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Abstract

Background: We sketch our species identification tool for palm sized computers that helps
knowledgeable observers with census activities. An algorithm turns an identification matrix into a
minimal length series of questions that guide the operator towards identification. Historic
observation data from the census geographic area helps minimize question volume. We explore
how much historic data is required to boost performance, and whether the use of history
negatively impacts identification of rare species. We also explore how characteristics of the matrix
interact with the algorithm, and how best to predict the probability of observing a previously
unseen species.

Results: Point counts of birds taken at Stanford University's Jasper Ridge Biological Preserve
between 2000 and 2005 were used to examine the algorithm. A computer identified species by
correctly answering, and counting the algorithm's questions. We also explored how the character
density of the key matrix and the theoretical minimum number of questions for each bird in the
matrix influenced the algorithm. Our investigation of the required probability smoothing
determined whether Laplace smoothing of observation probabilities was sufficient, or whether the
more complex Good-Turing technique is required.

Conclusion: Historic data improved identification speed, but only impacted the top 25% most
frequently observed birds. For rare birds the history based algorithms did not impose a noticeable
penalty in the number of questions required for identification. For our dataset neither age of the
historic data, nor the number of observation years impacted the algorithm. Density of characters
for different taxa in the identification matrix did not impact the algorithms. Intrinsic differences in
identifying different birds did affect the algorithm, but the differences affected the baseline method
of not using historic data to exactly the same degree. We found that Laplace smoothing performed
better for rare species than Simple Good-Turing, and that, contrary to expectation, the technique
did not then adversely affect identification performance for frequently observed birds.
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Background

Bio-diversity researchers study how the abundance and
geographic distribution of organisms change in response
to varying environmental conditions. These studies rely
heavily on observations of species acquired in the field
and spanning many different geographical regions.
Observations include data such as species presence/
absence, counts of individuals, gender, life history stages
(egg, juvenile, adult), behaviour (e.g., feeding), time and
location where observations were made, photographs,
audio recordings and environmental conditions where
the observations occurred.

Species richness (number of species) and abundance
(population size) data are crucial for understanding proc-
esses that govern the distribution of species across space.
Quantifying beta-diversity (species turn-over in space)
and endemism (species that exist only in one place) is crit-
ical for conservation biology [1]. This discipline includes
developing conservation schemes [2], such as identifying
biological 'hotspots', which are areas with high levels of
species richness. Monitoring abundance is critical for
assessing species health, because population losses
threaten species diversity [3], and for understanding sen-
sitivity of population size to environmental factors [4],
including climate change [5]. All these issues are currently
hotly debated in the ecology literature. See for example
Ostling 2005 describing controversy around the neutral
theory, Hubbell 2001 vs. McGill Hadly and Maurer 2005,
and Graves and Rahbek 2005. More temporal and spa-
tially explicit data on species and population sizes will
inform these debates.

Traditionally, bio-diversity researchers have relied on
their own collections of observation data to carry out their
analyses, and such collections are at inherently limited
temporal and spatial resolution. Better informed analysis
can be performed on larger quantities of data gathered
across many different geographical regions.

One way to achieve larger datasets for scientific analyses is
to enlist the help of the public, amateurs and volunteers,
in gathering species observation data. The possible num-
bers of participants covering a wide geographic area in a
short period of time is exemplified by the Christmas Bird
Count (CBC), which in its 105th event of 2004 — 2005 had
56,623 participants conduct 2,200 counts, recording
almost 70 million birds over a period of a few weeks in
Canada, the United States, Latin America and the Carib-
bean [6]. Volunteers defray otherwise prohibitive costs of
surveys [7] and generously donate travel expenses [8].

Researchers, however, are wary of using amateur observa-
tions as the basis of their studies, in part because of con-
cerns over accuracy of species identifications [9]. One way
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to increase accuracy is to provide tools that are intuitive to
use, which limit the number of mistakes an amateur can
make, allow a user to enter evidence for a reviewer to later
verify the observation, and provide an overall pleasant
user experience [8].

Potential improvements to the process

Traditional paper-based field guides and dichotomous
taxonomic trees typically arrange species according to
morphological commonalities, reflecting their phyloge-
netic relationships, rather than their geographic distribu-
tion or abundance. In practical use, species found in the
same location may be morphologically different and only
distantly related. Consequently, morphologically organ-
ized guides require readers to access many parts of the
book. Also, the number of species found in any one area
is small relative to the number of species in a typical
regional field guide. The number of species and size of an
area are in fact related in a log/log fashion [10].

Local field guides are taxonomic keys limited to only the
species found in one area. Unfortunately, local guides are
expensive and time consuming to create. And they may
not contain newly arrived or rare species. The impact of
abundance on species identification was examined in
[11].

Building on the existing idea of interactive keys, we con-
structed a tool, EcoPod [12], that attempts to combine the
completeness of general field guides with advantages of
their local counterparts. Ideally such a tool would reduce
the number of questions the user needs to answer for
identifying common or previously observed species, while
not penalizing identification of rare species by increasing
the number of questions required to ID them.

EcoPod

EcoPod has an intuitive user interface and includes fea-
tures such as an audit trail that allows users to document
all decisions with supporting materials, like audio record-
ings, notes, or photographs. Users can also indicate
whether they are certain about their decision on the state
of each character. Experts can use this auxiliary informa-
tion later while reviewing identifications. Such quality
checks can then improve confidence in an evolving data-
set of observations.

EcoPod presents the operator with a list of characters. As
the user specifies the respective states, the remaining taxa
are narrowed down and listed. The most discriminating
characters are displayed at the top of the list at all times
(see Figure 1), similar to algorithms introduced by [13]
and also found in desktop species identification programs
Delta [11,14,15] and [16].
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Main EcoPod screen; a device for organism identification.

We have previously described EcoPod's user interface in
detail [12]. An exploration of the character ordering is the
focus of the work we present here. The current system
(internally) conceptually begins with a matrix view of the
taxonomy. From this matrix the system uses information
gain theory to derive a decision tree that controls the user
interface and is equivalent to a dichotomous key.

For illustration, Table 1 shows a highly simplified matrix
of four birds, a Murres, Egret, Gray Jay, and Turkey.

From this matrix we can construct multiple decision trees
that could guide the computing device's interface. Figure
2 shows two possible trees.

Using the left tree, the device would first ask the user
whether the specimen being observed had a long bill. If
the bird in question indeed exhibited a long bill, the iden-
tification would be accomplished with a single question.
The specimen would be an Egret.

Table I: Partial matrix view of four bird characters

Primary Color Slender Long Bill
Murres White No No
Gray Jay Gray Yes No
Egret White Yes Yes
Turkey Gray No No
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However, if we assume that all species of birds are equally
likely to occur in the observer's locale, then on average
more questions would be required. For example, both
Gray Jay and Turkey would need answers to three ques-
tions before an identification could be produced. The
average number of questions in the left tree is (1+2+3+3)/
4 = 2.25. The right hand tree in contrast, produces an aver-
age of 2 questions for identifications. Under the assump-
tion of uniform species distribution, the right side tree is
therefore optimal. Osborne [17] additionally showed that
if the operator of a key has some non-zero probability of
answering questions incorrectly, then short keys tend to
minimize erroneous identifications.

Currently, EcoPod always uses that uniform distribution
decision tree on the right of Figure 2. While for this exam-
ple EcoPod would never do as well as requiring just a sin-
gle question to produce an identification, it would
perform well on average across the species. The work we
present in the remainder of this writing removes the
assumption that all species of a census are equally likely
to be observed. If, for the above example, the Egret popu-
lation were overwhelmingly larger than that of the other
three species in the geographic area where the tool is to
support identifications, EcoPod would be well advised to
choose the left-side decision tree of Figure 2. How would
the device 'know' about such supporting information?
Our vision is for EcoPod to be carried into a field station
that makes statistics of prior local species observations
available through a wireless network. The portable identi-
fication device would absorb these statistics and calibrate
its operation such that it would ask users as few questions
as possible while they are identifying organisms in the sur-
rounding area. Short of such a vision, historic observation
data might be downloaded from the Web prior to com-
mencing field work.

To this end we developed an algorithm that produces
decision trees from a taxonomic matrix based on fre-
quency of prior observations. To test this algorithm we
acquired observations of 104 bird species from Stanford
University's 1200 acre Jasper Ridge Biological Preserve
(JBRP). The observations were point counts across the pre-
serve. The counts were repeated multiple times per year
between 2000 and 2005. The data included a total of 8200
observations with 10,600 birds counted.

Intuitively, the use of historical information should speed
up identification of previously observed organisms. But a
number of factors need to be explored to ensure success.
First, observations are costly. Beyond their original collec-
tion, the data must be curated over many years. Associated
computers must be maintained. A realization of the idea
thus does not come free of charge, and we must be sure of
its value. Second, observations of rare species are valuable
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and should not be adversely impacted by the new technol-
ogy.

Summary of Contributions
We answer the following questions:

e Efficacy of species abundance data: How much faster are
identifications of common species vs. rare species when
using historical abundance data? Does the inherent bias
towards common species increase the number of ques-
tions to identify rare species over a paper-based dichoto-
mous taxonomic key?

® Required amount of historical data: How many years (1-6)
of observations are necessary to gain a significant benefit?
Does performance depend on a particular year of the
observation?

e Unobserved species: Computationally, what probability
weight should be assigned to a species that has never been
observed at the location before (i.e., abundance = 0)?
Known smoothing algorithms redistribute probability
mass, but their efficacy depends on the corpus of data.
Does the choice of two smoothing algorithms, Laplace
and Good-Turing, influence the number of questions to
detect previously observed as well as 50 never before
observed species?

e Taxonomic key properties: How strongly does the matrix
density, or the identification key author's choice of char-
acter states impact algorithm performance? How does the
difference in the minimum number of questions to iden-
tify various species influence algorithm performance?

We answer these questions via a computer simulation that
exhaustively 'identified' all of the actual Jasper Ridge bird
observations using our algorithm with a variety of param-
eter settings. The measure of performance for each setting

of the algorithm is the number of questions required to
identify a species being examined.

Methods

We begin with a description of the experimental setup,
after which we introduce the algorithm that computes the
optimal decision tree from the historical data. We then
present two alternatives for processing previously unob-
served species. These algorithms are well known in the lit-
erature, but they have been applied primarily in sub-
disciplines of Computer Science. Their application to spe-
cies identification is new. In the results section we present
the statistical analyses that answer the above research
questions.

Apparatus
Figure 3 shows our experiment. The entire assembly oper-
ates on a desktop computer.

Each run of the simulation identified one focal species.
One block of runs identified 104 birds that were previ-
ously observed in Jasper Ridge. Some blocks additionally
identified 50 random birds that have not been seen at the
preserve. One of two simulation parameters was varied
across blocks of runs: (i) the amount and age of historical
observations, and (ii) a choice of smoothing algorithm for
modelling previously unobserved birds.

For each block of runs the chosen amount of historic bird
count observation data was fed to the observation proba-
bility distribution computation (circle on left). This com-
putation produced a probability for each of the observed
birds, plus a single probability that was used for any pre-
viously unobserved species. Experimental manipulations
controlled how much historic data was provided to the
computation. We varied this information across 11 blocks
of runs. Six blocks each provided one year's worth of
observations (2000, 2001, 2002, 2003, 2004, 2005) to the
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Conceptual flowchart of computer simulation setup to generate the number of questions required to identify a focal species.
The process in the figure identifies one focal species at a time. Parameter settings (left) were varied in the following sets of
experiments: (1) the number of years of historical observations and age of the years of historical observations were varied to
measure their impact on the number of required questions. (2) To examine how best to account for previously unobserved
birds we varied the probability smoothing algorithm used for the decision tree computation. For each focal species, the simula-
tion requested character states from the oracle, which always provided the correct state. Once enough characters had been
determined to uniquely identify the focal species, the number of required questions was noted and another species was
selected as focal species. This process continued until all 104 birds that were observed at Jasper Ridge had been identified. For
the smoothing algorithm experiment an additional random selection of 50 previously unobserved birds was also identified.

algorithm. Other blocks of runs utilized two years of data
per run (2004-2005), three years (2003-2005), four
years of data (2002-2005), five years (2001-2005); and
one block finally provided six years of observations to the
computation (2000-2005). That is, each of 104 species
observed at Jasper Ridge Preserve at least once between
2000 and 2005 were identified 11 times, each run being
driven by a different set of historical observations.

In a separate computation we created a nearly perfectly
balanced question tree. This process did not consider any
historic data, and we call this configuration the Static con-
dition. This condition was our base line against which we
compared the Biased conditions that did use historical
data when constructing the decision tree.

The right-most circle in Figure 3 processed all the runs
within a block. This module used the probabilities and
the character matrix database at the top of the figure to

decide which sequence of characters to ask about. Acting
as an oracle, the module at the bottom of the figure pro-
vided the proper state for any requested character. This
module - one could think of it as a second computer -
thus took the role of what in real deployment would be
the human operator. An important difference between
this module and a human being is that the oracle module
never erred when providing the state of a character. Note
that in EcoPod's user interface we included a number of
mechanisms that soften this assumption of correctness for
human users. The system alerts the human operator of
intra-species variance, and users can rate their confidence
in the character states they provide [12].

Once the focal species of a run was identified, the required
number of character questions was noted and the next
focal species was processed. Note that this procedure does
not simply measure the length of the shortest path from
root to correct species. The experiment also measures how
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many questions the machine asks to find that shortest
path.

Observation data consisted of six years of an ongoing
repeated Bird Point Count study at JBRP. Birds were
observed approximately 4 times a month by several expert
birders following a strict observation protocol. Observa-
tions were conducted at 20 sites within JRBP, and data
from all of these sites were pooled so that historical obser-
vations reflect species abundances for the whole preserve.
We make the implicit assumption that the count of a spe-
cies reflects its actual abundance, and we use the terms
interchangeably. The bird species identification matrix
was for > 700 western North American birds all of which
were digitized by hand from the guide's paper format
[18].

Creating the Dichotomous Tree

As sketched in the Background section, two considera-
tions enter the construction of the dichotomous tree from
the matrix. The first is whether we assume uniform distri-
bution of observations over all species, or whether we fig-
ure local history of actual observations into the
construction of the tree. The second consideration is how
to account for species that have not been observed in the
geographic area before, but might be sighted in future
field trips to the same region. We discuss both aspects
here. Underlying the solutions to both issues is the prob-
ability of observing a given species in the future.

Computing Probabilities

Table 2 shows an elaboration of Table 1, adding hypothet-
ical abundance observations. For each bird Table 2 shows
its probability of being seen in the future, computed once
under the assumption that each species is equally likely to
be observed (a uniform distribution assumption), and
again under the assumption that the probability of
observing a species is impacted by the historical abun-
dance of the species. This latter quantity is derived from
maximum likelihood estimates (MLE).

Given the total of 20 observations of this example, the
maximum likelihood estimate for Murres would be 4/20
= .2, that of Gray Jay would be 3/20 = .15, and so on. The
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next section describes how these probabilities are used to
construct dichotomous trees used in the identification
process.

Information Gain Maximization

The computation of dichotomous trees is a well-studied
problem in Artificial Intelligence, where the construct is
known as decision trees [19]. These constructs are a gener-
alization of biology's dichotomous trees. The calculation
of decision trees involves the notion of Information Gain.
At each level of the tree, the algorithm chooses the charac-
ter that maximizes the information gained (the most dis-
criminative character). Maximizing information gain
under a uniform distribution assumption in practice
results in balancing the tree, minimizing its average depth.

Intuitively, the dichotomous tree is constructed top down
from its root, which is the node at the top. That node has
no parent nodes. The root node is created and is associ-
ated with one character. This character is chosen based on
species probability. Under a uniform distribution
assumption the character that eliminates close to 1/2 of
the remaining rows is chosen. In Table 2 we see that 1/2
of the birds are white, while the other half are gray. Know-
ing the color therefore eliminates 1/2 of the rows. Asking
about bill length would instead partition the space at a
ratio of 1 to 3. Color would therefore be used as the root
node.

Using MLE instead of uniform distribution, Egrets are
about three times more likely than the other entries in the
matrix. For this case bill length would move higher in the
list of good characters to ask early. Information gain the-
ory formalizes this use of probabilities for the construc-
tion of optimal dichotomous trees. Please see Additional
file 1 for further information. In Additional file 1, we work
through the mathematical details of character selection in
terms of this running example.

Once the root node has been associated with the 'best'
character, a child (next tier) node is created for each state
that the character can take on. For each of these child
nodes the process of associating a character is repeated as
per the initial root node. The process is repeated until all

Table 2: Hypo the tical set of observations and species characters. Two probability distribution assumptions are shown.

Characters of taxonomic key

Probability mass

Species name  Color Slender Bill length  Abundance (# of observations)  Uniform distribution = Maximum Likelihood Estimate (MLE)
Murres White No Short 4 0.25 0.20
Gray Jay Gray Yes Short 3 0.25 0.15
Egret White Yes Long Il 0.25 0.55
Turkey Gray No Short 2 0.25 0.10
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terminal (lowest tier) nodes are species. Expressed as an
algorithm this procedure runs as follows:

1. Begin at the root node.

2. For each node, determine the character with the highest
information gain that is not used in an ancestor node.

3. Add a child node for each possible state of that charac-
ter.

4. For each of these new nodes, attach a list of species that
follow down the tree to that node.

5. Mark any of the species that are now uniquely identi-
fied as leaf nodes.

6. Go back to step two if not all terminal nodes are indi-
vidual species.

Note that the use of information gain for constructing the
question tree is elegant in that it only relies on the proba-
bilities that are derived from observations. These proba-
bilities in turn reflect very complex underlying influences,
like local weather patterns, the prevalence of predators,
and availability of food sources. It would be very difficult
to model all these factors explicitly.

On the other hand, whether using a uniform distribution
assumption or not, this algorithm takes into account only
the species that have been observed in an area. Of course,
there is also a chance that a previously unseen species
invades or just was not observed before by chance. The
next section introduces two alternatives from Computer
Science practice that could be applied to address this
shortcoming. We will later examine which of these two is
the better choice.

Probability of Unseen Species

Using Maximum Likelihood Estimates would result in a
probability of zero for previously unseen species (species
not present in the historical observation data). The system
would thus never enable successful identification of a spe-
cies that is invading a new habitat, or was too rare to have
been previously observed. The process of modelling the
probability of unseen species is an example of 'smooth-
ing,' because the probability mass needs to be 'smoothed,’
or spread among seen and unseen events. Probability
mass is the discrete-variable equivalent to the integral of
the probability density function for continuous random
variables. Literature addressing this issue is found, for
example, in the area of Natural Language Processing [20-
22], where computer programs attempt to predict the co-
occurrence of words in speech or written text from previ-
ous observations. The reason for the existence of many
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smoothing algorithms is that their efficiency depends on
the corpus that is being manipulated. The question is
therefore whether the distribution of species observations
is similar enough to the occurrence of words in natural
language that the same smoothing algorithms can be
applied in both areas. The two techniques are known as
Laplace, and Good-Turing smoothing.

Laplace (Add-One) Smoothing

Laplace smoothing increases each observed frequency by
1. Therefore, species that have never been seen before are
now assumed to have been observed exactly once. Species
that have been observed r times in the past are now
assumed to have been seen r+1 times. Therefore, probabil-
ities are computed as follows:

(Number of Observations of X)+1

P(Species X) =
(Sp ) Number of Observations+Number of Species Found

or concisely:

r+1

2(r=Np)+Z Ny
T T

P(x,) =

where 7 is the historically observed abundance of species
x, and N, is the number of species with abundance .

The Laplace method has the advantage of being straight-
forward to describe and implement. However, in Natural
Language Processing, Laplace smoothing has been found
to overestimate the probability of unseen events.

This overestimation problem of Laplace smoothing has
led to the development of alternatives. One family of
algorithms from the literature is known as Good-Turing
smoothing. In the following paragraphs we very briefly
summarize the underlying concept in terms of species
identification. For details please see Additional file 2 and
[21], where the procedures are discussed in the context of
natural language processing.

Good-Turing Smoothing

Like Laplace, Good-Turing smoothing modifies observed
abundances r, discounting them by some amount. How-
ever, the method takes a more subtle approach. Intui-
tively, the technique notes how abundance observations
change across species. A linear regression then fits a func-
tion through these variations of abundance. Using this
function instead of the actual abundances to compute
probabilities results in very abundant species contributing
a bit less to the probability than they normally would.
This discounted probability mass is effectively assigned to
the never-seen species. This approach is a more controlled
redistribution of probability than the crude add-1-every-
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where Laplace approach. However, the algorithm is also
more complex. The steps are as follows:

1. Rank the frequency of observations: count how many
species were observed exactly once and note this quantity
as N;. Count how many species were observed twice and
note that quantity as N,, and so on.

2. Once ranking is complete, use local averaging to create
non-zero values for any N, that are zero (frequencies at
which no species was observed).

3. Fit linear regression to the resulting ranked list.

4. Compute the probability of seeing an unobserved spe-

cies as %, with N being the total number of observa-

tions.
We describe the details of this process in Additional file 2.

Summary of Probability Considerations

Use of historical observations of species abundance to cal-
ibrate the identification process requires consideration of
unseen species. We described assigning probability mass
to previously unobserved species using two existing
smoothing techniques that are popular in natural lan-
guage processing. The question is whether the Good-Tur-
ing algorithm needs to be used for a dataset like the Jasper
Ridge bird counts when computing probabilities for the
dichotomous key, or whether the simpler Laplace method
suffices. We applied both algorithms to our experimental

http://www.biomedcentral.com/1471-2105/9/150

setup and measured the resulting number of questions for
both seen and unseen species.

Results

We now present the data analyses of our experiment sep-
arately for each of the research questions we introduced
earlier. For use in some of the analyses we computed the
mean of all bird abundances over the six years of observa-
tions. We call the result MeanAbundance. We use the nota-
tion yyyy_n to indicate an observation year yyyy with n
previous years' of data included. For example, 2005_3
means three years' of observations, the most recent being
2005: 2003, 2004, and 2005. All historical computations
used Laplace smoothing.

Figure 4 provides an overview of the Jasper Ridge observa-
tion data. The abscissa shows numeric codes for all 104
observed species. The left ordinate shows species counts,
while the right hand ordinate is a log scale. The top of
each stacked bar marks the maximum yearly count of the
corresponding species. For example, the left most bar cor-
responds to the Chestnut Backed Chickadee (this species
name is abscissa ID 1 in the chart). During the species'
most abundant year it was observed 205 times. The lower
stack marks the count of the species' least abundant year,
in this case 61. The line in Figure 4 shows the log of each
species' mean abundance over the six years (right hand
ordinate).

The table inset of Figure 4 shows the quartile ranges for
abundances during each year. For example, during 2000
the rarest 25% of Jasper Ridge birds were not seen. During
2001 the rarest 25% were seen either not at all, or once.
The lowest row shows the sum of all counts during the

250 2000 2001 2002 2003 2004 2005  Mean | 25
@ Log max abundances Quartile1 0 0-1 0-1 0 0 0 8 o
2 200 Quartile2 15 2-6 2-6 1-3 1-3 1-3 50 § 2 ©
T Quartile 3 6-19 7-29 7-24 5-15 4-11 4-13 17.8 [0]
2 g Quartiled  20-149 30205 25-177 16-99 12-129  14-113 128 28
2« 150 1951 2652 2305 1286 1270 1204 1778 | 1.5 3 S
<8 %8
£ o
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Bird Species Observed in Jasper Ridge 2000-2005
Figure 4

Min-Max overview of observation data. Each bar represents one species. The height of a stacked bar corresponds to the max-
imum one-year count during the 2000-2005 time span. The lower stack indicates the lowest one-year count during this period.
The line (corresponding to the right-hand scale) shows the log of the mean abundance of each species over the six year period.
The table inset shows the abundance quartiles during each year. The 'Mean' column contains the quartile cut-offs for the six

year abundance mean.
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Figure 5

Number of questions the biased algorithm required when provided with observations from 2004. The abscissa shows log abun-

dance. High abundance species require fewer questions.

respective year. The '"Mean' column shows quartile cut-offs
for the mean abundance across all six years. We call these
cut-offs the MeanQuartiles.

The first research question we address is whether histori-
cal abundance observations provide any benefit at all for
minimizing the average number of questions asked to
identify a species. The inclusion of such information in
the probability computations is contrasted with the base
case of the uniform distribution assumption (Static).

Does Observation History Add Significant Benefit?
The nature of the biased algorithm would have us expect
a strong impact of bird observation abundance on per-

formance. This built-in dependency is illustrated in Figure
5 where abundance is plotted against the number of ques-
tions the biased algorithm settings required when pro-
vided with observation data from 2004. We see that low
abundance birds sometimes require very few, but also up
to 10 questions to identify.

High abundance birds consistently require lower numbers
of questions to ID. For formal verification we used the
mean abundance over six years to partition the birds into
quartiles, from rare (1%t quartile) to common (4th quar-
tile). A repeated measure ANOVA comparing the number
of questions required when the algorithm was run with
observations from 2000, 2005, and 2005_6 was con-
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ducted, with MeanQuartile as a between-subject factor.
The result verified the expected interaction between runs
and quartiles (F; ,34 = 2.4; p <.02). In addition, the highly
significant regression equation predicting the number of
questions from log abundance is included as further veri-
fication at the bottom of Figure 5. Given this predictable
sensitivity of the algorithm to abundance we conducted
all subsequent tests separately by quartiles.

Figure 6 shows an overview of the performance results
partitioned by the amount of data that was made available
to the decision tree construction algorithm.

Each line shows the mean number of questions required
to identify one MeanQuartile of the birds when the algo-
rithm was provided with observations from different years
as indicated along the abscissa. The left most set of four
(vertical) measurements corresponds to the Static condi-
tion when no observations are used for the decision tree
construction. The five vertical sets of data points on the
right show results when the algorithm was given access to
several years' worth of observations (2005_1-6).

http://www.biomedcentral.com/1471-2105/9/150

The answers to several of the research questions reduce to
examining significance of differences between portions of
Figure 6:

® Does abundance information help? <> Is the difference
between the four Static data points and the other data
points significant?

® Does it matter which year is used for observations? <> Are the
differences between vertical sets 2 through 7 significant?

® Does it matter how many years of observations are used? <>
Are the differences between sets 7 and 12 significant?

e Are rare birds unduly disadvantaged? <> For quartile 1
only, are any of the differences between Static and the
remaining measurements significant?

We performed repeated measure ANOVAs separately for
each MeanQuartile set of species. The independent factor
was the amount of information provided to the algo-
rithm; its levels correspond to the abscissa labels of Figure
6. The dependent variable was the mean number of ques-

o] 55 -
e W
o 5 4 1st Quartile (rare Birds)
)
x o 2nd Quartile
“6 E 4.5 - aL_ //ka;,_—-—e— 7 Y~ S— ~§
[ ~
g § 4 3rd Quartile \/(
Eg
=
c 3.5 -
8 4th Quartile (common Birds)
= 3
T T 1 1 T T T T T T T T
1 2 %} 4 5 6 7 8 9 10 11 12
<
S o P o o 80 S
'\NL(‘ ’\\“‘ '\4“ '\TL‘. '\\L“ (k rLQQb( rLQQ(b rLQQq,_ rLQQ q,QQ

Observation Data Used for Decision Tree Construction

O

Figure 6

Performance of algorithm when provided with observations from different years and from different time spans. Each line shows

results for a different abundance quartile.
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tions required for identification. In each case we per-
formed contrasts that compared each result for biased
algorithm settings against Static.

For MeanQuartiles 1-3 no differences were significant.
For MeanQuartile 4 the overall ANOVA measured F; 5 gq ;
= 6.7; p < .01 (Greenhouse-Geisser corrected). Table 3
shows results of the contrasts, and means with standard
deviations.

The top portion of Table 3 contrasts the single-year runs
against Static. The lower portion shows the comparisons
between Static and the multi-year observations results
(2004-2005, 2003-2005, etc.). Additionally, repeated
contrasts were performed to compare all horizontally
neighbouring results in Figure 6 (other than Static).

Very few differences were significant. These were:

® MeanQuartile 1-Two Years vs. Three Years: F, ,;=4.3, p
<.05.

e MeanQuartile 2-
©2004 vs. 2005: F; ,4=5.2;, p < .03,
o Two Years vs. Three Years: F, ,;= 6.6; p <.02.

Note that the differences in the mean number of ques-
tions for these measurements are very small: The differ-
ence in mean for the significant MeanQuartile 1 contrast
was .29 questions. The differences between the Mean-
Quartile 2 results were 0.4 and 0.3, respectively.

While ANOVA works well for the above analyses, its dis-
advantage in this situation is that a single quartile parti-
tioning, namely MeanQuartile, must be used across all
analyses. Recall that the MeanQuartile cut-offs are based
on the counts averaged across six years. In truth, the quar-
tile cut-offs are different each year. We concluded above
that only the 4th quartile, most abundant species afford an
advantage over Static under the biased settings. In order to
verify that this conclusion is valid for each of the years'
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quartile cut-offs, we repeated the ANOVA six times, each
time using the cut-offs from a different year. In each case
the 4th quartile was clearly where the biased settings out-
performed Static. In several cases the biased advantage
extended into the 2nd and 31d quartiles as well.

We conclude that the algorithm indeed reduces the
number of questions required for identification, that this
advantage only accrues for common species, and that nei-
ther the number of observation years used, nor the choice
of years between 2000 and 2005 impacts this result for the
Jasper Ridge Preserve bird counts of that time period.

Penalty for Rare Species

The lack of significant differences between Static and the
biased runs for 1st quartile species answers the question
about whether the biased methods unduly handicap iden-
tification of rare species: the algorithm does no worse for
rare species than the standard approach. Figure 7 adds a
visual for details under three scenarios.

The figure shows how many more, or fewer questions the
seven biased settings 2000-2005, 2005_4 require com-
pared to Static. Since only one bar can feasibly be dis-
played for each species (rather than seven), we show three
scenarios. The worst case scenario selects for each species
the worst performing of the seven biased settings for the
comparison against Static. The best case scenario (centre
panel) instead chooses the best performer for each spe-
cies, and the bottom panel shows results when Static is
each time compared to the mean of the questions
required by the seven biased settings.

Each bar provides the comparison information for one of
the 104 Jasper Ridge bird species. A positive bar indicates
that the biased settings required the indicated number of
questions beyond Static for the respective species. A nega-
tive bar indicates that the biased settings performed better
by the indicated number of questions. That is, negative
bars are 'good.’

For example, in the best case only very few species would
require more questions than Static as there are few posi-

Table 3: Contrasts in 4th MeanQuartile results of static against each of the biased algorithms.

Static vs... Static 2000 2001 2002 2003 2004 2005
Fi2s n/a 14.7; p < .01 17.2; p < .01 16.3; p < .0l 15.4; p < .01 11.9;p <.0l 7.5;p<.02
Mean £ SD n = 26 44+ 1.7 35+ 1.3 34+ 1.3 34+ 1.2 34+ 1.3 35+ 1.4 37+ 1.2
Static vs... 2 Years 3 Years 4 Years 5 Years 6 Years
Fi2s 10.0; p < .01 10.7; p < .01 14.7;p < .01 14.7;p < .01 14.7;,p < .01
Mean £ SD n = 26 36+1.2 35+1.2 34+ 1.2 34+ 1.2 34+ 1.2
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Figure 7

Detailed performance of biased runs against Static under three scenarios. For each of the 104 observedbird species the charts
compare the number of questions required for Static with the number of questions required by one ofseven algorithm settings:
2000-2005, and 2005_4. Bars above the zeroline indicate that the biased runs required more questions than Static. Bars below
zero indicate that Biased outperformed Static. The ordinate scale is number of questions required beyond Static (positive bars)
or saved against Static (negative bars). The top panel compares Static against the worst performing biased setting for each spe-
cies. The middle panel compares Static against the best performing setting, and the bottom panel compares against the mean of
all seven biased settings for each species. Note that the panels have different ordinate scale ranges (5—-4, | >-5, and 3—-5).

tive bars. Note that in the bottom panel many bars are
negative for common species, consistent with ANOVA
results of previous sections.

Intrinsic Ease of Identification

We examined two aspects of the data to gain partial
insight into how intrinsic ease of identification impacts
the number of questions that need to be asked towards
identification of a species. The first data aspect we exam-
ined is the matrix density, the per species number of non-
empty entries in the bird identification matrix. The second
is the minimal number of questions the algorithm could
possibly ask to identify each bird.

Sensitivity to Matrix Density

Species identification matrices will differ across both spe-
cies and matrix authors. One such difference is the
number of characters that are specified for each taxon
(row). In our North American birds matrix the average
number of non-empty cells per row was 12, with a range
of 3 to 31 cells. In order to obtain a rising measure of Sim-
plicity for each bird we divided this count into 100. For
example, a bird for which our matrix specified states for
12 characters received a Simplicity score of 100/12 = 8.3.

To test whether the Simplicity measure impacts the biased
algorithm runs we computed a repeated measure ANOVA

for the eleven biased settings 2000-2005, 2005_2-6, with
Simplicity as covariant. No interaction was detected
between the covariant and the number of questions
required for the bias settings. We conclude that at least for
this North-American bird matrix the algorithms are not
sensitive to the row densities.

Sensitivity to Ease of Identification

In order to extract the minimal, best case number of ques-
tions that the biased algorithm settings could elicit for any
given bird we computed a MinNumQs value for each spe-
cies. This value was obtained by in turn artificially setting
the probability of each bird high, even if its abundance
was low. We then noted the number of questions that the
algorithm generated in turn for each such artificially high-
biased species.

For MeanQuartiles 1 and 2 strong correlations were in evi-
dence between MinNumQs and each of the eleven biased
settings. The Pearson coefficient for all these correlations
was close to .7, p < .01. For MeanQuartiles 3 and 4 no sig-
nificant correlations were found. However, the same cor-
relation pattern was found to hold between MinNumQs
and Static. The relative performance of Static and the
biased settings was thus unaffected by MinNumQs.
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We verified this conclusion by normalizing all our meas-
ured results to neutralize the impact of MinNumQs. For
each species we divided the number of questions gener-
ated under Static and each of the biased settings by that
species' MinNumQs. We then repeated all the previously
described analyses for these normalized results. All the
conclusions remained unaltered.

We conclude that the intrinsic differences of how difficult
various species are to identify does not in practice influ-
ence how much better or worse the biased methods per-
form relative to Static.

Does the Smoothing Algorithm Impact Performance?

Our implementations of both Laplace and Simple Good-
Turing (SGT) smoothing allowed us to compare perform-
ance under both algorithms. We computed abundance
probabilities for each of the matrix species, both seen and
previously unobserved at Jasper Ridge. For all of the 104
previously observed bird species, and 50 randomly
selected never locally spotted birds we computed the
number of questions required for identification.

Figure 8 provides an intuition for the algorithms' genera-
tion of probabilities. As the number of total observations
increases (from the left panel towards the right), SGT
probabilities grow more and more similar to Laplace esti-
mates. The total probability apportioned to seen species
corresponds to the area under the graph. SGT's smaller
than Laplace's set-aside for unseen species is reflected in
SGT's steeper slope for one-year observations. The SGT
algorithm in fact loses validity beyond four years of obser-
vations. At that point the slope of the Z, regression exceeds
-1 (see [22] for an explanation of this slope having to be
less than -1). At four years the slope is just about at that
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critical threshold. This apparent instability of species
observation data sets in the context of SGT amplifies the
need to understand whether the more sophisticated SGT
is actually required for minimizing questions.

We performed a repeated measures ANOVA over the
number of questions required for both Laplace and SGT,
for both one year's and five year's worth of observations.
Table 4 shows results for each abundance quartile sepa-
rately. Each cell is subdivided into four quadrants, each
one holding a result for one quartile. Italicized values are
significant at p <.01. Other values are significant at p <.05.
The left portion of Table 4 shows the per-quartile mean of
the number of required questions for each of the smooth-
ing algorithms and amount of observation data. The F val-
ues are results of planned contrasts. Non-significant
comparisons are marked with 'ns.'

Note that during 2005, 31 of the 104 species that are
sometimes seen at Jasper Ridge were not observed.
Throughout the 2001-2005 period against which we
compare, only one species was not seen. That is, the
2005_1 settings contain more rare birds than the 2005_5
settings.

From Table 4 it is evident that whenever Simple Good-
Turing smoothing is applied to the identification of
unseen species the results are worse than when Laplace
smoothing is used. For example, comparing the one-year
Laplace with one-year SGT, first quartile birds required 5.2
questions using Laplace, but 6.5 questions using SGT
(Fi26 = 9.3, p < .01). When abundant species are being
identified, the difference between Laplace and SGT tends
to disappear. The Laplace one-year/SGT-six-year differ-
ences are not significant for any quartile.

One Year (2005) Four Years (2002-2005) Six Years (2000-2005)
o 012 of Observations of Observations of Observations
© 01 »
§ O i —4—SGT
S 008 %l —— Laplace
o 0.07 L o A -
< 0.06 d e
S 0.05 =
> 0.04
£ 003 =
3 801 A o
8 0
= 0 50 100 150 0 100 200 300 400 500 O 200 400 600 800 1000
Abundance r
Figure 8

Probabilities generated by Laplace and SGT smoothing forl, 4, and 6 years of observations.
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Table 4: F-value results of comparing Laplace and Simple Good-Turing smothing for single-year (2005_1) and five-year (2005_5)
observation amounts. Cells are subdivided to hold results from each abundance quartile separately; quartile order is clockwise (see
top left of table). The right-hand portion of the table summarizes means for all conditions. In 2005, 31 of the 104 Jasper Ridge species
were not observed. During the five-year span only one species remained unobserved.

Legend for Cell Partitions: Laplace 5 Years F values

Q4:F) 25 QI:F) 5
Q3:F, 5 Q2:F, 5
Laplace | Year ns ns 4.5
ns ns ns
Laplace 5 Years ns
ns
SGT | Year Italicized
F values: p <.0.1,
others: p <.05.
SGT 5 Years

SGT | Year F values

SGT 5 Years F values Mean Number of Questions +

SD

9.3 ns ns 3.7 1.1 52+23
ns ns ns 43+ 15 40+ 1.9
8.3 ns ns 35+1.2 54126
ns ns ns 46 +20 44 +23
ns 11.4 35+ 1.1 65+33

ns ns 43+ 14 44+25

35+ 1.2 51+23

44+19 44+24

We explored the impact on rare species further by having
the algorithm identify 50 birds that were never seen in Jas-
per Ridge, using the probabilities from the above experi-
ment as biased settings: Laplace 2005_1, Laplace 2005_5,
SGT 2005_1, and SGT 2005_5. That is, the probabilities
that guided the decision tree construction were computed
from the abundances of observed birds, but the 50 identi-
fications always had to rely on the probability that the
smoothing algorithms set aside for never seen species. The
resulting number of required questions (mean * SD)
were, respectively, 5.8 + 2.6, 7.3 £3.0,6.6 +3.2,and 7.4 +
3.0. The 50 species identified for all four runs were each
time randomly selected from among the roughly 250 spe-
cies that were available in our key but had not been seen
at Jasper Ridge. A oneway ANOVA was significant (F; ;99 =
3.0, p <.05). Posthoc tests showed the only significant dif-
ference to be the additional 1.6 questions required by six-
year SGT when compared to the one-year Laplace.

We conclude that for rare species the Laplace approach is
more reliable than Simple Good-Turing.

Discussion

Above we reported results from three directions of explo-
ration. First, we investigated whether the number of
observation years and the age of observations impacted
the performance of the identification algorithm. Second,
we examined how some characteristics of our identifica-
tion key influenced the number of required questions.
And third, we compared two smoothing algorithms that
impact how well the identifications work for previously
unobserved species. In the following sections we add
some thoughts to these results.

For all our results we stress that they are based on one par-
ticular data set from the relatively protected confines of a
biological preserve. Further studies will be required to
evaluate the impact of high instability in the ecosystem on
the algorithm's performance.

Number and Choice of Observation Years

Results showed clearly that the inclusion of historical
observations can significantly accelerate an identification
tool. However, this benefit only accrues once a sufficient
amount of observation data is available. That amount cor-
responds to the top 25% most abundant species. In our
data set this means that birds seen at least 12 times during
a one-year period (4t quartile cut-off for 2004) benefit
significantly from the biased approach. Those species are,
of course, precisely the ones that are the most important
to identify quickly, because they make up the bulk of cen-
sus activities.

Surprisingly, the number of years of accumulated data was
not found to significantly impact the algorithm's perform-
ance. A single year's observations performed at the same
level as six year's worth of data. Also, no difference was
found for which year's observations were used to run the
algorithm. This robustness is good news because observa-
tions are expensive to gather and maintain. Within limits,
fluctuations in species populations do not greatly impact
results.

Looking at the modest magnitude of differences between
Static and the biased results one might wonder whether an
advantage of one question saved per identification is
worth the trouble. Notice, however, that this savings is
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multiplied across many sightings and all observers that
participate in a census.

Impact of the Key's Characteristics

Fortunately, the broad mixture of bird matrix row densi-
ties in our digitized key did not impact the algorithms.
This result suggests that matrices by different authors and
for diverse species focus will be amenable to our question
generation algorithms. This assumption remains to be
tested with other matrices and species, as well as with
other observation datasets.

We were surprised that the minimum number of ques-
tions (MinNumQs) did not interfere with our results. We
had expected that we would need to normalize results to
control for this species-specific quantity. It turned out,
however, that the correlations between MinNumQs and
the algorithm outputs were very uniform across all exper-
imental conditions, and most importantly affected the
Static condition equally. This result again is good news
because it limits the amount of work required when intro-
ducing a new key into the identification system. No anal-
ysis of minimum question requirements is needed.

Probability Smoothing Techniques

Results of the smoothing technique analysis clearly imply
that for this dataset at least Laplace smoothing is the algo-
rithm of choice precisely because of its reputation for
overestimating unseen observations. Our analysis con-
firms this tendency for excessive apportioning of proba-
bility mass to unseens, in that Laplace clearly improves
the performance for never sighted species. Given that
Laplace does not in turn hurt performance for observed
species, the complications of Simple Good-Turing seem
unnecessary and Laplace is the smoothing method to use.

Limitations and Future Work

Two sets of limitations and consequent need for addi-
tional work apply to the material discussed here. One set
concerns the data set and experiment, the other concerns
more broadly our EcoPod tool.

Our study was based on bird observations in a preserve.
One might argue that populations could change more
rapidly in less protected environments, or for organisms
other than birds. It would therefore be useful to repeat our
experiment with historic data from other ecosystems.
More than one year's worth of observations might be
required for those cases, even though we found that a sin-
gle year sufficed.

Similarly, it would be useful to repeat our experiments for
a different identification key, preferably for species other
than birds. Even though we did test for dependencies of
the algorithm's efficiency on the key matrix's distribution
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of sparsity and on the ease of identification for each spe-
cies, these tests were by necessity limited to the matrix we
used. Repeat experiments with other keys would solidify
our findings.

Regarding EcoPod and its efficacy, neither of our ease of
identification measures captures the practical difficulties
of observing particular characters in the field. The meas-
ures do not, for example, take into account the difficulty
of measuring the length of a squirrel's hair at 100 ft, as
compared to evaluating the animal's colour. Factors like
those would need to be captured explicitly, or through the
device observing which characters users choose to specify
during a number of field excursions. EcoPod users are not
forced to answer questions in order. They may choose to
specify characters further down the question list early. In
an improved tool their choice would then calibrate the
characters that are preferentially solicited of the user in the
future.

Similarly, environmental cues could be worked into the
device's question sequencing. For example, geographic
location and season might be used in the biasing of prob-
abilities that guide the decision tree construction.

A field worker's skill and experience could further be used
to influence EcoPod's behaviour. For example, the device
could ask some questions that are not strictly required for
identification, but would help avoid misidentification
when two species are similar. Such a question could, for
instance, inquire about a character that should not be of a
particular state, given the user's answers so far.

We next discuss related work and then present concluding
remarks.

Related Work

The cross-disciplinary nature of this work induces several
strands of prior work. We cover bio-diversity and Compu-
ter Science related work separately.

Biodiversity

Observations by volunteers have resulted in datasets
which have been invaluable to scientific research and con-
servation efforts. About 480 scientific papers have been
written on the 105 years of Christmas Bird Count obser-
vations (CBC) [23], informing topics such as the range of
bird species, spread of invasive species, change in popula-
tion sizes and species extinctions.

The Fourth of July Butterfly Count (FJC) [24] has provided
crucial data on abundance and population dynamics of
common species e.g. [25-27], as well as on monarch but-
terfly range and migration, and changes in population
size with continued destruction of over-wintering habitat
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[28]. Such data have informed conservation needs, such
as the recent identification of areas with stewardship
responsibility for maintaining high levels of species abun-
dance e.g. [29]. The case for citizen participation is also
made in [30].

In addition to mass-participation census taking, continu-
ous species observations can now be collected into online
databases. One example, the Calflora project, has col-
lected over 850,000 observations of more than 7,600
plant species in California. Websites supporting the CBC
and FJC have also created databases for users to contribute
observations, including eBirds [31] and Butterflies I've Seen
[32] respectively. Observations collected by a single con-
scientious individual have been invaluable for determin-
ing the impacts of global warming on birds [33].

Computer Science Related Work

Decision tree theory is explained in [19], where basics of
information gain theory are also covered. Techniques for
probability smoothing are discussed in [21,22].

A number of computer based species identification tools
exist. Many tools are direct carry-overs of paper-based
field guides to electronic versions (e.g. eBird [31] and
Handheld Birds [34]. They are essentially scanned pages of
a field guide that harness the power of the PDA by incor-
porating bird calls that cannot be available with the paper
version. Species identification is achieved in those systems
through pictorial recognition, like in paper field guides,
rather than via a question and answer-based taxonomic
key. Handheld Birds provides a minimal form of taxo-
nomic key by allowing the user to sort species by provid-
ing the states of four characters. CyberTracker and
Handheld Birds are the only PDA-based identification
tools that allow observations to be contributed to a central
database for use in scientific research. CyberTracker [35] is
unique in providing an icon-driven interface that handles
only pictorial information. This approach allows non-lit-
erate contributors who are skilled in the identification of
animals to record observations of mammals. These obser-
vations are reported to a central database for use in scien-
tific research. PalmKey is a PalmOS based identification
tool that is freely available and allows users to create their
own key databases [36].

Within Computer Science research our work is in the tra-
dition of optimizing user interfaces based on artificial
intelligence techniques and usage patterns. There has
been considerable research in the Computer Science com-
munity on systems that make use of accumulated data
from different users, such as visitors to a Web site, and that
'track' user actions to optimize future renditions of the
user interface. In our system, historical abundance meas-
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ures are analogous to such data from many different users
in the field.

Research into multi-user data systems has grown after the
advent of the World-Wide-Web, since it has now become
possible to collate and mine usage patterns from users
spanning diverse geographical regions. Several multi-user
tracking systems exist including: Context-Aware Proxy based
System (CAPS) [37], SurfLens, |38], and ProfBuilder [39].
These systems track user browsing habits, navigation his-
tories or site usage information respectively to make rec-
ommendations to the user or as a basis for collaborative
filtering.

Conclusion
We showed the algorithms that underlie our EcoPod, an
in-field species identification tool. In particular, we
focused on showing how the tool minimizes the number
of questions it asks of the user during the course of an
identification.

The main source of our optimization is the frequency of
past observations in the field where the device is
deployed. The more often a species was observed in the
past, the more the tool favours solicitation of characters
for that species over characters that are discriminants for
less frequently sighted species. We employed Computer
Science algorithms, particularly from the theory of deci-
sion tree learning, and smoothing techniques that are
popular in the area of natural language processing.

We tested the question generating algorithm on point
count bird observations that were conducted at Stanford's
Jasper Ridge Biological Preserve. The data covered the
years 2000-2005. The algorithm generated questions
driven by an identification key of North American birds,
which we transcribed from its original book form to an
online matrix.

We showed that the question generating algorithm is not
sensitive to how many of the six years' worth of observa-
tion data are supplied as input. Even one year's worth of
data made all the difference. We also showed that, at least
for our bird observations at the Jasper Ridge Preserve, the
age of the data (within those six years) did not impact the
algorithm's efficiency. Observations from 2000 were just
as valuable as observations from 2005.

The key matrix's varying density of characters for each bird
species had no impact on the algorithm. Neither did dif-
ferences in the minimum number of required questions
among the species affect the algorithm differently than it
affected the baseline alternative. That is, some species do
require more questions, no matter how the question
sequence is constructed.
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Finally, we showed that the use of Laplace smoothing dur-
ing the calculation of probabilities for the future observa-
tion of each species works well. This result contrasts with
findings in other areas, like Natural Language Processing,
where variants of the Good-Turing algorithm are pre-
ferred.

The inclusion of the public in the collection of observa-
tion data is crucial if convincingly large and geographi-
cally diverse data sets are to be accumulated quickly. A
challenge in the way of such public participation is quality
assurance. EcoPod is one tool that attempts to enable con-
venient and reliable collection of observations.
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