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Abstract
Background: DNA microarray technology has emerged as a major tool for exploring cancer biology and solving clinical issues.
Predicting a patient's response to chemotherapy is one such issue; successful prediction would make it possible to give patients
the most appropriate chemotherapy regimen. Patient response can be classified as either a pathologic complete response (PCR)
or residual disease (NoPCR), and these strongly correlate with patient outcome. Microarrays can be used as multigenic
predictors of patient response, but probe selection remains problematic. In this study, each probe set was considered as an
elementary predictor of the response and was ranked on its ability to predict a high number of PCR and NoPCR cases in a ratio
similar to that seen in the learning set. We defined a valuation function that assigned high values to probe sets according to how
different the expression of the genes was and to how closely the relative proportions of PCR and NoPCR predictions to the
proportions observed in the learning set was. Multigenic predictors were designed by selecting probe sets highly ranked in their
predictions and tested using several validation sets.

Results: Our method defined three types of probe sets: 71% were mono-informative probe sets (59% predicted only NoPCR,
and 12% predicted only PCR), 25% were bi-informative, and 4% were non-informative. Using a valuation function to rank the
probe sets allowed us to select those that correctly predicted the response of a high number of patient cases in the training set
and that predicted a PCR/NoPCR ratio for validation sets that was similar to that of the whole learning set. Based on DLDA
and the nearest centroid method, bi-informative probes proved more successful predictors than probes selected using a t test.

Conclusion: Prediction of the response to breast cancer preoperative chemotherapy was significantly improved by selecting
DNA probe sets that were successful in predicting outcomes for the entire learning set, both in terms of accurately predicting
a high number of cases and in correctly predicting the ratio of PCR to NoPCR cases.
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Background
The development of high-throughput measurement tech-
nologies and associated computational analysis tools
allow tumors to be identified based on a profile of mRNA
expression levels [1-13]. Currently, most DNA chips con-
tain more than 20 000 probe sets. These expression pro-
files obtained from biopsies or fine needle aspirations can
then be correlated with traditional tumor characteristics
(size, grade) and behaviour (recurrence, sensitivity to
treatment). In breast cancer, neoadjuvant chemotherapy,
which is treatment provided prior to surgery, allows breast
tumor chemosensitivity to be tested in vivo [11,14-16]. A
pathologic complete response (PCR) at surgery correlates
with an excellent outcome, whereas residual disease
(NoPCR) is associated with a poor outcome. Investigators
have reported the use of gene profiling of tumors and
multigene predictors (signatures) to predict response to
treatment. Accurate prediction of tumor sensitivity to pre-
operative chemotherapy is important because NoPCR
patients could be spared ineffective treatment and instead
be administered alternative treatments. Therefore, such
predictors allow for the delivery of individualized treat-
ments [9,16,17].

The design of such a multigene predictor of patient class
(PCR or NoPCR) involves the use of a learning data set, in
which the cases have been divided into two groups
according to the known outcome of the treatment, and of
an independent validation set.

Three main challenges arise when designing such predic-
tors [10,12,18-22]:

• selecting subsets of DNA probe sets relevant to the
pathology and to the preoperative chemotherapy

• combining the mRNA expression levels of these subsets
of DNA probe sets in order to get a reliable prediction of
the efficacy of the preoperative chemotherapy

• ensuring that the performance of the predictor is inde-
pendent of the learning data set (in other words, estimat-
ing the accuracy of future predictions)

The most commonly used methods for selecting a subset
of DNA probe sets identify probes that deviate most from
a random distribution of expression levels or that are the
most differentially expressed between the PCR and
NoPCR learning cases. In the former approach, statistical
analysis is used to rank genes based on the calculated p-
values of the probe sets, and this ranking provides the
basis for gene selection [18,20-23].

In this study, we hypothesized that multigenic predictor
performance could be improved if it were based on probe

sets whose individual predictions were close to those of a
hypothetical ideal probe set. First we considered single
probe sets and their individual predictions of treatment
outcomes. Then we used a valuation function to assign
high values to probe sets that correctly predicted many
cases in the learning set, and that predicted relative pro-
portions of PCR and NoPCR cases close to those of the
whole learning set.

We compared the performance of multigenic predictors
using the 30 probe sets showing the highest p-values in t
tests and the highest results for the valuation function.

Results
Top-ranked probe sets
We calculated the valuation of the 22 283 probe sets con-
tained in the microarrays and ranked the probe sets
according to their v(s) values. Table 1 gives, for each of the
30 top ranked probe sets, the corresponding gene, the
probe set valuation, the number p(s) of correctly predicted
PCR learning cases, the number n(s) of correctly predicted
NoPCR learning cases, and the total number c(s) = p(s) +
n(s) of correctly predicted learning cases.

For instance, each of the two probe sets of gene BTG3 cor-
rectly predicted the outcome of 12 of 21 PCR learning
cases and 40 of 61 NoPCR cases.

Since the valuation function based on the mean and
standard deviation of gene expression level, we used a t
test to determine the p values of gene expressions for PCR
and NoPCR for the 30 top-ranked probe sets. The p values
ranged from 2.56 × 10-8 to 0.008.

The ranks of these p-values for the 30 probe sets with the
highest valuation functions among the 22 283 probe sets
ranged from 3 to 1062 (median: 124). The 30 probe sets
with the highest p-values shared eight probe sets in com-
mon (Table 2).

We then studied whether there was a correlation between
the level of expression of the probe sets and their valua-
tion. As shown in Figure 1A, we did not find any correla-
tion (r = 0.1), suggesting that the valuation function does
not depend on the level of expression of the probe set.

We also studied the correlation of valuation function in
30 replicates. In Figure 1B, we report the correlation of the
valuation function for the 30 top-ranked probe set. We
did not re-rank all the probe sets because the number of
PCR cases (6) was relatively low in this particular subset.
The correlation between original samples and replicates
was high: r = 0.81. When p-values obtained by t-test were
compared between replicates, the correlation was r = 0.87.
This demonstrates that our method is reproducible.
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Bi-informative and mono-informative probe sets
The definition of the pcr and nopcr predictions of a probe
set leads to three different kinds of probe sets:

• the bi-informative probe sets: each of them predicts at
least one PCR learning case and one NoPCR learning case,
i.e. p(s)>0 and n(s)>0;

• the mono-informative probe sets: each of them is
informative of a single class of patient cases:

� PCR-probe sets: p(s)>0 and n(s) = 0,

� NoPCR-probe sets: n(s)>0 and p(s) = 0;

• the non-informative probe sets: p(s) = n(s) = 0.

Figures in additional file 1 and Additional file 2 illustrate
a bi-informative probe set, a PCR probe set, and a NoPCR
probe set. In the upper part of Figure 2, the expression lev-

els of a bi-informative probe set, probe s = 213134_x_at of
gene BTG3, is shown for the 82 cases of the learning set.

The expression levels of the 21 PCR patient cases are plot-
ted with the character "+" and those of the 61 NoPCR
patient cases with the character "-". The interval of PCR
expression levels Ip(s) is represented by three lines of
height mp(s), mp(s)-sdp(s) and mp(s)+sdp(s) drawn
based on the expression levels of the PCR learning cases.

The interval of NoPCR expression levels In(s) is repre-
sented by lines of heights mn(s), mn(s)-sdn(s) and
mn(s)+sdn(s) drawn based on the expression levels of the
NoPCR learning cases.

The lower part of Figure 2 shows the pcr and nopcr predic-
tions of the probe set. One can see that the probe set of
gene BTG3 predicted the treatment's outcome of 12 PCR
learning cases and 40 NoPCR learning cases.

Table 1: Top 30 probes. Thirty probes of highest value v(s). 1st column: gene name in Hugo Gene nomenclature; 2nd column: 
reference of the Affymetrix DNA probe; 3rd column, v(s): probe valuation; 4th to 6th columns, p(s), n(s), c(s): numbers of pcr and 
nopcr correct predictions and total number c(s) = p(s) + n(s) of correct predictions for the 21 PCR and 61 NoPCR cases of the learning 
set.

Gene Probe v(s) p(s) n(s) c(s) p value (t test) rank among probe sets according to p value by t test

BTG3 213134_x_at 0.61 12 40 52 2,96E-05 58
BTG3 205548_s_at 0.61 12 40 52 3,31E-05 62
GATA3 209604_s_at 0.59 15 29 44 0,00020015 148
GATA3 209603_at 0.49 12 26 38 0,00029983 186
THRAP2 212207_at 0.46 8 34 42 2,56E-08 3
SCCPDH 201826_s_at 0.46 12 22 34 0,00033299 194
SIL 205339_at 0.45 10 27 37 0,00049604 233
KRT7 209016_s_at 0.45 6 38 44 0,00248585 539
MCM5 201755_at 0.45 7 35 42 0,00281786 567
NME3 204862_s_at 0.44 10 25 35 2,45E-05 52
METRN 219051_x_at 0.44 11 22 33 1,71E-06 19
PDE4B 211302_s_at 0.43 9 27 36 0,00824095 1062
PHF15 212660_at 0.42 7 32 39 2,83E-05 57
SSR1 200891_s_at 0.42 7 32 39 0,00187004 466
PISD 202392_s_at 0.42 11 20 31 6,61E-05 92
MELK 204825_at 0.41 8 28 36 0,00012238 120
CA12 215867_x_at 0.41 10 22 32 4,42E-05 74
CA12 214164_x_at 0.41 10 22 32 4,70E-05 77
MAPK3 212046_x_at 0.41 10 22 32 9,07E-06 31
GATA3 209602_s_at 0.41 13 13 26 0,00068129 269
BBS4 212745_s_at 0.41 3 42 45 1,25E-07 4
DAPK1 203139_at 0.41 9 24 33 0,0006761 266
SAS 203226_s_at 0.40 7 29 36 8,70E-05 106
FLJ10916 219044_at 0.40 8 26 34 1,30E-06 15
E2F3 203693_s_at 0.40 8 26 34 0,00044243 219
AHNAK 220016_at 0.40 9 23 32 0,0001449 129
KLHDC3 214383_x_at 0.40 9 23 32 0,00071442 279
SFRS12 212721_at 0.40 9 23 32 5,34E-05 87
SRPK1 202200_s_at 0.39 6 31 37 0,00067356 265
CXCR4 217028_at 0.39 8 25 33 0,00098699 339
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Using the same representation system, additional file 1
reports the PCR probe set s = 213033_s_at of gene NFIB,
and additional file 2 reports the NoPCR probe set s =
203928_x_at of gene MAPT. The former predicted the
treatment's outcome of 13 PCR learning cases; the latter
predicted the outcome of 28 NoPCR learning cases.

For the learning data set, the proportion of the 22 283
probe sets belonging to each of the three types of probe
sets were as follows:

• mono-informative probe sets: 71% (59% NoPCR probe
sets and 12% PCR probe sets);

• bi-informative probe sets: 25%;

• non-informative probe sets: 4%.

In spite of the high proportion of mono-informative
probe sets, none of them was found among the set of 30

top-ranked probe sets. In fact, the first mono-informative
probe set was ranked at position 63: NoPCR probe set s =
207067_s_at of gene HDC.

This is the direct result of the valuation function v(s) for
the probe set. It is not an arbitrarily imposed requirement
of our analysis.

We have investigated the informativity of the probe sets
with the highest p-values by t-test and it appeared that this
property is a characteristic of our method. In the study of
Hess et al. [1], which provided the data for the present
work, the probe sets were ranked according to the p-value
calculated from a t test. Of the 30 highest-ranking probes
in that study, 11 are NoPCR-probe sets (Table 2).

Ratio of pcr to nopcr correct predictions
The ratio of the PCR to NoPCR cases (P/N) in the learning
set was

P/N = 21/61 = 0.34

A. correlation between the level of expression of the probe sets and valuation function; B. correlation of valuation func-tion in 30 replicatesFigure 1
A. correlation between the level of expression of the 
probe sets and valuation function; B. correlation of 
valuation function in 30 replicates.
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Table 2: Valuation of the probes selected by K. Hess & al. Top 30 
probes of K. Hess & al. [1]. 3rd and 4th columns: probes' values 
v(s) and ranks in this valuation. 5th and 6th columns: numbers of 
pcr and nopcr predictions of the probes. Total numbers of pcr 
and no pcr predictions: 123 and 894. Ratio = 0.13

Gene Probe v(s) rank p(s) n(s)

MAPT 203929_s_at 0.22 780 0 28
MAPT 203930_s_at 0.291 218 2 30
BB_S4 212745_s_at 0.41 21 3 42
MAPT 203928_x_at 0.22 781 0 28
THRAP2 212207_at 0.46 5 8 34
MBTP_S1 217542_at 0.26 391 0 32
MAPT 206401_s_at 0.22 900 0 27
PDGFRA 215304_at 0.32 118 4 28
ZNF552 219741_x_at 0.24 564 1 27
RAMP1 204916_at 0.22 774 0 28
BECN1 208945_s_at 0.30 165 4 26
BTG3 213134_x_at 0.61 1 12 40
SCUBE2 219197_s_at 0.15 3078 0 19
MELK 204825_at 0.41 16 8 28
BTG3 205548_s_at 0.61 2 12 40
AMFR 202204_s_at 0.23 662 0 29
CTNND2 209617_s_at 0.27 337 0 33
GAMT 205354_at 0.38 38 7 27
CA12 204509_at 0.24 566 1 27
FGFR1OP 214124_x_at 0.37 52 6 28
KIAA1467 213234_at 0.25 475 3 22
METRN 219051_x_at 0.44 11 11 22
FLJ10916 219044_at 0.40 24 8 26
E2F3 203693_s_at 0.40 25 8 26
ERBB4 214053_at 0.21 1040 0 26
JMJD2B 215616_s_at 0.37 45 7 26
RRM2 209773_s_at 0.37 51 3 37
FLJ12650 219438_at 0.27 293 0 34
GFRA1 205696_s_at 0.18 1994 0 22
IGFBP4 201508_at 0.38 39 7 27
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This ratio is in excellent agreement with the ratios of the
total number of pcr and nopcr correct predictions using
the k top-ranked probe sets; the ratios for k = 1 to 50 lay
between 0.30 and 0.38 (Figure 3). This result confirmed
that the predictions of the high-ranking probe sets were
close to those of the ideal probe set not only in the
number of learning cases they correctly predicted, but also
in the ratio of PCR to NoPCR cases among these predicted
cases.

These results also seemed to be a particular feature of our
method of probe selection: in the study reported by Hess
et al. [1], the ratio of pcr to nopcr predictions of the 30
probe sets with the highest p-values was 123/894 = 0.13.
This ratio was three times lower than the ratio of PCR to
NoPCR cases in the learning set. These ratios were, in turn,
very close to that of correct pcr to nopcr predictions for all
probe sets: 22 925/180 874 = 0.13.

Multigenic predictors
Internal validation of k probe set predictors
We first evaluated the performance of multigenic predic-
tors in a leave-one-out cross validation and in a k-fold
cross-validation (k = 3). For the leave-one-out cross-vali-
dation, we repeated the probe selection for each proce-
dure. For the k-fold cross-validation, we used the 30
highest-ranking probes in order to investigate whether the
importance of probe selection is important for every
method used to construct the multigenic predictor. We
investigated DLDA, and nearest centroids. The p-values of
methods in cross-validation procedures were based on
1000 random permutations.

The results indicated in Table 3 showed that DLDA had
similar performance with t-test probe sets and bi-inform-
ative probe sets (mean percentage of correctly classified
tumors: 82% in LOOCV, and 83% in 3-fold cross valida-
tion). Bi-informative probes improved the nearest cen-
troid method.

External validation: independent datasets
The first set of validation cases (same patient characteris-
tics, same treatment) contained data of 51 patients, and
the response to treatment was PCR for 13 patient cases
and NoPCR for 38 patients. Hence, the ratios of PCR to
NoPCR patient cases were the same for the learning and
the validation datasets. Figure 4 depicts the values of sen-
sitivity and specificity of the first 51 k probe set majority
vote predictors (0 ≤ k ≤ 50). The 29 and 30 probe set pre-
dictors achieved the performances of the 27 probe set pre-
dictor. Table 4 shows the numbers of false positives and
false negatives for the k probe sets predictors (0 ≤ k ≤ 50)
for the external validation data. The 27 probe set predictor
misclassified a total of seven patient cases: one was a false
negative and six were false positives2. This result confirms
that in this population, a 30-probe set predictor provides
the most accurate results [1].

In the present article, we have decided to use a very simple
classification criterion for defining the k probes predic-
tors, namely, unweighted majority voting among the pre-
dictions of the probes. Many other classifiers could be
developed for the selected probes, and countless studies
have been devoted to this issue. Hess et al. [1] studied sev-
eral of them using a varying numbers of probes and a total
of 780 classifiers (sets of genes and classifying methods).
These classifiers were composed of probes selected accord-
ing to their p-value calculated from a t-test. The research-
ers showed that among these predictors, the one showing
the best performance for these particular data was the
diagonal linear discriminant analysis with 30 probe sets
(DLDA-30 predictor).

expression levels of a bi-informative probe set, probe s = 213134_x_at of gene BTG3, for the 82 cases of the learning setFigure 2
expression levels of a bi-informative probe set, probe 
s = 213134_x_at of gene BTG3, for the 82 cases of the 
learning set.
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We have evaluated the DLDA classifier composed of the
30 probes with the highest valuation functions, and com-
pared it to a DLDA classifier composed of the 30 probe
sets showing the highest p-values. The discriminations of
the two classifiers are represented in Figure 5: AUC
obtained with the bi-informative probes and the t-test
probes were 0.87 +/- 0.07 and 0.90 +/- 0.06, respectively.
The performance metrics analysis (Figure 6) showed that
the DLDA classifier built from the bi-informative probes
had a better accuracy (0.863, 95% confidence interval:

0.737–0.943) than the t-test DLDA-classifier (0.824, 95%
confidence interval: 0.691, 0.916). Interestingly, misclas-
sified cases were similar between the two probe sets. The
DLDA predictor built from the bi-informative probes cor-
rectly classified two additional patients compared to the
DLDA predictor built with the t-test probes. The DLDA
classifier built with the bi-informative probes had a better
sensitivity (0.923, 95% confidence interval: 0.64–0.998)
than the t-test DLDA-classifier (0.846, 95% confidence
interval: 0.546, 0.981).

Table 3: Cross-validation of multigenic predictors

Leave-one out cross-validation
30 t-test probes 30 bi-informative probes

Mean percent of correct classification P value Mean percent of correct classification P value

Majority vote - - 73 <0.01
DLDA 82 <0.01 82 <0.01
nearest centroids 63 0.09 70 <0.01

k-fold cross validation, k = 3
30 t-test probes 30 bi-informative probes

Mean percent of correct classification P value Mean percent of correct classification P value

Majority vote - - 65 <0.01
DLDA 83 <0.01 83 <0.01
nearest centroids 65 0.09 70 <0.01

Ratios of pcr to nopcr predictions of the k top-ranked probes, 1 ≤ k ≤ 50Figure 3
Ratios of pcr to nopcr predictions of the k top-ranked probes, 1 ≤ k ≤ 50.
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Table 4: Numbers of false positives and false negatives for the k probe sets predictors (0 ≤ k ≤ 50) for the external validation data (test 
set 1)

k FP FN FP+FN k FP FN FP+FN k FP FN FP+FN

0 38 13 51 17 8 3 11 34 5 2 7
1 18 7 25 18 8 3 11 35 5 2 7
2 18 5 23 19 9 2 11 36 5 2 7
3 16 4 20 20 8 2 10 37 5 2 7
4 15 4 19 21 8 2 10 38 5 3 8
5 15 4 19 22 6 2 8 39 5 2 7
6 15 3 18 23 7 2 9 40 5 2 7
7 13 3 16 24 7 3 10 41 5 2 7
8 12 4 16 25 7 2 9 42 5 2 7
9 9 4 13 26 6 2 8 43 5 2 7
10 7 4 11 27 6 1 7 44 6 2 8
11 7 3 10 28 5 3 8 45 6 2 8
12 7 3 10 29 6 1 7 46 6 2 8
13 7 3 10 30 6 1 7 47 6 2 8
14 8 3 11 31 5 2 7 48 6 2 8
15 7 3 10 32 5 2 8 49 6 2 8
16 8 3 11 33 4 2 6 50 6 2 8

Sensitivity and specificity of the first 51 k probe set majority vote predictors (0 ≤ k ≤ 50)Figure 4
Sensitivity and specificity of the first 51 k probe set majority vote predictors (0 ≤ k ≤ 50).
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The second set of validation consisted of 147 patients
treated with the same chemotherapy regimen as the learn-
ing set, but very few of these patients had a tumor with
HER2 amplification. The discriminations of the two clas-
sifiers are represented in Figure 7: AUC obtained with the
bi-informative probes and the t-test probes were 0.736 +/
- 0.058 and 0.709 +/- 0.06, respectively. The performance
metrics analysis (Figure 8) showed that the DLDA classi-
fier built with the bi-informative probes was slightly more
sensitive (0.741, 95% confidence interval: 0.537, 0.889)
than the t-test DLDA-classifier (0.667, 95% confidence
interval: 0.46, 0.835). This suggests that the "positive"
informativity of bi-informative probes may translate into
greater sensitivity.

The third validation set consisted of 50 patients treated
with anthracycline-based neoadjuvant chemotherapy.
Discriminations were poorer compared to previous vali-
dation sets (see Additional file 3): AUC obtained with the
bi-informative probes and the t-test probes were 0.654 +/
- 0.078 and 0.643 +/- 0.079, respectively. The perform-
ance metrics analysis showed that the DLDA classifier
built with the bi-informative probes were more accurate
(0.54, 95% confidence interval: 0.39, 0.68) than the t-test
DLDA-classifier (0.52, 95% confidence interval: 0.37,
0.68). The sensitivity was the same for both probe set
selection methods (0.875, 95% confidence interval:
0.6764, 0.9734). This combination of low accuracy and
high sensitivity suggests that multigenic predictors are at
least partly specific of a chemotherapy regimen, and that
they are sensitive to the ratio of PCR and NoPCR.

P-value of the majority vote predictors
The p-values of the 27, 29, and 30 probe set predictors
were less than 1.12 × 10-12, based on the null hypothesis
of a predictor composed of random probe sets. Individual
probe set predictions were chosen at random among the
three possible values, pcr, nopcr, and unspecified, with
probabilities coming from the validation set data. The
details of the computation of the upper bound of the p-
values are in the Appendix "P-value of the predictors" [see
Additional file 4].

Weighting the predictions of probes
We defined a family of valuation functions, vα(s), param-
eterized by the real number alpha, α ∈ [0, 1]:

The valuation function v(s) previously defined is the par-
ticular case vα(s)=0.5(s). High parameter values favor
probes with high numbers of pcr predictions p(s) and vice-
versa. The valuation of a probe depends on the parameter
α, so its rank depends on this parameter as well as on the
set of k top-ranked probes, hence the k probe predictors.
For each value α ∈ {0, 0.1,...,1.0}, additional file 5 gives
the set of 30 top-ranked probes and the performances of
the predictor composed of the 30 top-ranked probes
based on the valuation function vα(s). Additional file 6
gives the ratios of pcr to nopcr predictions for this
weighted valuation functions. Additional file 7 provides
sets top 30 probes for the weighted valuation functions.
Figure 9 depicts how the sensitivity and specificity of the
50 first k probe predictors varied with the values of the
weighting parameter α ∈ {0, 0.1,...,1.0}. The parameter
value α = 1 grants all the weight to the pcr predictions p(s)
of the probes. For α = 1, all k probe predictors with k ≥ 15
classified any patient case as PCR (sensitivity = 1, specifi-
city = 0). In contrast, the parameter value α = 0 grants all
the weight to the nopcr predictions n(s). The specificity of
the resulting predictors was 1 (all the NoPCR cases were
correctly predicted) and their sensitivity was very low
(almost all the PCR patient cases were misclassified). For
this set of 10 parameter values, the parameter value α =
0.5, which is given by the initial valuation function v(s),
provides the best 30 probe predictor. Only one other
value of α (0.4), yielded a 30 probe predictor with the
same accuracy value of 0.86, but it had a lower sensitivity.

The explanation of these results lies in the ratio R(α) of
pcr to nopcr numbers of predictions for the top 30 probes
in the ranking of the function vα(s). The values of these
ratios R(α) should be compared to the ratio R = P/N =
0.34 of the numbers of PCR to NoPCR learning cases.
Additional file 6 gives these ratios R(α) for α ∈ {0,
0.1,...,1.0}. The set Sα of the top 30 probes for the weight-

v (s) α α α= × 



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Discriminations of the two DLDA classifiers (30 probes with the highest valuation functions, and 30 probe sets showing the highest p-values (t-test)) in the independent test set 1Figure 5
Discriminations of the two DLDA classifiers (30 
probes with the highest valuation functions, and 30 
probe sets showing the highest p-values (t-test)) in 
the independent test set 1.
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Performance metrics of the two DLDA classifiers (30 probes with the highest valuation functions, and 30 probe sets showing the highest p-values (t-test)) in the independent test set 1Figure 6
Performance metrics of the two DLDA classifiers (30 probes with the highest valuation functions, and 30 
probe sets showing the highest p-values (t-test)) in the independent test set 1.

DLDA values on bi-infomative 30 probes

O
b
s
e
rv

e
d

R
e
s
p
o
n
s
e

to
 T

re
a
tm

e
n
t

-40 -20 0 20 40

MDA TFAC DLDA Predictor (bi-infomative 30 probes)
Training: MDA82 N=82, Validation: MDA TFAC N=51

RD

pCR

Predicted as RD, pCR=0 Predicted as pCR, pCR=1

Performance Metrics (95% CIs)
Accuracy = 0.863 (0.737, 0.943)
Sensitivity = 0.923 (0.64, 0.998)
Specificity = 0.842 (0.688, 0.94)

Positive PV = 0.667 (0.41, 0.867)
Negative PV = 0.97 (0.842, 0.999)

ROC AUC = 0.87 +/- 0.067

M
39

9

M
12

0

M
49

7

M
50

3

PER
U
14

PER
U
11

M
35

3

DLDA values on JCO 30 probes

O
b
s
e
rv

e
d

R
e
s
p
o
n
s
e

to
 T

re
a
tm

e
n
t

-40 -20 0 20 40

MDA TFAC DLDA Predictor (JCO 30 probes)
Training: MDA82 N=82, Validation: MDA TFAC N=51

RD

pCR

Predicted as RD, pCR=0 Predicted as pCR, pCR=1

Performance Metrics (95% CIs)
Accuracy = 0.824 (0.691, 0.916)

Sensitivity = 0.846 (0.546, 0.981)
Specificity = 0.816 (0.657, 0.923)

Positive PV = 0.611 (0.358, 0.827)
Negative PV = 0.939 (0.798, 0.993)

ROC AUC = 0.901 +/- 0.06

M
39

9

M
12

0

M
48

2

M
49

7

M
50

3

PER
U
14

PER
U
11

M
44

2

M
35

3



BMC Bioinformatics 2008, 9:149 http://www.biomedcentral.com/1471-2105/9/149
ing parameter α = 0.5 had a ratio R(α) = P(α)/N(α) = 0.33,
where P(α) and N(α) are the total numbers of pcr and
nopcr predictions of the set of probes Sα. This value was
the closest to the ratio R = 0.34. The ratio R(α) increases
with the parameter α, from R(0) = 0.036 to R(1) = 1.015,
which are far lower and far higher, respectively, than the
ratio R = 0.34. These values explain the performances of
the respective predictors. The conclusion is that the valua-
tion function v(s) = v0.5(s) gives the best predictor. Nev-
ertheless, the weighting can be used to favor specificity or
sensitivity of the predictors.

Discussion
We have introduced a new procedure to select probes that
can be used as multigenic predictors. This procedure
selects probes that convey information on both positive
and negative issues. Using cross-validation, we have con-
firmed that predictors built with bi-informative probes
provide similar results as predictors built with probes
selected using a t test. Predictors with bi-informative
probes perform better on independent datasets.

One crucial problem in predicting cancer prognosis based
on microarray data is that of building prediction models
based on ~50 genes that are stable in both the learning set
and the actual sample set. The most common approach is
to consider each probe set individually and see whether it
distinguishes samples with different class labels by using
Student's t test (univariate parametric significance level).
This is a simple method for testing whether two variables
have identical Gaussian distributions. Generally, a signif-

icance level is chosen for determining the genes that will
be included in the predictors; genes that are differentially
expressed between the classes at less than the specified
threshold are included in the predictor. Therefore, all
genes are ranked according to the result and the top k
genes are selected as the feature subset to be used. In our
study, for example, we selected the 30 top-ranked genes
because Hess et al determined that 30 probe sets were
optimal [1].

Michiels et al. [24] have analyzed seven published micro-
array cancer data sets, and highlighted the difficulties
inherent to this approach. Examining different prostate
cancer data sets, Wang et al. [10] found that misclassifica-
tion rates strongly depended on which samples were used
for training and which probes were selected for predictor
construction. There is therefore a need to find robust gene
selection methods for multigenic predictors.

There are several methods to select probes that could be of
interest for a multigenic predictor: these methods may be
based either on biological aspects, computational aspects
or, as in the present study, on the samples themselves.

Paik et al. [6], for example, have selected probes for genes
previously demonstrated to be important in breast cancer
in order to predict survival and response to adjuvant
chemotherapy. We tried to use these genes, but obtained
unsatisfactory results (data not shown). Indeed, most of
these genes proved monoinformative and captured a very
singular aspect of breast tumors. Because probe sets may
be redundant, some authors have reported a way to
remove redundancy in the selected gene set that is com-
patible with any method [25]. These biological aspects,
while interesting when considering targeted therapy such
as estrogen receptor expression for hormone therapy or
HER2 amplification for trastuzumab, do not provide
more information than classic biomarkers in the case of
non-targeted therapy such as chemotherapy.

Other groups have reduced the dimensionality by singular
value decomposition (SVD), also referred to as principal
component analysis (PCA), using, for example, the first
ten principal components or metagenes to build predic-
tors [26,27]. Bo and Jonassen have developed the "greedy-
pairs method" for selecting genes [28]. In this approach,
all genes are ranked based on their individual t-scores on
the training set. The procedure selects the highest-ranked
gene gi and finds the one other gene gj that, together with
gi, provides the best discrimination. This is measured
using the distance between centroids of the two classes
with regard to the two genes when projected on the diag-
onal linear discriminant axis. These two selected genes are
then removed from the gene set and the procedure is
repeated on the remaining set until a specified number of

Discriminations of the two DLDA classifiers (30 probes with the highest valuation functions, and 30 probe sets showing the highest p-values (t-test)) in the independent test set 2Figure 7
Discriminations of the two DLDA classifiers (30 
probes with the highest valuation functions, and 30 
probe sets showing the highest p-values (t-test)) in 
the independent test set 2.
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Performance metrics of the two DLDA classifiers (30 probes with the highest valuation functions, and 30 probe sets showing the highest p-values (t-test)) in the independent test set 2Figure 8
Performance metrics of the two DLDA classifiers (30 probes with the highest valuation functions, and 30 
probe sets showing the highest p-values (t-test)) in the independent test set 2.
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Sensitivity and specificity of the predictors with weighted valuation function vα(s)Figure 9
Sensitivity and specificity of the predictors with weighted valuation function vα(s). Sensitivity and specificity of the 
k-probes predictors, 0 ≤ k ≤ 50, for weightings α, α ∈ {0, 0.1,...,1.0}. Sensitivity: continuous lines, specificity: broken lines.
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genes has been selected. This method attempts to select
pairs of genes that work well together to discriminate the
classes. It is computationally efficient, but it rarely reveals
biological characteristics.

In order to maximize the information provided by the
training set, some methods are based on results provided
by internal cross-validation. Wang et al. have reported a
greedy robust feature selection approach built on the
leave-one-out cross-validation procedure to retain the
most frequently identified genes for building a predictive
model [10]. Leaving out one sample at a time, they used a
greedy-LDA to identify a set of predictive genes. They
counted the number of times a gene was selected, and
retained only the most frequently identified genes as the
selected features. Similarly, Michiels et al. proposed per-
forming repeated random sampling to improve the stabil-
ity of predictors [24]. Jiang et al. proposed a gene shaving
method based on Random Forests and another method
based on Fisher's Linear Discrimination, leading the
researchers to discover marker genes with expression pat-
terns that could differentiate lung cancer cells from nor-
mal cells [29]. Fisher's Linear Discrimination is a
traditional classification method that is computationally
efficient, while Random Forests is based on growing an
ensemble of trees (classifiers) on bootstrapped samples,
which significantly improves the classification accuracy.

Our approach is somehow different because it favors
probes that convey information on samples with positive
and negative outcomes. All probes are differentially
expressed in both subsets of patients; in fact, our method
assumes that samples of different classes have Gaussian
distributions, as demonstrated by p values calculated by t
test. The probes are subjected to a more stringent criterion
because the intersection of confidence intervals tends to
be low for selected probes. Moreover, the ratio between
negative and positive issues accounts for another crite-
rion. Each probe could theoretically be used as a unigenic
predictor. The α parameter that we introduce to account
for positive and negative outcomes can be adjusted to
favor sensitivity or specificity of the multigenic predictor.
In the case of a predictor based on a majority vote, the α
parameter should be 0.5 to maintain equity.

Ideally, these probe selection methods could be com-
bined to identify most relevant probes because these
methods each take advantage of particular strengths in
probe selection [12]. Additional studies should be carried
out on multiple datasets to investigate complementary
methods. The discrepancies between microarray data pub-
licly available from pharmacogenomic programs (differ-
ent platforms, different regimens, different methods of
response assessment) precluded any possibility of addi-
tional validation. In further studies, we plan to test other

prediction problems such as molecular classification or
survival issue.

Conclusion
In this study, we propose a valuation function that assigns
the highest values to probes that correctly predict cases
across the whole learning set, such that each probe not
only successfully predict a large number of cases, but also
predicts PCR and NoPCR cases in approximately the same
ratio as was seen in the whole set. In addition to improv-
ing the prediction of patient response to breast cancer pre-
operative chemotherapy, our approach has made it
possible to classify probes as bi-informative and mono-
informative.

Methods
Patients
The clinical trial was conducted at the Nellie B. Connally
Breast Center of The University of Texas M.D. Anderson
Cancer Center. Patients with stage I-III breast cancer
requiring neoadjuvant chemotherapy were asked to
undergo single-pass, fine-needle aspiration (FNA) of the
primary breast tumor or ipsilateral axillary metastasis
before starting chemotherapy as part of an ongoing phar-
macogenomic marker discovery program [30]. Neoadju-
vant chemotherapy consisted of weekly paclitaxel
administration, followed by chemotherapy with 5-fluor-
ouracil, doxorubicin, and cyclophosphamide (T/FAC).
Gene expression profiling was performed using oligonu-
cleotide microarrays (Affymetrix U133A) on FNA speci-
mens taken prior to treatment.

Patient cases were separated into a learning set (82 cases)
and three validation/test sets (51, 147 and 50 patients).
Characteristics of patients [see Additional file 8] in the
first validation set were similar to those of learning set
patients, and the two patient groups received similar
chemotherapy regimens. Patients in the second validation
set received a similar chemotherapy regimen as the learn-
ing set patients, but they showed different characteristics;
for example, few patients in the second validation set
showed HER2 amplification, (these patients received tras-
tuzumab and were not included in the pharmacogenomic
study). The third validation set comprised patients who
had been treated at Gustave Roussy Institute, who had
preoperative biopsies rather than FNA, and who under-
went an anthracycline-based chemotherapy regimen
without taxanes. These latter patients were matched pairs
of patients with PCR and residual macroscopic disease.

At the completion of neoadjuvant chemotherapy, all
patients underwent surgical resection of the tumor bed,
with negative margins. Pathologic complete response
(PCR) was defined as no histopathologic evidence of any
residual invasive cancer cells in the breast, whereas resid-
Page 13 of 17
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ual disease (NoPCR) was defined as presence of residual
cancer cells after histopathologic study [31].

The low-level treatment of the microarray data was per-
formed using dCHIP V1.3 [32] to generate probe level
intensities. This program normalizes all arrays to one
standard array that represents a chip of median overall
intensity. This reference chip and the normalization pro-
cedure are available online at [33]. Normalized gene
expression values were transformed to the log10 scale for
analysis [1].

Methods
Consider a hypothetical ideal probe set s* which would
be accurate enough for classifying the patients of the
learning set into PCR and NoPCR groups. Knowing the
expression level of this probe set in each of the patients
would be enough to predict response to chemotherapy.
Hence, the interval of expression levels Ip(s*) contains the
expression levels of the PCR patients in the learning set,
while the interval In(s*) contains the expression levels of
the NoPCR cases of the learning set. Since the probe set s*
is supposed to classify all the learning cases, these two
intervals are disjoints, Ip(s*) ∩ In(s*) = ∅ ; otherwise at
least one treatment outcome could not be predicted for
learning-set cases from the observation of the ideal probe
set's expression level. Given these definitions, any patient
in the learning set should belong to one or the other inter-
val; i.e. the expression level of any PCR learning case
would be in the interval Ip(s*) and that of any NoPCR one
would be in the interval In(s*).

Minimum sets of expression levels of the actual probe sets
For actual probe sets, the intervals of expression levels are
not disjoint for PCR and NoPCR learning cases, and the
expression levels are blurred by noise. Therefore, we
decided to attach two minimum sets of expression levels
to any probe set s. These sets, Ep(s) and En(s), were com-
puted from the learning set1.

Intervals of PCR and NoPCR expression levels
Let mp(s) and sdp(s) be the mean and standard deviation
of the expression levels of probe set s for the PCR learning
cases. The interval of 'PCR expression levels' of the probe
set s, denoted Ip(s), is that of length 2 × sdp(s), centered on
the mean mp(s):

Ip(s) = [mp(s) - sdp(s), mp(s) + sdp(s)]

In the same way, let mn(s) and sdn(s) be the mean and
standard deviation of the expression levels of probe set s
for the subset of NoPCR learning cases. The interval of
'NoPCR expressions' of the probe sets s is:

In(s) = [mn(s) - sdn(s), mn(s) + sdn(s)]

Minimum sets of PCR and NoPCR expression levels
Since the intervals of expression levels Ip(s) and In(s) are
not disjoint in general, we defined the minimum set of the
PCR expression levels of the probe set s, denoted Ep(s), as
the interval of PCR expressions Ip(s) minus its intersection
with the interval In(s). Conversely, we defined the mini-
mum set of NoPCR expression levels, denoted En(s), as
the interval of NoPCR expression levels In(s) minus its
intersection with the interval Ip(s):

• minimum set of PCR expression levels of the probe set s:

Ep(s) = Ip(s) \ (Ip(s) ∩ In(s))

• minimum set of NoPCR expression levels of the probe
set s:

En(s) = In(s) \ (Ip(s) ∩ In(s))

Discrete prediction of a probe set
We define the prediction of a single probe set as a discrete
value taken in the set {pcr, nopcr, unspecified} as follows:
if patient p belongs to the learning set and the expression
level of the probe set s for this patient p is e(s, p), then the
discrete prediction of the single probe set s is pcr if the
expression level is in the minimum set of PCR expression
levels: e(s, p) ∈ Ep(s). On the other hand, the prediction is
nopcr if the expression level is in the minimum set of
NoPCR expression levels: e(s, p) ∈ En(s). If neither of these
cases obtains, the prediction is unspecified. A pcr predic-
tion is correct when the learning case is a PCR case, and
the same is true for a nopcr prediction of a NoPCR case.

Valuation of a probe set
From the definition of the pcr and nopcr predictions of a
probe set, we define its valuation v(s). Let p(s) be the
number of PCR learning cases correctly predicted by the
probe set, let n(s) be the number of NoPCR learning cases
correctly predicted by the probe set, and let P and N be the
respective numbers of PCR and NoPCR learning cases.
The probe sets' valuation function v(s), whose values are
in the real interval [0, 1], is:

(The coefficient 0.5 serves only to ensure that the values of
the function lie within the unit interval.)

This function assigns a value of 1 to a hypothetical ideal
probe set and a value of 0 to a non-informative one. This
very simple function takes into account the proportions of
PCR and the proportion of NoPCR learning cases correctly
predicted by the probe set rather than simply the total pro-
portion of correctly predicted learning cases. The reason

v(s) = × +





0 5.
( ) ( )p s
P

n s
N
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for this choice is that the proportion of correctly predicted
learning cases, regardless of their classes, would obviously
be biased by the unequal numbers of PCR and NoPCR
cases in the learning set. It is worth noting that the valua-
tion function v(s) does not take into account either incor-
rect or unspecified predictions of the probe set.

Validation of reproducibility
The reproducibility and robustness of the present method
was tested in 30 replicate experiments when the same
RNA was hybridized twice several months apart in two
different laboratories [34]. Valuation functions of the 30
highest-ranking probe sets were correlated in replicate
experiments.

Multigenic predictors
We tested several multigenic predictors. First, we devel-
oped a majority vote predictor that could take advantage
of the discrete predictions of probe sets. Hence, for any
patient, the prediction of a probe set was 'pcr' if the expres-
sion level of this probe set for this patient was in its min-
imum set of PCR expression levels, the prediction was
'nopcr' if the expression level was in its minimum set of
NoPCR expression levels, or the prediction was unspeci-
fied. In the first two cases, the prediction of a probe set can
be either correct or incorrect.

We have defined k probe set predictor as, on the one hand,
the set Sk composed of the k top-ranked probe sets and, on
the other hand, a decision criterion which was the major-
ity decision. Let p be a patient case, let pcr(k, p) be the
number of probe sets of set Sk whose predictions are pcr
for this patient, and let nopcr(k, p) be the corresponding
number of nopcr predictions. The k probe set predictor
then indicates the following responses for this patient p:

• if pcr(k, p) > nopcr(k, p) then PCR;

• if pcr(k, p) <nopcr(k, p) then NoPCR;

• if pcr(k, p) = nopcr(k, p) then UNSPECIFED.

When evaluating the performances of the predictor, a false
negative is a PCR patient case predicted to be NoPCR or
UNSPECIFIED; a false positive is a NoPCR patient case
predicted to be PCR or UNSPECIFIED.

Diagonal linear discriminant analysis (DLDA), and nearest centroid 
predictors
We evaluated the performance of the probes in the train-
ing dataset by leave-one-out cross validation (LOOCV)
and by k-fold validation, in which case we used k = 3 and
performed 1000 permutations to determine p-values.
These multigenic predictor experiments were performed
using BRB-Arraytools [35].

External validation
We evaluated the performance of a DLDA multivariate
predictor in independent datasets. The 30 probe sets with
highest t-test p-values or the 30 probe sets scoring the
highest in the valuation function were used in two multi-
variate predictors constructed using a DLDA machine
learning algorithm. The DLDA prediction model was
tested on the three independent validation sets and their
performance was compared using receiver-operating char-
acteristic (ROC) curve analysis and performance metrics
such as sensitivity. Classifier performance (discrimina-
tion) on the validation data was assessed using the area
under the ROC curve (AUC). The ROC curve is a graphical
display of the false-positive rate and the true-positive rate
under multiple classification rules. The ROC curve arises
when a continuous predictor value is calculated for each
subject over a broad range of thresholds. A case is called
test-positive (predicted to have PCR) if the threshold is
above a defined value. The total area under the ROC curve
is a summary measure of the test's ability to correctly clas-
sify those with and without the outcome of interest. An
AUC of 1 represents a perfect test; an AUC of 0.5 repre-
sents a test no better than random prediction.

Abbreviations
PCR: pathologic complete response; NoPCR: residual dis-
ease; DLDA: Diagonal linear discriminant analysis;
LOOCV: leave-one-out cross validation; v: valuation func-
tion; FNA: fine-needle aspiration; ROC: receiver-operating
characteristic curve; AUC: area under the ROC curve; FN:
false negative; FP: false positive
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