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Abstract
Background: Microarray technology provides an efficient means for globally exploring
physiological processes governed by the coordinated expression of multiple genes. However,
identification of genes differentially expressed in microarray experiments is challenging because of
their potentially high type I error rate. Methods for large-scale statistical analyses have been
developed but most of them are applicable to two-sample or two-condition data.

Results: We developed a large-scale multiple-group F-test based method, named ranking analysis
of F-statistics (RAF), which is an extension of ranking analysis of microarray data (RAM) for two-
sample t-test. In this method, we proposed a novel random splitting approach to generate the null
distribution instead of using permutation, which may not be appropriate for microarray data. We
also implemented a two-simulation strategy to estimate the false discovery rate. Simulation results
suggested that it has higher efficiency in finding differentially expressed genes among multiple
classes at a lower false discovery rate than some commonly used methods. By applying our method
to the experimental data, we found 107 genes having significantly differential expressions among 4
treatments at <0.7% FDR, of which 31 belong to the expressed sequence tags (ESTs), 76 are unique
genes who have known functions in the brain or central nervous system and belong to six major
functional groups.

Conclusion: Our method is suitable to identify differentially expressed genes among multiple
groups, in particular, when sample size is small.

Background
Microarray gene expression technology, which profiles the
expression of multiple genes in parallel [1,2], affords the
means for globally exploring physiological and patholog-
ical processes [3] regulated by the coordinated expression
of thousands of genes [4]. However, identification of
genes that are differentially expressed in large-scale gene
expression experiments requires global statistical methods
rather than traditional statistical methods based on single
hypothesis testing. A variety of multiple-testing proce-

dures, such as the Bonferroni procedure, Holm procedure
[5], Hochberg procedure [6], Benjamini-Hochberg (BH)
procedure [7], and Benjamini-Liu (BL) procedures [8]
have already been developed for testing a large family of
null hypotheses. The first three methods bound the fam-
ily-wise-error rate (FWER) that is the probability of at least
one false positive over all tests and hence remain too strin-
gent and have lower power for finding genes from the real
data sets. The last two methods have an upper bound for
the false discovery rate (FDR) with both strong and weak
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controls [9] and require a large sample size for valid p-val-
ues. Tusher et al. [9] has proposed a ranking statistic
approach based on permutation for resampling. However,
permutation is not a desirable approach to estimating null
distribution in microarray data [10-12] because in general
a microarray dataset has a large number of genes but small
sample sizes [13] due to cost. Permutation fails to remove
treatment effect and due to small sample sizes the differ-
ence of treatment effects between permutated groups may
become a main component in differences between group
means so that the estimated null distribution is not well
approximate to the true null distribution ([13] and also
see Appendix in Tan et al. [14]). For example, Xie et al.
[12] found that the estimated null F-distribution based on
permutation has a larger variance and a heavier tail com-
pared to the true null F-distribution, which leads to a
potential loss of power. Similar phenomenon was also
observed in comparison of the estimated null t-distribu-
tion to the true null t-distribution [14]. To remove the
group or treatment effects on the estimated null distribu-
tion, Tan et al. [14] developed a random splitting (RS)
approach. Since treatment effects are completely elimi-
nated, the estimated null distribution obtained by the RS
method is smooth, stable and approximate true null dis-
tribution well.

For the multi-class microarray data, the analysis of vari-
ance (ANOVA) is useful to identify differentially
expressed genes [4]. In ANOVA, the F-test is a generaliza-
tion of the t-test that allows for comparison of more than
two samples [15]. However, due to small sample sizes, the
classical F-test is also subject to the same problems as the
t-test: bias and unstable estimates of gene-specific vari-
ances. To tackle this issue, many authors [15-19] pro-
posed modified F-statistics. However, like the classical F-
test, these modified F-tests still suffer from high false-pos-
itive rates because (i) the sample size is often so limited
that the asymptotic F distribution is not accurate enough
to obtain a valid p-value and (ii) they appeal to multiple-
testing procedures such as the Bonferroni procedure or the
BH-procedure. As mentioned above, these multiple-test-
ing procedures have a basic requirement that sample sizes
are large enough for valid p-values. In microarray data, the
requirement is not realistic. Based on consideration of
these problems, we here propose a novel statistical
method for the analysis of multi-class gene-expression
data called Ranking Analysis of F-statistics (RAF). RAF is a
natural extension of our previous work, i.e., the ranking
analysis of microarrary (RAM) for two-class t-tests [14]. It
works on finding genes that are differentially expressed
among multiple treatment groups by comparing the
ordered real F-statistics with the ordered estimated null F-
statistics and implementing a two-simulation strategy to
estimate the false discovery rate (FDR).

Methods
Animal model and design
Studies were performed on male stroke-resistant SHR/N
(CRiv) (SHRSR) and stroke-prone SHR/A3 (Heid)
(SHRSP) rats from a breeding colony maintained by the
investigators as previously described [20]. Age-matched
male rats from each strain (N = 12 SHRSP and 12 SHRSR)
were fed a standard rat chow and water ad libitum until
age 8 weeks. Subsequently, animals from each strain were
randomized to one of 2 dietary regimens (N = 6 in each
strain × diet group): a "stroke-permissive diet" high in
sodium (HS) (0.63% potassium, 0.37% sodium) and 1%
NaCl drinking solution; a "stroke-protective diet" low in
sodium and high in potassium (LS) (1.3% potassium,
0.35% sodium) and regular drinking water. All animals
were housed at 23°C on a 12-hour light-dark cycle. Rats
were sacrificed at 12 weeks of age, and brain tissue was
collected for RNA extraction and subsequent microarray
analysis. The study protocols were approved by the Ani-
mal Care Committee of the University of Texas – Hou-
ston. Since strain and dietary factor each have only two
levels, we here treated them as one-way in statistical anal-
ysis instead of two-way, that is, we are neither interested
in strain effects alone nor in dietary effects alone but focus
on their combined contributions to gene expression.
Thus, HS-SHRSPs, LS-SHRSPs, HS-SHRSRs, and LS-
SHRSRs are viewed as four treatment groups for the pur-
pose of the analyses.

Microarray experiment
Microarray analysis was performed as described by Lock-
hart et al. [21]. Briefly, 10 μg total RNA extracted from
each of the 24 rats was used to synthesize cDNA, which
was then used as a template to generate biotinylated
cRNA. cRNA was fragmented and hybridized to a Test2
chip to verify quality and quantity of the samples. Each
sample was then hybridized to a RGU34A array (Affyme-
trix, Santa Clara, CA). After hybridization, each array was
washed and scanned, and fluorescence values were meas-
ured and normalized using the Affymetrix Microarray
Suite v. 5.0 software.

Ranking F-Test
Let xgij be the expression value for replicate j of gene g in
group i where g = 1,..., N (number of genes), j = 1,..., rgi
(number of replicate observed values of gene g in group i)
and i = 1,..., n (number of groups). The traditional F-sta-
tistic in one-way ANOVA may be expressed as

where σ2 (Gg) and σ2 (eg) are inter- and intra-group vari-
ances of the expression values of gene g, respectively. In
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the conventional F-tests, for example, significance of p =
0.01 in the context of the standard F distribution is for a
single hypothesis to be tested; therefore, it is unsuitable to
microarray data because in a microarray experiment for
10,000 genes we would expect to identify 100 genes by
chance [9]. To address this problem, an alternative
approach is to rank genes by magnitude of their F values
so that F1 is the largest value, F2 is the second largest value,
etc., and Fg* is the g*th largest value where g* is a rank
position of gene g. Thus, we have a ranking F-test where

Fg* - fg* > Δ (2)

indicates that the expression variation of gene g among
multiple groups (or multiple conditions) is significant. In
Eq. (2), fg* is the expectation of Fg* under the null hypoth-
esis and Δ is a given threshold.

Estimation of fg*
In the ANOVA framework, we have

where  and ; τgi and  are

treatment effect and average random error in group i,

respectively;  and  are the overall observed mean

and the overall average error for gene g, respectively, and

μg is the overall expected mean for gene g and rgi is the

number of replicate observed values of gene g in group i.

Therefore, the inter-group variance σ2 (Gg) consists of two

parts: variance of treatment effects on expression of gene

g, σ2 (τg), and average error variance, σ2 ( ). Thus, F-sta-

tistic can be rewritten as

Therefore, the null hypothesis is equivalent to Fg = fg
because σ2 (τg) = 0 under the null hypothesis. Note that σ2

(τg) = 0 means the treatment effects τgi = ... = τgn = μg. In
order to do a ranking F-test, it is necessary to obtain a
good estimate of fg* . In the two-group scenario, Tusher et
al. [9] employed a permutation approach to estimate the
expected t-statistics. The permutation process cannot

completely clear the treatment effect in the ranked d-sta-
tistics so that the estimated ranked d-statistics distribution
is biased against its null distribution and unstable, in par-
ticular, when sample sizes are small (see Appendix A in
Tan et al., [14]). Tan et al. [14] developed a "Randomly
Splitting" (RS) approach to estimate the null distribution
of t-statistics. In this study, we extended the RS approach
to estimating the null distribution of F-statistics.

In the RS approach, one sample consisting of rgi replicates

is drawn from group i. Since only one sample is drawn
from a group, sample i represents group i. Within a sam-
ple all the observed expression values of gene g come from
the same group. These values have the same overall

expected mean μg and the same treatment effect τgi on

expression of gene g except for expression noises. A sam-
ple of rgi replicate values for gene g is randomly split into

two sub-samples denoted by s = 1 and s = 2. If let  be

the mean of sub-sample s of sample i for gene g at split J(J

= 1,..., M), then  can be expressed as

where  and  and  are repli-

cate number and noise in the observed expression value j
in sub-sample s in group i for gene g at split J, respectively.

 is estimated by the difference between two sub-sample

means in sample i for gene g at split J,

It can be seen from Eq. (6) that μg and τgi are cleared in dif-

ference between two sub-sample means, which is unre-
lated to sample size. Thus, the average random error

variance σ2 ( ) in Eq.s (3) and (4) can be estimated by

where  is estimate of mean ( ) of

expression noise of gene g among groups at split J. Vari-

ance σ2( ) is an estimate of expectation (σ2(graphic
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file="1471-2105-9-142-i17.gif"/>)) of inter-group vari-

ance (σ2 (Gg)) under the null hypothesis at split J. We

therefore have

Note that since treatment effect is completely removed
from the difference between two sub-sample means, the
difference is pure noise. We rank  across all g and let

 denote the value in ordered position g* at split J. After

running M splits, we have M values of  for position g*.

Thus fg* in Eq. (2) can be estimated by the average of 

over all M splits, i.e., .

Estimation of FDR
To identify genes whose expression is significantly
changed among multiple conditions, it is necessary to
estimate the FDR for a given threshold [7,22]. Here we
propose a two-simulation approach for FDR estimation
[14]. Consider a series of threshold values Δk(k = 1,...L)
and let Nk be the number of genes that are claimed as sig-
nificant by RAF at threshold Δk. Nk comprises two parts:
the number Nk(t) of the true positives and the number
Nk(f) of the false positives, i.e., Nk = Nk(t) + Nk(f). Thus,
given a threshold Δk, FDR is defined as λk = Nk(f)/Nk. Nk(f)
is unknown, hence λk must be estimated. Many
approaches such as BH procedure [7,22], BL procedure
[8], Storey's procedure [23,24], and Pounds and Cheng's
procedure [25] have been proposed to estimate the FDR.
These approaches, however, are based on the assumption
that the tests are independent. As mentioned previously,
this assumption may not be met in practice. Therefore,
these methods may not be suitable to our ranking test.
Based on the fact that sampling distribution fluctuates
around the expected distribution via permutation, Tusher
et al. [9] developed a permutation-based estimator to esti-
mate FDR in the ranking tests. It has been proved, how-
ever, in theory and in simulation that when the sample
sizes are small, the number of permutations is very lim-
ited so that the treatment effects cannot be removed in the
permutated data [14]. As a result, the estimator is biased
for a given threshold. Here we extend the interval
approach by Tan et al. [14] to the ranking analysis of F-sta-
tistics. In this approach, we first construct an estimated
interval of the true FDR, and then we find a reasonable
estimate of FDR. This interval is based on the complete
and partial null distributions given by two simulations.

In simulation 1, for each gene, n samples (groups) each
having r replicates are generated from normal distribu-

tions with a set of sample means ( ) and a set of

sample error variances [s2 (eg1),..., s2 (egn)]. Here we set

 and i is a randomly chosen group

from the observed data, for each of a half of the genes with

the null effect that the group variance is zero, i.e., σ2 (Gg)

= 0 and  for each of the other half with unknown

effect that the group variance is larger than or equal to

zero, i.e., σ2 (Gg) ≥ 0. s2 (egi) is set to be equal to σ2 (egi)

where  and σ2 (egi) are the observed values from the

real microarray data set.

B sets of simulation data are obtained from this proce-
dure. Each is subject to the ranking analysis described in
the previous section. For simulation data set b, every
ranked position has thus its corresponding F value that is
denoted by (b = 1,..., B). Here those that are called sig-

nificant by comparing  to  at a given threshold Δk

are counted as  across all ranking positions. Let

 Given the fact that a small part of

genes have unequal means in the samples, the simulation
data set produces a partially null F-distribution. In other

words, it may produce , possibly leading to

λk = N1k/Nk > 1. To avoid this situation, suppose N1k(k =

1,..., L) takes the maximum value N(m) at Δk = m, we define

as a function of threshold Δk for estimating FDR where we
set N1k = N(m) for all Δk < Δm(k = 1,..., L). Obviously, λ1k is
a decreasing function of the threshold and bounded
between 0 and 1. For example, λ1k = 1 when N1k = N(m),
and λ1k = 2/3 when N1k = N(m)/2. Results from the simu-
lation study in Figure 1 indicate that λ1k ≥ λk (true value of
FDR at threshold Δk) when threshold Δk is smaller than a
value Δ* but λ1k ≤ λk when Δk > Δ* (see Figure 1).

The second simulation for estimating FDR is carried out in
the following fashion. n samples (groups) each having r
replicates for each gene are generated from normal distri-

butions with a set of sample means, 

and a set of sample variances s2 (eg1) = σ2 (eg1),..., s2 (egn) =

σ2 (egn).

f
eg

J

e g
g
J =

σ

σ

2

2
( )

( )
. (8)

f g
J

f g
J
∗

f g
J
∗

f g
J
∗

f f Mg g
J

J

M
∗ ∗== ∑ /

1

y yg gn1,...,

y y xg gn gi1 = = =....

y xgi gi=

x gi

Fg
L
∗1

Fg
b
∗1 f g∗

N k
b
1

N Nk J
B

k
b

1 1 1= =max

N N fk
b

k1 > ( )

λ1
2 1

1
k

N k
N m N k

=
+( )

(9)

y y xg gn gi1 = = =....
Page 4 of 11
(page number not for citation purposes)



BMC Bioinformatics 2008, 9:142 http://www.biomedcentral.com/1471-2105/9/142
We also produce B sets of data from simulation 2. As in
simulation 1, for each simulation data set, every ranked
position also has its corresponding F-value denoted as

 (b = 1,..., B). Let . The positives

found by comparing  to Fg*2 at a given threshold Δk

are counted as  across all ranking positions. Here let

. Unlike the first simulation, here the

simulation data sets produce B null F-distributions, so N2k

should be approximate to the true number of false posi-

tives Nk(f). However, when threshold Δk is large, it is pos-

sible to have Nk = 0 so that N2k/Nk is undefined. To avoid

this situation, we define

as the second function of threshold (see Figure 1). In par-
ticular, we let λ2k = 1 if Nk = N2k = 0 because λ2k = 1 when
Nk = 0 and N2k > 0.

Thus, an interval for FDR estimation at threshold Δk can
be constructed between λ1k and λ2k . The third function of
threshold for FDR estimation is given as

λ3k = αkλ1k + βkλ2k

where αk = min(λ1k, λ2k)/(λ1k + λ2k) and βk = 1 - ak. λ3k
plays the role of weight in balancing λ1k and λ2k . There-
fore, at threshold Δk, a putative probability that a false dis-
covery is found in the genes called significant by RAF is

Note that as shown in the simulation result section, λ2k is

an underestimate of λk and λ1k is an overestimate of FDR

when the threshold Δk < Δ*. However, the situation is

reversed when threshold Δk > Δ*. This is because N1k

becomes very small when Δk > Δ* so that λ1k becomes very

small whereas, from Eq. (10), λ2k slowly decreases if Nk >

N2k or increases if Nk <N2k as threshold increases. In addi-

tion, when the microarray data have no treatment effects

for all the genes detected, then λ1k = λ2k = λ3k = 1, leading

to  = 1

In order to smooth  between thresholds Δk and Δk+1, we

define a recursive formula modifying the probability 

as

where pk = (Nk - Nk+1)/(1 + Nk - Nk+1) and qk = 1 - pk. Eq.

(13) suggests that λk+1 = λk if Nk = Nk+1. The number of

false discoveries among those found to be significant at

threshold Δk in the observed data is estimated by

. Figure 1 shows that the curve of  agrees

well with that of λk.

Results
Estimation of the null distribution of F-statistics
To examine if the empirical distributions obtained by the
RS approach are appropriate for the analysis of the expres-
sion data, we simulated a microarray data set consisting of
3770 genes and four groups each having 6 replicates using
one group mean and error variance for each gene. Thus,
the simulation without treatment effect generated a set of
pure noise data.

A set of 3770 Fk values was computed from the simulated

data set. We applied our RS approach to this simulated

data set to generate  over 50 splits. This set of 3770 Fk

values formed null distribution of F-statistics, which is
called f-distribution. To display the profile that our esti-

Fg
b
∗2 F Fg b

B
g
b

∗ = ∗=2 1 2min

Fg
b
∗2

N k
b
2

N N Bk k
b

b

B
2 21

= =∑ /

λ2
2

2
k

N k
Nk N k

=
+

(10)

ˆ ( ).λ λ λ λk k k k= + +1
3 1 2 3 (12)

l̂k

l̂k

l̂k

λ̂ λ λk k k k kp q= + +1
(13)

ˆ ( ) ˆN f Nk k k= λ l̂k

fk

Profile of estimates of FDRs for a series of thresholdsFigure 1
Profile of estimates of FDRs for a series of thresholds. 
λ1k and λ2k are two threshold functions from simulations 1 
and 2 and were used to construct an estimation interval for 

estimate of FDR at threshold Δk. λk and  are true and esti-

mated FDRs at threshold Δk, respectively, where k = 1, 2,...,L.
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mate of f-distribution is approximate to the null f-distri-

bution, we plotted the ranked Fk versus ranked . The

result displays in Figure 2 where all ranked F -  dots

roughly fall on a diagonal line as expected by two sets of
the same ranked distributions. These results suggest that
the -distribution is indeed an approximate estimate of

f-distribution.

Estimation of FDR

Since it is in general unknown if a given gene expresses
differently among multiple conditions, it is not necessar-
ily best to use real data of gene expression to evaluate an
FDR estimator. But simulation is a useful approach to
doing such a task. Therefore, we also conducted a compu-
ter simulation for comparing expression status (signifi-
cant or not) of a gene identified by a method with its real
status. This simulation was also based on our real data set

of 3770 genes. Treatment effect τ on expression variation
was set for 30 % of the genes and assigned in 4 groups. The
mean expression value of gene g was set

 and

 for the 4 groups where τ = 100U, 0 <U ≤ 1,

 is overall observed average for gene g, and each group

has 6 replicates. Obviously, treatment effect τ on expres-
sion changes randomly with genes in our simulation,
which would make it more difficult to identify differen-
tially expressed genes than the simulations with a fixed
treatment effect. Figure 1 displays a comparison between
RAF estimated and true FDRs. One can see that the RAF
estimate curve is very close to the true FDR curve given a
series of thresholds.

Efficiencies of different methods in finding genes 
differentially expressed among multiple groups
To evaluate different methods, we generated 30 simula-
tion data sets of 3770 genes with the same simulation pro-
cedure described above where treatment effect τ was
randomly assigned to 10% of the genes in 4 groups, each
with 6 replicates. We compared four typical methods with
these simulation datasets, of which the Bonferroni (B)
procedure and Benjamini-Hochberg (BH) procedure are
conventional multiple-testing procedures based on a
series of p-values obtained from the classical F-test; SAM is
a ranking method using the Fisher linear discrimination
[9]. Our method also is a ranking method but based on
the classical F-test. Although the F-test based on the hier-
archical error model (HEM) proposed by Cho and Lee
[26] also is suitable to multiple-sample data, the HEM
method has consistent performance with the SAM and has
no estimate of FDR. Therefore we did not take the HEM
method into account of our comparisons among meth-
ods. Table 1 summarizes the results obtained by applying
these four methods to the 30 simulation datasets where
efficiency of a method in finding genes differentially
expressed among multiple groups was comprehensively
evaluated by averaging number of called significances
(NCS), estimated number of false positives (ENFP), true
number of false positives (TNFP), and differences (d val-
ues) between ENFPs and TNFPs within a given range of
FDR over these 30 simulation data sets. Here we measure
the conservativeness of a method by the conservative
degree C(d ≥ 0), defined as the proportion of simulations
with d ≥ 0. In Table 1, as expected, the B procedure gave
the most conservative findings and the lowest power
among these methods. Similarly, the BH procedure also
yielded a very conservative result in which 96.7 percent of
ENFPs were larger than TNFPs, in other words, conserva-
tion degree reached 96.7%. For the two ranking methods,
Table 1 displays the results in the cases of FDR at 6 levels
0.04 <λ ≤ 0.05, 0.03 <λ ≤ 0.04, 0.02 <λ ≤ 0.03, 0.01 <λ ≤
0.02, 10-4 <λ ≤ 0.01, and λ < 10-4 . It is clear that RAF has
slightly larger means of NCS at all these 6 FDR levels than
SAM. In RAF, the means of ENFP are all higher than the

fk
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f

y x y x y xg g g g g g1 2 32= + = + = −τ τ τ, ,

y xg g4 2= − τ

x g

The dot-plot of F-values versus -valuesFigure 2

The dot-plot of F-values versus -values. F-values and 

-values obtained from the simulated microarray data of 

3770 genes were ranked where -values were yielded by 

the random splitting approach. All ranked F -  dots roughly 

fall on a diagonal line as expected by two sets of the same 
ranked distributions.
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means of TNFP while in SAM the means of ENFP are all
less than the means of TNFP. Table 1 also shows that RAF
has 75~86.2% conservation degree in estimates of false
positives under 5% of FDR whereas SAM has 23~66% of
conservation degrees. These results suggest that RAF has
the highest efficiency in finding genes differentially
expressed among these four methods.

We also generated a simulated data set of 3770 genes
where treatment effect τ was randomly assigned to 10% of
genes but sample size for each group was changed from 6
replicates to 4. Table 2 displays the results obtained by
SAM and RAF from this data set. It can be seen that SAM
has very high FDRs while RAF still works well and detects
9 genes without false positives.

Array findings by RAF

We obtained a set of the observed data in which expres-
sion of 3770 genes was measured among four treatment
groups HS-SHRSPs, LS-SHRSPs, HS-SHRSRs, and LS-
SHRSRs. This set of microarray data is readily applicable
to our ranking F-test analysis. Figure 3 shows a scattered-

dot plot of F-values versus -values obtained by the RS

approach.

Figure 4 compares the observed plot of ranked F -  to the

simulated one. One can see from Figure 4 that the

observed F -  plot begins to deviate from the simulated

F -  plot at about  = 2.1, suggesting that a part of the

F-statistics deviates from the -distribution. This result

underscores that these genotypes and diet feeds signifi-
cantly impact on expression of a portion of genes in rat
with respect to stroke.

The numbers of genes whose expression is significantly
different among the four groups HS-SHRSPs, LS-SHRSPs,
HS-SHRs, and LS-SHRs, are found to be 392, 145, and 107
by our RAF under estimates of FDR of 4.8, 0.7, and <7.0%
(see Table 3), respectively. These 107 genes with
FDR<0.7% are listed in the Additional file 1. Among these
107 identified probes, 31 belong to the expressed

f

f

f

f f

f

Table 1: Efficiencies of different methods in identifying genes differentially expressed among four groups each with 6 replicates in 30 
simulated datasets

NGCS ENFP TNFP Difference between ENFP 
and TNFP

Method FDR Mean (SD) Min Max Mean (SD) Min Max Mean (SD) Min Max Var (d) C(d ≥ 0)

B procedure λ = 0.05 59.6 (6.6) 46 73 3.0 (0.3) 2 4 0.0(0.0) 0 0 3.0 100%

BH 
Procedure

λ = 0.05 102.2 (9.9) 81 119 4.8 (1.0) 4 6 1.6 (1.4) 0 6 3.2 97%

SAM 0.04 <λ ≤ 0.05 111.5(14.3) 89 129 5.1 (0.6) 5 6 5.6(2.8) 2 12 2.0 6.7 56.5%
0.03 <λ ≤ 0.04 106.8(13.2) 84 119 3.7 (0.6) 3 5 3.8(2.3) 0 8 1.5 4.0 66.7%
0.02 <λ ≤ 0.03 96.2(12.5) 80 119 2.3 (0.6) 1 3 3.1(1.7) 1 6 1.4 3.1 39.4%
0.01 <λ ≤ 0.02 91.0(12.7) 71 107 1.3 (0.47) 1 2 1.6(1.2) 0 4 0.9 1.1 67.5%
0.00 <λ ≤ 0.01 98.7(6.6) 94 108 0.9 (0.1) 1 1 1.5(1.1) 0 3 1.0 1.9 36.4%

λ = 0.00 82.9(11.0) 66 108 0.0 (0.0) 0 0 1.0(0.6) 0 3 1.0 1.4 23.1%

RAF 0.04 <λ ≤ 0.05 115.1 (9.2) 96 131 5.1 (0.4) 4 6 4.4(2.7) 1 9 2.2 7.3 75.0%
0.03 <λ ≤ 0.04 110.6(12.2) 85 128 3.9 (0.6) 3 5 3.2(2.1) 1 8 1.6 3.9 79.2%
0.02 <λ ≤ 0.03 103.6 (10.6) 86 120 2.7 (0.5) 2 3 2.1(1.5) 0 6 1.3 2.8 81.8%
0.01 <λ ≤ 0.02 100.7 (10.8) 81 118 1.7 (0.5) 1 2 1.1(0.9) 0 3 0.9 1.3 75.8%
0.00 <λ ≤ 0.01 100.8 (4.1) 96 112 1.1 (0.2) 1 2 0.7(1.0) 0 3 0.9 1.4 77.8%

λ = 0.00 83.8 (7.1) 69 95 0.0 (0.0) 0 0 0.1(0.3) 0 1 0.1 0.1 86.2%

FDR, false discovery rate; NGCS, number of genes called significant; ENFP, estimated number of false positives; TNFP, true number of false 
positives.

 where dk = ENFPK - TNFPK and Nλ is number of x <λ ≤ y in 30 simulations.  where Ik = 1 if dk 

≥ 0, otherwise, Ik = 0. .

d
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sequence tags (ESTs), 76 are unique genes who have
known functions in the brain or central nervous system
and belong to six major functional classes: (a) neurotrans-
mission such as neurexin III-alpha, Neurodap-1, non-
neuronal enolase (NNE), beta isoform of catalytic subunit
of cAMP-dependent protein kinase; (b) cell signaling and
transportation such as trans-Golgi network integral mem-
brane protein (TGN38), glutamate transporter, alterna-
tively spliced GTP-binding protein alpha subunit
intracellular, signal regulatory protein alpha, synaptic ves-
icle protein 2B (SV2B), L-type amino acid transporter 1

(LAT1), N-ethylmaleimide-sensitive factor (NSF); (c) cell
proliferation, differentiation, and apoptosis anti-prolifer-
ative factor (BTG1), thyroid hormone receptor a1 (c-erb A
α1); (d) metabolism such as stearoyl-CoA desaturase 2,
beta isoform of catalytic subunit of cAMP-dependent pro-
tein kinase, ATP-citrate lyase. (e) RNA transcript and regu-

Comparison between the observed (red) and simulated 
(blue) plots of F-values versus -valuesFigure 4
Comparison between the observed (red) and simu-
lated (blue) plots of F-values versus -values. F-values 

were observed from real (red) and simulated (blue) microar-
ray data sets of 3770 genes and 6 replicates. -value yielded 

by randomly splitting approach is an estimate in null f-distri-
bution. F-distribution from simulated data set without treat-
ment effects is null distribution. Ranked F-values corresponds 
to ranked -values.

f

f

f

f

Table 2: Comparison between SAM and RAF in finding genes differentially expressed among four classes in a simulated data set of 
small sample size (n = 4)

SAM RAF

Delta Number of 
significances

Number of false 
positives

Estimated FDR Delta Number of 
significances

Number of false 
positive

Estimated FDR True FDR

0.037534 10 5.6 0.56 0.01253 16 6 0.375 0.125
0.044668 10 5.6 0.56 0.37608 13 4 0.308 0.077
0.045738 10 5.6 0.56 0.74013 13 3 0.231 0.077
0.050144 9 4.7 0.52 1.10516 12 2 0.167 0.083
0.052423 9 4.7 0.52 1.47167 11 1 0.091 0
0.055937 9 4.7 0.52 1.84017 10 1 0.100 0
0.059564 9 4.7 0.52 2.58527 9 0 0 0
0.060798 9 4.7 0.52
0.062046 9 4.7 0.52
0.063305 0 0 0

The scatter plot of F-values versus -valuesFigure 3

The scatter plot of F-values versus -values. F-values 

were observed from real microarray data set and -values 

yielded by random splitting approach are an estimate of null 
f-distribution.

f

f

f
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lation such as Zinc finger gene, Jun-D gene, and ribosomal
protein genes encoding larger ribosomal subunits L13, L8,
and L22; (f) ion channel/pump such as potassium chan-
nel-Kv2, electrogenic Na+ bicarbonate cotransporter
(NBC), type II Ca2+/calmodulin-dependent protein
kinase beta subunit, and protein kinase C-regulated chlo-
ride channel.

Independent verification of array findings
Fornage et al (2003) used TagMan assay to measure the
relative expressions of 7 genes encoding atrial natriuretic
peptide (Anp), the neurotrophin receptor protein tyrosine
kinase (TrkB, short), casein kinase 2 (Ck2), complexin 2
(Cplx2), stearoyl CoA desaturase 2 (Scd2), glycerol-3-
phosophate acyltransterase (Gpan), and inositol 1,4,5-tri-
phosphate receptor (Itpr1). They found these 7 genes had
significantly differentially expressed between SHRSP and
SHR strains with p < 0.05. Except that genes Anp and
Gpan were out of our data, genes for TrkB (short), Cplx2,
and Scd2 called significant differential expressions at
FDR<0.7%, and for CK2 and Itpr1 at FDR = 0.7% were
found among HS-SHRSP, LS-SHRSP, HS-SHR, and LS-
SHR strains. Interestingly, Tropea et al [27] also found the
genes encoding glutamate receptor (GluR-A) and GABA
receptor had significant expression difference between
two groups of mice treated by dark rearing and monocular
deprivation.

Discussion
To our knowledge, the ranking analysis of F-statistics for
identifying differentially expressed genes among multiple
groups (classes) has not been reported. There are two
main difficulties to be overcome: (a) estimate of the null
F-distribution and (b) estimate of FDR. In conventional
statistical methods, permutation is very popular to gener-
ate empirical distributions as estimates of the null distri-
butions. However, the permutation approach may not be
suitable for microarray data [10-13] because in general
microarray experiments have a small sample size due to
cost, as a result, treatment effect residues that cannot be
removed are amplified in permutation distribution and
resulting estimated null distribution has a heavier tail
compared to true null distribution [12]. This would
results in two consequences: (a) the estimated null distri-
bution is not stable, which, as seen in Table 3, leads to low
conservativeness of estimate of FDR, and (b) low power.

Our RAF method is successful because the -distribution

obtained by applying the RS approach [14] does not con-
tain treatment effects and hence is a desirable estimate of
the null F-distribution, which is supported by the fact that
the observed and simulated results agree well with those
expected by theory. Therefore, the number (M) of splits is
much smaller than that of permutations for estimate of
the null F-distribution. Simulation results showed that 50

splits are enough to obtain a stable and smooth -distri-

bution. In addition, since the -distribution is generated

from all the genes detected on microarrays and does not
contain treatment effect residences, impact of sample size

on the -distribution is very weak. However, we also

noted that the -distribution would underestimate the

null F-distribution when sample sizes are smaller than 4.
In this situation, Eq. (7) should be changed to

.

FDR is often used to control the error rate in the BH pro-
cedure [7], the BL procedure [8], and in SAM [9]. In prac-
tice, for a ranking test, it is necessary to obtain an accurate
estimate of FDR. In SAM, FDR is estimated through the
permutation approach in which fluctuations around
expectation occur among permutated samples. The fluctu-
ations would be dependent on the data itself, i.e., sample
size, treatment effect, and data noise. In addition, as indi-
cated above, permutation fails to remove the treatment
effects in the data permuted from the microarray data with
a small sample size so that the fluctuations are not purely
due to random errors. Thus, this approach may give a

f

f

f

f

f

σ 2 2
1

4 1( ) ( ) /( )e e e ng
J

gi
J

g
J

i
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Table 3: The results of RAF identifying genes differentially 
expressed among HS-SHRSPs, LS-SHRSPs, HS-SHRSRs, and 
LS-SHRSRs.

Delta Number of genes 
called significant

Number of false 
discoveries

Estimated FDR

0.01253 3543 1181 0.333
0.74013 1504 500 0.332
1.10516 1157 173 0.150
1.47167 944 117 0.124
1.84017 794 83 0.105
2.21118 668 59 0.088
2.58527 580 44 0.076
2.96301 515 34 0.066
3.34503 437 24 0.055
3.73199 392 19 0.048
4.12463 370 15 0.041
4.52373 338 12 0.036
4.93017 307 10 0.033
5.34493 269 7 0.026
5.7691 250 6 0.024
6.20391 229 5 0.022
6.65078 209 4 0.019
7.11135 194 3 0.015
7.58753 182 2 0.011
9.13461 145 1 0.007
11.6257 107 0 <0.007

HS, high salt; LS, low salt; SHRSP, stroke-prone SHR/A3 (Heid) rats; 
SHRSR, stroke-resistant SHR/N (CRiv) rats.
Page 9 of 11
(page number not for citation purposes)



BMC Bioinformatics 2008, 9:142 http://www.biomedcentral.com/1471-2105/9/142
biased estimate of FDR for a given threshold. The RAF esti-
mator is based on a two-simulation strategy and hence
avoids these problems of the SAM estimator, that is, its
accuracy is not affected by sample size, treatment effect,
and noise. As a result, the number (B) of simulations is
also relatively small. Our simulation study indicates that
more than 40 simulated data sets (B ≥ 40) would produce
stable estimates of FDR across all given thresholds.

Our current RAF method can be readily extended to other
test statistics such as Brown-Forsythe test statistic [28],
Welch test statistic [29], and Cochran test statistic [30] by
replacing F-statistic with the respective statistics.

Conclusion
We developed a new statistical method that is suitable for
analyzing microarray data to identify differentially
expressed genes among multiple groups, especially, when
sample size is small.
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