have a considerably longer dura-
tion than the bursts in real hepatocytes. Therefore, the cal-
cium signal spends more time within the sensitive region
of the enzyme (near the KM value) which clearly increases
information transfer.

Discussion
In the following we will motivate the choice of several
technical elements as well as discuss their strengths and
limitations.

Stochastic coupling procedure
Stochastic fluctuations in cellular systems are not just ran-
dom noise, but can even change the dynamics of the sys-
tem [41] as was seen, for instance, in our simulations for
parameter values near bifurcation points (k2 = 2.99 and
small volumes). Therefore it is important to consider ran-
dom effects (and the effects of the system size on those
fluctuations) when modeling systems with relatively low
particle numbers, e.g. signal transduction pathways.

It should be noted here that, even in those cases where
stochastic effects do not change the dynamics signifi-
cantly, deterministic coupling of a biochemical reaction
system to experimental data [30] is not appropriate for
our purposes. The estimation of transfer entropy diverges
for coarse-grained continuous systems and increasing res-
olution if the coupling between the processes is determin-
istic [31]. Therefore our stochastic coupling scheme of the
simulated enzyme to calcium time series is absolutely
essential for this study.

Since the experimentally measured calcium concentration
is only known at a discrete set of points in time and there-
fore we assumed it to be constant between two samplings,
the coupling of a simulated enzyme to those time series
can only be an approximation. However, it is apparent
that, in the limit of a sampling frequency of the given time
series near the frequency of reaction events in the system
and a measurement resolution in the range of single par-
ticles, our method converges to the mathematically exact
solution. For nearly every practical case, neither the
number of samples nor the resolution will satisfy these
theoretical conditions. To make sure that this fact did not
compromise our results, we compared simulated data
where the enzyme was only coupled to a calcium time
series with data that was calculated by exact stochastic
simulation of the whole system, i.e. calcium dynamics
plus enzyme activation, and where no approximation was
involved (data not shown). For the parameter values and

Transfer entropy scanFigure 7
Transfer entropy scan. Scan of the estimated transfer 
entropies from Ca2+ to active enzyme Pact in the stochasti-
cally simulated system with k2 = 2.85 and 10-10 volume. 
Shown are the estimates for ten different time series of 
length 3904 s each and their mean value. x-axis: ε values. y-
axis: estimates of the transfer entropy.
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Table 1: Different dynamical behavior and maximal transfer 
entropy values. Maximum values of the transfer entropy (TE) for 
different stimulation strengths k2 and their respective dynamic 
regime in the simulated system with volume 5 × 10-9.

k2 Dynamic behavior TE

1 Understimulation 0.00
2 Spiking 0.52
2.5 Bursting 0.59
2.85 Bursting 0.60
2.99 Elevated oscillations 0.95
3.2 Overstimulation 0.15
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sampling times we used, our results were not changed
considerably by the approximate coupling.

One shortcoming of the stochastic coupling procedure
described here is that it is a one-way process. Obviously,
the input calcium time series is fixed and can not be
changed during the process and so possible feedback of
the target enzyme on the calcium system, e.g. calcium
buffering by proteins or feedback via protein kinase C, has
to be neglected.

Choice of model parameters
The volume of a hepatocyte is about 2 pL [42]. Assuming
that the cytosol, where the free Ca2+ is located, takes up
about half of the total volume of the cell and that, in the
case of bursting, the calcium level peaks around 1 μM, this
results in a particle number of about 600 000. This parti-
cle number roughly corresponds to a volume of 10-10 in
the arbitrary units of the calcium model used. Therefore
our results lie well in the range of physiologically mean-
ingful parameters. Also the parameters of the simulated
enzyme have been chosen to be, at least, biologically plau-
sible. Most of the time calcium binding to enzymes occurs
cooperatively, as e.g. with calmodulin. Calmodulin has
four binding sites with high affinity (Kd ≈ 0.1 – 1 μM) for
Ca2+. For this reason, we, like the authors of other numer-
ical studies [11,23,30], employ a Hill term of 4th order.
The KM value of the simulated enzyme lies between the
calcium resting level and the amplitude of secondary
peaks, in the case of bursting oscillations.

The reason for choosing this calcium model instead of a
more detailed one was that, even though it is very simple
in terms of size and kinetic functions, it can show both
spiking and bursting behavior in addition to (elevated)
steady states, thereby mimicking the dynamics of real cells
after stimulation by different agonists (see [37] for
details). Most other models cannot show bursting oscilla-
tions. It also was relatively easy to implement and fast to
simulate stochastically. Nevertheless, the generation of
some of the time series with high particle numbers
required computation times in the range of several days.
In fact, the purpose of this study was not to analyze this
specific calcium model and therefore the approach pre-
sented here is not restricted to that model. It should also
be mentioned that our framework can easily be applied to
arbitrary enzyme regulation mechanisms, provided that
they allow stochastic simulation of the Gillespie type, i.e.
a propensity can be assigned to every possible event in the
system.

One problem of the calcium model we used is that the
amplitudes of the oscillations vary for different dynamic
modes (see Fig. 1), whereas in real hepatocytes the ampli-
tudes of calcium oscillations have been reported to be

independent of the type of oscillations. Also the duration
of bursts is longer than in experiments which, we believe,
led to the discrepancy in transfer entropy between simu-
lated and experimental data. To mitigate these issues we
plan to use more realistic calcium models with more con-
stant oscillation amplitudes, e.g. [11] in the future.

Estimation of transfer entropy
Often, (time-lagged) correlations are used to quantify the
coherence of two observables. However, correlations can
only indicate linear relations, not non-linear ones. There-
fore mutual information has been developed which is
sensitive to all statistical dependencies [43]. Unfortu-
nately, this measure is still (like correlations) symmetric
and cannot distinguish between information sources and
targets.

The transfer entropy, on the other hand, is explicitly asym-
metric because it uses conditioned transition probabili-
ties. As stated by Schreiber [31, p. 461], "transfer entropy is
able to distinguish effectively driving and responding ele-
ments and to detect asymmetry in the interaction of sub-
systems." In addition, the use of transition probabilities
makes it a dynamic measure, meaning that it can account
for the history of the processes. This, together with its abil-
ity to consider linear and non-linear dependencies,
renders it appropriate for use on non-linear signal trans-
duction systems.

We found that a major issue with this measure is that it is
not trivial to estimate it from time series in a reliable way
and that the estimation is quite data-intensive.

One crucial point is that the processes have to be ergodic
to allow for the estimation of the probability densities
from one time series alone. Also they must be Markovian.
In other words, their histories of length k and l (see Meth-
ods), which are taken into account, must be longer than
possible correlation times. This is very important, because
the transfer entropy detects the deviation from the Markov
property. One simple example where this condition
would not be fulfilled is when we just reversed the direc-
tion and estimated the transfer entropy from the enzyme
signal to the calcium signal (Pact → Ca2+). We saw already
that in our setting there can be no feedback from the
enzyme to the calcium system and thus no information
can be transferred this way. Because the transfer entropy is
a directional measure and can distinguish between infor-
mation transferred in one and the other direction, one
would naively think that it should equal zero (plus statis-
tical fluctuations) here. This, however, is not the case,
because the calcium signal alone is not Markovian. In fact,
in the model it is coupled to Gα and PLC and their influ-
ence will lead to a transfer entropy which is not zero.
There are two possible solutions to this issue: a) consider
Page 8 of 14
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the whole system (Ca2+, Gα and PLC) or condition on all
coupled subsystems, or b) take into account a long
enough history for the processes in which all relevant
information is already embedded.

In all practical applications of the transfer entropy, espe-
cially with purely experimental data, one has to fix the
lengths of the two signal histories (k and l) with care.
Since the characteristic time-scale of auto-dependencies in
measured data is not known a priori, they can not be
regarded as stemming from an order-one Markov process.
Therefore, one should estimate the transfer entropy using
different values for the order of the underlying processes,
and longer histories should be preferred. However, the
often very limited amount of data renders this avenue
infeasible in many cases, since kernel estimation would
have to be applied to distribution functions in four and
more dimensions. One possible resort here would be
coarse-graining of the time series and the use of the dis-
crete version of the transfer entropy. In the present study
we restricted ourselves to the order-one case, the reason
being that, in our case, the coupled protein is actually
described by a Markov process of order one and is not
dependent on previous values. Therefore, a history length
of 1 (k = l = 1) suffices.

Kernel density estimation is known to be very dependent
on the choice of a correct kernel bandwidth ε. Rules of
thumb exist for the optimal bandwidth of (univariate)
Gaussian kernels [44] which, however, are said to often
lead to oversmoothing. Little has been done for multivar-
iate kernels however. Instead of just using one bandwidth,
we scanned the estimated transfer entropy over a range of
different ε values and checked for the range of bandwidths
where the estimates are independent of ε, e.g. a plateau is
visible in the scans (Fig. 3). If there is a definite plateau, its
values are simultaneously the maximal values of the scan.
Due to this and because the estimated transfer entropy
was observed to underestimate the true value [45], we
chose to take the maxima of the scans as estimates of the
transfer entropy.

The calcium signal and the enzyme signal have different
ranges of values. Therefore we normalized the time series
to have mean 0.0 and standard deviation 1.0 prior to the
estimation, which allowed us to use the same ε in both
spaces. This is justified, because the (continuous) transfer
entropy is independent of coordinate transformations
[45].

To improve our calculations, we used a Theiler window
approach and excluded all estimates where only less than
a required minimal number of neighbors could be found.
This avoided spurious effects caused by temporal correla-
tions and dampened statistical fluctuations, respectively.

In this study we mainly used rectangular kernels. How-
ever, we also tried Gaussian kernels (data not shown),
which did not change our results considerably.

Transfer entropy is an averaged measure, i.e. it describes
the information transfer over the whole observation inter-
val. We observed that periods in the experimental calcium
time series without bursts (Fig. 6) decreased the overall
transfer entropy. Therefore, if the processes under study
are expected to show some kind of locking or unlocking
episodes, which we would dub statistical locking, the meas-
ure would have to be calculated on smaller (disjoint or
overlapping) windows in order to see possible changes
over time. Care has to be taken, though, that the windows
are big enough to get a sound statistical basis for the esti-
mation.

We want to stress that the absolute values of our transfer
entropy estimates are, of course, dependent on the param-
eters of the estimation procedure. In particular, the mini-
mum number of neighbors needed for a sample to be
considered plays a major role here. Setting this number to
values greater than 1 helps to diminish statistical fluctua-
tions, but can create a bias towards zero if there are not
enough samples available. Therefore, one should be cau-
tious when interpreting these values and should not mix
results coming from different estimation procedures with-
out justification. We only compared estimates where the
estimation parameters, the type of kernel and the length
of the input time series were the same. We attributed the
discrepancy in estimated transfer entropy of simulated
and experimentally measured data to lacking realism of
the simple calcium oscillations model used. Hence, we
note here that transfer entropy could very well be
employed as a measure of realism for signaling pathway
models. We envisage its use in biochemical modeling
where models are optimized so as to have the same infor-
mation transfer as observed in experiment.

Also, regarding the rates of information transfer we esti-
mated in this study, one should be cautious. Even though
they can provide a useful basis for hypotheses on the func-
tioning of cellular signal transduction, it is not known
what fraction of the information that can maximally be
transferred is actually used by downstream cellular proc-
esses. Because it is not yet clear what features of the cal-
cium signal really carry relevant information, we used an
information-theoretic approach. It potentially measures
all the information from the calcium signal that can be
found in the protein signal. In addition, this model-free
approach facilitates direct comparisons between simu-
lated and experimentally measured data.

Nevertheless, specific information transferred from cal-
cium to cellular processes could, in principle, be esti-
Page 9 of 14
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mated by extending the simple model to include these
processes under consideration and estimating the transfer
entropy directly between calcium and the observables of
these processes. This includes the detection, analysis and
quantification of possible cross-talk between different sig-
naling pathways.

A general framework
It should be mentioned that there are many potential var-
iants and extensions of the estimation algorithm (simple
or adaptive histograms, adaptive kernel density estima-
tion, likelihood estimators and others [44]), which we
could not cover here. However, regardless of the algo-
rithm used, the basic strength of the information-theo-
retic approach is that it is model-free. This allows the
direct comparison of simulated and experimental data.

Conclusion
In this study we combined methodologies from different
fields in order to elucidate the cellular information trans-
fer via Ca2+ signaling. The main ingredients we used are:

• Modeling and simulation of calcium signal transduc-
tion, in particular stochastic approaches.

• Stochastic coupling of a Ca2+-dependent protein to
experimental and simulated data.

• The so-called transfer entropy introduced by Schreiber
[31] and its estimation using kernel density estimation
techniques.

We developed and implemented a framework for the
analysis of both simulated and experimentally measured
Ca2+ time series with the information-theoretic measure
transfer entropy. This involved the stochastic coupling of
a simulated enzyme to arbitrary calcium time series and
the estimation of the transfer entropy of those bivariate
data using kernel density estimation methods.

We investigated the information transfer from the calcium
signal to the target enzyme under different conditions,
namely different particle numbers (by varying the vol-
ume) and different calcium dynamics (corresponding to
different stimuli). We found that, most of the time, infor-
mation transfer increases with increasing particle num-
bers in the system. However, this increase is different in
systems with different dynamic modes (spiking, bursting,
etc.). More complex dynamic modes (bursting or irregular
oscillations) tend to result in higher values of the transfer
entropy. We observed that the input signal has to lie in the
sensitive range, e.g. near the KM value of the enzyme, for
the information transfer to be efficient. We also estimated
the transfer entropy based on experimental data from
hepatocytes. The values of these estimates are significantly

lower than those from comparable simulated data. The
major reason for this seems to be the unphysiologically
long duration of simulated bursts. Further study is needed
to investigate that in detail.

Even though the estimation of transfer entropy from time
series is tricky and there are still some unsolved issues, it
is a promising tool not only for the quantification of
information transfer in biochemical networks, but also,
for instance, to distinguish between different stochastic
time series where a pure visual investigation is difficult.
The direct comparison of two stochastic trajectories is dif-
ficult: Not the actual trajectory is important, but the fea-
tures of it, that are essential for the correct functioning of
the cell. In the case of calcium signaling, they are the ones
that can be decoded by downstream elements.

Each dynamic state exhibits its own sensitivity to random
fluctuations [40] and this should be reflected in the faster
degradation of information transfer if the sensitivity is
high. Therefore, one possible application of this approach
could be the detection of the transition between stochastic
and quasi-deterministic behavior, in cases where it is dif-
ficult to be identified by visual inspection alone. We saw
one example of that already in the case of k2 = 2.99 (see
Results), where the stochastic behavior is qualitatively dif-
ferent from the deterministic limit and where the transfer
entropy could detect this transition. Another application
could be information theory-based model fitting where
models are optimized so as to have the same information
transfer as observed experimentally.

It is worth mentioning that our framework is not at all
limited to calcium signaling. Stochastic coupling and/or
estimation of transfer entropy from biochemical data can
be easily applied to other biochemical models and path-
ways.

Our approach can also be extended in a number of ways.
On the technical side, for example, the estimation of
transfer entropy from limited data sets should be
improved. This could include the automatic determina-
tion of an optimal kernel bandwidth, the use of different
kernels or alternative probability density estimation
methods.

On the biological side, we plan to investigate the type and
amount of information carried by the different properties
of the calcium signal (amplitude, frequency, duration,
shape, timing), because it is not yet clear which of those
are really used in cells. For instance, enzymes which can-
not decode a specific signal should lead to a transfer
entropy value of almost zero. On the contrary, the transfer
entropy is expected to show significant higher values for
enzymes which are sensitive to the input signal. Thus we
Page 10 of 14
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hope that the transfer entropy can give valuable hints for
further theoretical and experimental studies. Further-
more, we want to use our framework to study different
enzyme regulation mechanisms and to analyze other sig-
naling pathways including their possible cross-talks.

Methods
Model
In this study we used a simple receptor-operated model
[37] with three variables (Gα, PLC, cytosolic Ca2+) to gen-
erate calcium time series (cf. Table 2 for a list of reactions
and corresponding kinetic functions). This model was
simulated stochastically by Gillespie's algorithm [38].
Because the original model has arbitrary units, we scaled
it in time (by 1/20) to have roughly the same frequency as
observed experimentally. This scaling corresponds to a
division of the rate parameters k1, k2, k3, k5, k7, k8, k10 and
k11 by 20.

The parameter k2 represents the stimulation strength and
serves as bifurcation parameter to vary the dynamic
behavior of the model. In addition, we changed the num-
bers of particles present by varying the volume of the sys-
tem.

Coupled to this simple signal generating model is a model
for calcium binding to a protein. In the following we will
use a slight modification (the amount of inactive protein
is not assumed to be constant) of the regulation mecha-
nism described in [11].

Activation of the inactive form of protein Pinact to its active
form Pact by Ca2+ is modeled by a Hill term of order four
while deactivation follows mass action kinetics (Eq. (1)).
The parameters were set to kact = 0.025, kinact = 0.005, KM =
1.0, Ptot = 5.0 and p = 4.

Stochastic simulation and coupling
Since the seminal work of Gillespie 1976 [38,46] several
algorithms have been proposed to calculate trajectories
governed by the Chemical Master Equation [47,48]. These
trajectories are instances of the underlying stochastic proc-
ess and consider the random fluctuations correctly. The
different methods are mathematically equivalent and dif-
fer only in their algorithmic implementation. There are a
number of software packages supporting stochastic simu-
lation [49,50].

For each type of reaction Rμ (1 ≤ μ ≤ M, with M being the
number of reactions) in the system, a propensity aμ is
assigned, such that aμdt describes the probability of the
reaction to occur within the next infinitesimal time inter-
val of length dt. aμ is a product of a specific stochastic reac-
tion rate, which usually can be derived easily from the
conventional reaction rate, and a combinatorial term, that
depends on the stoichiometry of the reaction. Gillespie
derives a reaction probability density function (Eq. (2)) as
the basis for his so-called Direct Method.

This function describes the probability P(τ, μ|x, t) that
starting in state x at time-point t the next reaction in the
system will occur after time τ and will be of type Rμ. One
can see that the reaction times are exponentially distrib-
uted and thus the process is a homogeneous Poisson proc-
ess. By iteratively drawing pseudo-random numbers
according to this reaction probability density function
and updating the system state, trajectories can be calcu-
lated in a Monte Carlo scheme.
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Table 2: Model of calcium oscillations. Simple model of calcium 
oscillations [37]. Parameters: k1 = 0.212, k3 = 1.52, K4 = 0.19, k5 = 
4.88, K6 = 1.18, k7 = 1.24, k8 = 32.24, K9 = 29.09, k10 = 13.58, k11 = 
153, K12 = 0.16. k2 is bifurcation parameter and is set to different 
values in simulations depending on the desired behavior.
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Since we not only want to analyze simulated calcium
dynamics, but also intend to couple measured calcium
time series to our enzyme activation model, we have to
take that influence into account. The coupled calcium sys-
tem exerts an influence on the reaction propensities aμ in
the protein model and thus they can no longer be consid-
ered constant between two reaction events. Mathemati-
cally, this is equivalent to changing the homogeneous
Poisson process into an inhomogeneous one and there-
fore the pure stochastic simulation methods cannot be
used in this case.

The reaction probability density function for such systems
with time-dependent aμ reads (cf. [51]):

One can sample this inhomogeneous Poisson process by
integrating the differential reaction probabilities over
time. Whenever a stopping criterion for one of the reac-
tions is reached, the integration is interrupted and the cor-
responding reaction event is instantiated. This method
has been used in hybrid stochastic/deterministic simula-
tion methods [52,53], where the set of reactions is parti-
tioned into a stochastically simulated and a
deterministically simulated subset. During the simula-
tion, the influence of the (fast) deterministic subset on the
stochastic subset has to be considered.

When we couple a time series to a stochastically simulated
system, we do not know the states of the system which
produced the time series between two samples. Therefore
a reasonable presumption is to assume piece-wise con-
stant particle numbers between two sample times. In this
special case we can use, for instance, Gillespie's Direct
Method, with the modification that recalculation of all
the aμ in the system, which are dependent on the coupled
time series, is needed whenever a new sample is observed
in the time series. This approximation is discussed in sec-
tion Discussion.

We implemented this simple method in C++-code
dynamically linked to Octave (Version 2.9.9 on Linux)
[54]. Our implementation accepts time series with arbi-
trary sampling times, both evenly and unevenly sampled.

Transfer Entropy
The so-called transfer entropy is an information-theoretic
[25] measure proposed by Schreiber 2000 [31] to quantify
the dependence of one stochastic process on a second
one. Its definition for discrete systems I and J reads as fol-
lows:

The transfer entropy has Kullback-Leibler divergence form
and measures the deviation of process I from its Markov
process behavior of order k due to the interaction with
process J. In this study, we set k = l = 1, which is justified
in section Discussion. One should keep in mind though,
that in the general case longer history lengths might be
required. Setting those parameters correctly is crucial for a
reliable estimation. If this is the case, probability densities
in spaces of dimension >3 must be estimated.

For the estimation of the transfer entropy, usually either
the time series is coarse-grained by histogram-based
methods and the transfer entropy is estimated on the sym-
bolic time series or kernel density estimation [44] meth-
ods are used.

We implemented a kernel density estimation method for
the transfer entropy [45] in C++-code, which has been
dynamically linked to Octave (Version 2.9.9 on Linux)
[54]. For the estimation of local probability densities, we
mainly used a rectangular kernel with variable radius ε
(Eq. (5)):

with Θ the Heaviside function.

To avoid spurious effects caused by temporal correlations,
we employed a Theiler window approach which excluded
all neighbors that were too close in time. In addition, in
order to dampen statistical fluctuations, only samples that
had a user-defined minimal number of neighbors were
considered. The kernel density estimation procedure was
implemented using a two-dimensional box-assisted
neighbor-searching algorithm [55], which resulted in a
five to six fold speed-up compared to the naive implemen-
tation.

We scanned the transfer entropy of the simulated calcium
model and the coupled enzyme for different volumes
(between 1 × 10-13 and 5 × 10-9 [arbitrary units]), corre-
sponding to different particle numbers in the system
(roughly between 600 and 30 000 000 during primary
peaks), and for different dynamics, e.g. different values of

P a t a t dt
M

t

t
( , ) ( )exp ( ) .

..

τ μ τμ μ

τ
= + −

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟∑∫

+

1

(3)

T p i i j
p in in

k jn
l

p in in
kJ I n n

k
n
l

→ += +

+
( , , ) log

( | ( ), ( ))

( | ( )
( ) ( )

1
1

1 ))
.∑

(4)

ˆ ( )
( )

( ) ( | |)

{ },p x
N

K
xi xi n

K r r

x i

n

N

i ε ε ε
= −⎛

⎝⎜
⎞
⎠⎟

= −

=
∑1

1
2

1

1

Θ

(5)
Page 12 of 14
(page number not for citation purposes)



BMC Bioinformatics 2008, 9:139 http://www.biomedcentral.com/1471-2105/9/139
the bifurcation parameter k2 (1 understimulation, 2 spik-
ing, 2.5, 2.85 bursting, 2.99 irregular, 3, 3.2 overstimula-
tion). The same kernel bandwidth were used in the
calcium and the protein concentration spaces, but the
data was normalized to have mean 0.0 and standard devi-
ation 1.0 prior to the estimation.

Experiments
Single hepatocytes were isolated from fed male Wistar-
strain rats (150–250 g) by collagenase perfusion as
described previously [56]. The cells were harvested and
incubated at 37°C at low density (103 cells/ml) in 2%
type IX agarose in William's medium E (WME). Single
hepatocytes were prepared for microinjection with the
bioluminescent Ca2+ indicator aequorin as described pre-
viously [57]. The injected cell was transferred to a perfus-
able cup held at 37°C, positioned under a cooled, low-
noise photomultiplier, and continuously superfused with
WME, to which agonists were added. Photon counts were
sampled every 50 ms by computer. At the end of an exper-
iment, the total aequorin content of each cell was deter-
mined by discharging the aequorin by lysing the cell. The
data were normalized retrospectively by computer, by cal-
culating the photon counts per second divided by the total
counts remaining. The computed fractional rate of aequo-
rin consumption could then be plotted as [Ca2+]i using in
vitro calibration data and exponential smoothing with
time constants: for resting [Ca2+]

i, 12 s; for transients, 1 s.

In addition, we transformed these data to be roughly in
the same range of values ([0, 10]) as that of the simulated
data.

Materials
Aequorin was provided by Prof. O. Shimomura (Marine
Biological Laboratory, Woods Hole, MA, U.S.A). Colla-
genase was obtained from Roche Diagnostics (Lewes,
U.K.) and WME from Invitrogen (Paisley, U.K.). Agarose
and agonists were purchased from Sigma-Aldrich (Poole,
U.K.).
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