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Abstract
Background: The identification and characterization of interacting domain pairs is an important
step towards understanding protein interactions. In the last few years, several methods to predict
domain interactions have been proposed. Understanding the power and the limitations of these
methods is key to the development of improved approaches and better understanding of the nature
of these interactions.

Results: Building on the previously published Parsimonious Explanation method (PE) to predict
domain-domain interactions, we introduced a new Generalized Parsimonious Explanation (GPE)
method, which (i) adjusts the granularity of the domain definition to the granularity of the input
data set and (ii) permits domain interactions to have different costs. This allowed for preferential
selection of the so-called "co-occurring domains" as possible mediators of interactions between
proteins. The performance of both variants of the parsimony method are competitive to the
performance of the top algorithms for this problem even though parsimony methods use less
information than some of the other methods. We also examined possible enrichment of co-
occurring domains and homo-domains among domain interactions mediating the interaction of
proteins in the network. The corresponding study was performed by surveying domain interactions
predicted by the GPE method as well as by using a combinatorial counting approach independent
of any prediction method. Our findings indicate that, while there is a considerable propensity
towards these special domain pairs among predicted domain interactions, this overrepresentation
is significantly lower than in the iPfam dataset.

Conclusion: The Generalized Parsimonious Explanation approach provides a new means to
predict and study domain-domain interactions. We showed that, under the assumption that all
protein interactions in the network are mediated by domain interactions, there exists a significant
deviation of the properties of domain interactions mediating interactions in the network from that
of iPfam data.
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Background
Introduction
Understanding of protein and domain interactions is nec-
essary to comprehend the functioning of a cell. In the past
few years, this area has been the subject of intensive study
(surveyed in [1]) As the power and the limitations of
methods to predict domain interactions become clear,
new and improved approaches have been developed
[2,3].

Protein interaction data is collected from studies of indi-
vidual systems, and more recently through high-through-
put experiments, such as yeast two-hybrid (Y2H) and
tandem affinity purification followed by mass spectrome-
try (TAP/MS) [4-11]. Those methods provide a vast
amount of interaction data, but several independent stud-
ies indicate false positive rates of the order of 50% [12-
15]. This necessitates proper modeling of the presence of
noise by the computational methods that use this data.

It has been estimated that more than half of eukaryotic
proteins and a significant fraction (between one third and
two thirds, depending on the estimates) of prokaryotic
proteins are multi-domain proteins [16-19]. It is often
assumed that the interaction between two proteins
involves binding between two or more specific domains.
Under this assumption, many research groups have con-
tributed computational methods aimed at discovering
interacting domains. The first such prediction method,
the Association method [20], scores each domain pair by
the ratio of the number of occurrences of a given pair in
interacting proteins to the number of independent occur-
rences of those domains. Deng and colleagues [21] pro-
posed an expectation maximization algorithm (EM)
which computes domain interaction probabilities that
maximize the expectation of observing a given protein-
protein interaction network. Other approaches to this
problem use linear programming [22], support vector
machines [23], probabilistic network modeling [24], and
lowest p-value [25].

More recently, Riley and colleagues [26] introduced a
method, called the Domain Pair Exclusion Analysis
(DPEA), which predicts domain interactions by comput-
ing, for every potentially interacting domain pair, the so
called E-value. A modification of this method has been
proposed lately in [27]. The E-value measures to what
extent disallowing an interaction between the domains in
a given pair reduces the likelihood of observing the pro-
tein interaction network. Domain pairs with E-value
above a certain threshold are predicted as interacting. The
idea that domain-domain interactions should be discov-
ered as putative explanations of protein-protein interac-
tions rather than predictors of these interactions was also
the cornerstone of a recently proposed Parsimonious Expla-

nation (PE) method [2], which assumes that interactions
between proteins evolved in a parsimonious way, and
uses optimization to predict domain interactions. Lee and
colleagues [3] improved on a previous work [21] by creat-
ing what we refer to in this paper as the Integrated Bayesian
(IB) method. This method estimates the likelihood of
domain interactions based on a protein interaction net-
work from four different organisms (prediction from each
network is treated as independent evidence), and on the
amount of biological evidence relating two domains, such
as co-occurrence of domains in the same protein and
existence of common GO terms at the functional level.

Adjusting the granularity of domain definition
While there is no agreement on the definition of a
domain, it is often assumed that domains are independ-
ent evolutionary units, in the sense that a domain is either
observed in isolation in nature, or in the context of differ-
ent multidomain protein architectures [28]. This defini-
tion inherently depends on the observed protein universe:
as the number of proteins in the universe increases, we
may obtain a finer partition into domains. Conversely, if
we study a restricted set of proteins, it may be reasonable
to use this set as the protein universe with respect to which
we validate whether or not a given protein sequence is
observed in isolation, or in more than one context in dif-
ferent multidomain proteins. In such a case, the granular-
ity of the domain definition may be lower than in the full
protein universe. In the context of predicting interactions
between domains based on protein interaction data, it
makes sense to adjust the granularity of the domain defi-
nition to the universe of proteins in the protein-protein
interaction network. From a practical point of view,
domains are typically assigned using Pfam HMM models
[29] or a similar approach. Starting with Pfam assign-
ment, we adjusted the granularity of the domain defini-
tion by unifying domains that are always seen together in
our protein set into a so called supra-domain. The term
supra-domain is borrowed from the work by Chothia and
colleagues [30] where it was used to indicate a group of
domains that appeared frequently together, albeit not
necessarily always. A similar granularity adjustment was
also made in [21].

Parsimony principle
The parsimony principle (also known as Occam's razor)
states that the explanation of any phenomenon should
make as few assumptions as possible. In evolution, a par-
simony approach seeks an explanation that requires the
smallest number of evolutionary changes [31]. In the con-
text of predicting domain interactions, the parsimony
assumption is expressed as the hypothesis that the set of
correct domain-domain interactions is well approximated
by the minimal set of domain interactions necessary to
justify a given protein interaction network. That idea was
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originally introduced in the PE method [2], and formu-
lated as a linear programming optimization problem. In
this formulation, each potentially interacting domain pair
is represented by a variable, and each protein interaction
defines a constraint enforcing that such interaction is
"explained" (the fact that these interactions are not fully
reliable is solved by a randomization procedure). The
original PE method treats all domain interactions equally.
However, just as in the general case of evolution, where
some changes are more likely than others, some types of
domain interactions may be preferred to others for bio-
logical reasons. To model this possibility we introduce a
new variant of the parsimony approach, Generalized Parsi-
monious Explanation (GPE), which allows for a differential
treatment of different types of domain pairs. It also
adjusts the granularity of the domain definition by incor-
porating the supra-domains and the propensity towards
predicting interactions between co-occurring domains.

Co-occurring domains
It has been observed that domains which can be found in
distinct protein chains in one organism whereas in a dif-
ferent organism they are fused together in one protein
chain often interact [32,33]. This motivated Lee and col-
leagues to include co-occurrence (Lee and colleagues used
the term "co-exist") of domain pairs in one protein chain
as evidence of possible interaction between these
domains [3]. Two domains are considered to be co-occur-
ring if there is a protein chain that contains both domains.
For example, if a protein contains domains A, B, and C
then all three pairs (A, B), (A, C), and (C, B) are consid-
ered to be co-occurring. Using iPfam domain pairs as a
gold standard, Lee and colleagues showed that the variant
of the Expectation Maximization method based exclu-
sively on information about domain co-occurrence gives
more accurate predictions than the variant of this method
based on interaction predicted independently in several
organisms. This is interesting and we decided to investi-
gate the reasons leading to this result in more detail. It is
known that proteins in PDB are not representative of pro-
teins encoded by the genomes. For example, they have dif-
ferent length distribution, amino-acid composition,
distribution of predicted secondary structure type, level of
disorder, etc. [17,34,35]. This prompted us to investigate
whether statistical properties of domain pairs in iPfam are
the same as those of interacting domain pairs mediating
protein interactions in the high throughput genome scale
interaction networks. Since the second set of interacting
domain pairs is not available to us directly, we estimated
properties of this set using two methods: by performing a
survey of properties of predicted domain interactions, and
by a combinatorial counting method independent of any
prediction method.

Benchmarking the prediction results
Due to limited availability of domain-domain interaction
data, developing and benchmarking of domain interac-
tion prediction methods is particularly challenging. A
standard solution in the field is to use as a benchmark set
interacting domain pairs obtained from crystal structures
of protein complexes and collected in the iPfam database
[36]. However, one needs to keep in mind that iPfam rep-
resents only a small fraction of interacting domain pairs.
According to a recent study involving E. coli, yeast, worm,
fly, and human data, conducted by Itzhaki and colleagues
[37], the percentage of protein-protein interactions that
can be explained by domain-domain interactions from
iPfam or 3DID is no more than 20% for any of the organ-
isms. Therefore, any domain interaction prediction
method that undertakes the task of explaining protein
interactions through domain-domain interactions is
expected to (correctly) recover interacting domain pairs
that are not in those high-confidence databases (yet). In a
ROC-type analysis these interactions are typically incor-
rectly counted as false positives. Therefore, to evaluate the
performance of various methods, we used a different
method pioneered by Nye and colleagues [2,25,38]. This
method considers only those interacting protein pairs that
contain an iPfam domain pair as a possible explanation.
Then, for every interacting protein pair, it tests if the cor-
responding iPfam pair is recovered as the highest scoring
domain pair among all domain pairs that could poten-
tially mediate this protein interaction. Using this
approach, we compared the predictions of GPE with those
of the PE method. We also compared the performances of
GPE and the best-known methods for which the corre-
sponding data was available.

Results and Discussion
Implementation of the Generalized Parsimonious 
Explanation Method
The parsimonious explanation model seeks the smallest
set of domain interactions that can explain all protein
interactions in the network. The original parsimonious
explanation method [2] treated all possible domain pairs
equally. In contrast, the Generalized Parsimonious Expla-
nation (GPE) allows for incorporating a priori knowledge
that some domain interactions may be preferable to oth-
ers. This is done by modifying the objective function in
the linear programming (LP) formulation of the associ-
ated optimization problem. We used this capacity of GPE
to include bias towards interactions between domains
that co-occur in the same protein chain and to test the
impact of such bias on the predictions. Namely, the
domain pairs that are found to co-occur in the same pro-
tein chains are assumed to have lower cost than other
domain pairs.
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The second difference between PE and GPE is the "granu-
larity" of domain definition. Some domains have been
fused together into one supra-domain according to the
rules described above. For example, UreE urease accessory
protein, C-terminal domain UreE_C is always observed
together with UreE urease accessory protein, N-terminal
domain UreE_N, and therefore these two domains are
combined into one supra-domain. Additional file 1 con-
tains a list of the created supra-domains and the associ-
ated list of original domains contained in each supra-
domain. Supra-domains inherit interactions of the
domains they contain. The benchmark set, modified from
the original iPfam benchmark set using these rules, is
available as Additional file 2. To distinguish between the
original Pfam domains and our new set that contains also
supra-domains, we use the term "generalized domains"
when referring to our new set.

Similarly to the original PE method, GPE models the reli-
ability of the edges in the protein interaction network
using a randomized approach. This is done by construct-
ing of a set of linear programming instances in a probabi-
listic fashion and averaging the results (for details see
Methods). Two types of scores are reported: the LP-score
and pw-score.

The LP score is a value between zero and one and is com-
puted by averaging the outputs from the set of rand-
omized linear programs. Note that if we additionally
enforce that the solution to our linear program is integer
then, for each domain pair, only two values would be pos-
sible: 0 – indicating that domain pair is not a part of an
optimal solution and 1 – indicating otherwise. The real
valued solution measures, for each domain pair, the con-
tribution of a given domain pair to the optimal solution
where high scores correspond to high contribution. The
pw-score combines the traditional p-value (obtained via
additional simulations) and the so called witness-score.
The need for this additional witness score is a conse-
quence of the following observation. Pairs of frequently
occurring domains usually have high p-values as they are
often found by chance in our simulation. However, it is

known that some of such frequently occurring domain
pairs do interact. Therefore, rather than immediately
rejecting a pair with high p-value we consider additional
evidence in terms of the so-called witness. A witness to a
domain-domain interaction is a pair of interacting single
domain proteins where one protein contains the first
domain in the pair and the second protein contains the
other. Given the reliability of each protein interaction in
the network, one can estimate the conditional probability
that the domain interaction is correct subject to observing
a given set of witnesses. (For exact definitions and imple-
mentation details, see Methods).

Additional file 3 contains a table with the 1,399 domain
pairs predicted by GPE to interact; they were chosen as
those domain pairs that obtained an LP-score at least 0.60
and a pw-score less or equal to 0.01. A larger set of gener-
alized domain scores is given in Additional file 4, which
contains 7,554 generalized domain pairs that had LP-
scores at least 0.50, regardless of their pw-scores. We point
out, that if a domain pair occurs only once and this occur-
rence is in the context of an interaction between two sin-
gle-domain proteins, the expected score of such a domain
pair is 0.5. The results of predictions as functions of the
network reliability, pw-threshold and LP-threshold are
provided in Additional files 5 and 6. Following the IB
approach, we excluded Pfam-B domains from this part of
the study.

The role of co-occurring domains in mediating protein 
interactions
To evaluate the role of co-occurring domains in mediating
protein interactions represented by the network, we first
computed the percentage of co-occurring domains in the
iPfam benchmark set and in the sets of predicted domain
interactions. Table 1 summarizes the results for PE (Orig-
inal) and GPE (Generalized) predictions and the iPfam
Benchmark Set (B). The iPfam benchmark set contains
61.8% of co-occurring (generalized) domains pairs
(62.1% before introducing supra-domains). The percent-
age of co-occurring domains in predicted interactions was
significantly lower than in the iPfam Benchmark Set

Table 1: Analysis of co-occurring domain pairs in the dataset and predictions

ANALYSIS OF CO-OCCURRING PAIRS
All Pairs Co-occur Percentage

Potential Contacts Original 29,364 1,343 4.6%
Generalized 26,113 1,146 4.4%

Benchmark Set (B) Original 783 486 62.1%
Generalized 691 427 61.8%

Pairs Predicted Original 1,852 284 15.3%
Generalized 1,399 321 22.9%

Predicted ∩ B Original 230 182 79.1%
Generalized 239 173 72.4%
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(15.3% for the original and 22.9% for the generalized set)
but still higher than expected by chance (4.6% and 4.4%
respectively). Next, we tested if the difference in the level
of enrichment in co-occurring domains in the iPfam
benchmark set and in the predicted sets could be a result
of artifacts in the prediction method. To do this we com-
puted, under the assumption that protein interactions are
mediated by domain interactions, the upper bound for
the percentage of co-occurring domains in any set of inter-
acting domain pair explaining the network. This compu-
tation is performed as follows. Assume that all co-
occurring domains that could interact do interact. To esti-
mate the upper bound on the fraction of co-occurring
domains among interacting domains we need to compute
a lower bound on the number of domain interactions
needed to explain all interactions in the network. Note,
that if the solution to our linear program was restricted to
be integer, the optimum value of the objective function
(the function optimized by the linear program) computed
under the assumption that all domains are treated equally
(thus without a bias towards co-occurrence) would give
exactly the smallest possible number of domain pairs
needed to explain the network. Since we don't restrict our-
selves to an integer solution, the optimal value of the
objective function could be smaller and therefore only
provides a lower bound for the minimal number of inter-
acting domain pairs. The resulting values were approxi-
mately 11,100 and 11,400 for the generalized and the
original version, respectively. Thus, given the number of
co-occurring domains is 1,146 (respectively 1,343 for the
original domain definition) this implies that at most
10.3% (respectively 11.8%) of the interacting domain
pairs could be co-occurring. This percentage depends on
the assumed reliability of the network (here 0.5) and
decreases with the increase of that reliability.

The survey of the predicted domain interactions revealed
that the percentage of co-occurring domains among pre-
dicted domain pairs was 15.3% for the original PE
method and 22.9% for the generalized method (the statis-
tics for different network reliability values and LP thresh-
olds are given in the Additional file 6). The cost of a co-
occurring domain pair has been initially set to 0.95 and
the cost of all other domain pairs to 1.0. Decreasing fur-
ther the cost of co-occurring domains did not influence
the results significantly, even in the case where the co-
occurring domains were assigned negligible costs. This
suggests that the increase in the number of co-occurring
domain pairs is obtained mainly by breaking ties in their
favor. This survey of the predicted domain interactions
provides an alternative estimate on the percentage of co-
occurring domains in which, by selecting only highly scor-
ing domains, we bypassed the requirement that all pro-
tein interactions had to be explained. However, this

second estimate assumes that our predictions approxi-
mate the reality.

Finally, we tested the possibility that all the enrichment of
co-occurring domains in the predicted interacting
domains is exclusively due to iPfam domain pairs present
in the prediction. By repeating the calculations with iPfam
excluded, we found that, for the PE method, the percent-
age of co-occurring domains among the remaining pre-
dicted domain interactions is twice as big as expected by
chance. This number was six times as big as the back-
ground for the predictions obtained by the GPE method
that assigns smaller cost to co-occurring domains.

Recovery of homodimers in the predictions
In a recent work, Itzhaki and colleagues observed that
interacting homologous domains are overrepresented in
crystal structures of interacting domains [37]. Therefore,
we sought to investigate the presence of homodimers
among our predictions. (Table 2 presents the detailed
numbers.) We found that the ratio of homodimers in the
set of all potentially interacting domain pairs is relatively
small (2.5%). However, among the 1,399 domain pairs
predicted by GPE, 203 pairs (14.5%) belong to that class.
Hence, consistent with the findings of Itzhaki and col-
leagues, homodimers are significantly overrepresented in
the set of predicted domain interactions. The enrichment
remains significant after excluding iPfam domains: 5% of
all predicted interactions that are not in iPfam are
homodimers.

Next, using the same method as in the case of the co-
occurring domains, we found that under the assumption
that protein interactions are mediated by domain interac-
tions, at most 656/11100 = 5.9% of these interactions
could potentially be homodimers. This fraction is much
smaller than observed in the iPFAM benchmark set
(55.4%).

Analysis of top-ranked predictions
The seventy top-scoring pairs predicted with GPE are
listed in Table 3. Most of the pairs in that list have multi-
ple witnesses in the protein interaction network, but seven
of them do not have any witnesses (thus always occur in
the context of other domain pairs providing putative

Table 2: Analysis of homodimers in the dataset, in 
GPEbenchmark set, and also among pairs predicted by GPE.

ANALYSIS OF HOMODIMERS
All Pairs Homodimers Percentage

Potential Contacts 26,113 656 2.5%
Pairs Predicted 1,399 203 14.5%
Benchmark Set (B) 691 383 55.4%
Predicted ∩ B 239 145 60.7%
Page 5 of 14
(page number not for citation purposes)



BMC Bioinformatics 2008, 9:171 http://www.biomedcentral.com/1471-2105/9/171
Table 3: The seventy top-scoring domain pairs with pw-score at most 0.01.

ORIG domA ORIG domB LP_score pw_score iPFAM Witns

7tm_1 IL8 1 0 0 80
AAA AAA 1 0 1 36
AAA PCI 1 0 0 18
Ank RHD 1 0 1 0
Cpn60_TCP1 WD40 1 0 0 50
Cyclin_N Pkinase 1 0 1 24
LSM LSM 1 0 1 76
Pkinase zf-C2H2 1 0 0 22
Pkinase Pkinase 1 0 1 60
Pkinase WD40 1 0 0 30
Proteasome Proteasome 1 0 1 36
RNase_PH RNase_PH 1 0 1 0
RNase_PH RNase_PH_C 1 0 1 0
RRM_1 RRM_1 1 0 1 70
RRM_1 WD40 1 0 0 21
RRM_1 zf-C2H2 1 0 0 23
WD40 WD40 1 0 1 38
zf-C2H2 zf-C2H2 1 0 1 106
UQ_con zf-C3HC4 1 0.00001 1 17
Pkinase RRM_1 1 0.00002 0 16
TNF TNFR_c6 1 0.00002 1 16
GTP_CDC GTP_CDC 1 0.00003 0 15
Homeobox Pkinase 1 0.00003 0 15
GDI Ras 1 0.00006 1 14
PCI PCI 1 0.00006 0 14
TPR zf-C2H2 1 0.00006 0 14
LSM WD40 1 0.00012 0 13
Metallophos Proteasome 1 0.00012 0 13
AAA WD40 1 0.00024 0 12
HLH HLH 1 0.00024 1 12
Ras Yip1 1 0.00024 0 12
WD40 zf-C2H2 1 0.00024 0 12
Hrf1 Ras 1 0.00049 0 11
Metallophos efhand 1 0.00049 1 11
TPR WD40 1 0.00049 0 11
Brix WD40 1 0.00098 0 10
Homeobox Homeobox 1 0.00098 1 10
Homeobox zf-C2H2 1 0.00098 0 10
HSP70 Pkinase 1 0.00098 0 10
KH_1 WD40 1 0.00098 0 10
LSM RRM_1 1 0.00098 0 10
LSM Nop 1 0.00098 0 10
Metallophos Pkinase 1 0.00098 0 10
PCI Proteasome 1 0.00098 0 10
AAA TPR 1 0.00195 0 9
Ank Pkinase 1 0.00195 1 9
Chitin_bind_4 Chitin_bind_4 1 0.00195 0 9
E2F_TDP SUPRDOM8 1 0.00195 0 9
HSP70 WD40 1 0.00195 0 9
KH_1 RRM_1 1 0.00195 0 9
LSM zf-C2H2 1 0.00195 0 9
PH Pkinase 1 0.00195 0 9
Pkinase Rad50_zn_hook 1 0.00195 0 9
Pkinase efhand 1 0.00195 0 9
Pkinase TPR 1 0.00195 0 9
Histone WD40 1 0.00391 0 8
Pkinase Ras 1 0.00391 0 8
zf-C3HC4 zf-C3HC4 1 0.00391 0 8
HATPase_c HATPase_c 1 0.005 1 1
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explanation, and therefore are called difficult in [2]), and
all but one of those seven are confirmed by iPfam crystal
structures.

First, we analyzed the results of GPE by assessing the
retrieval of benchmark iPfam domain pairs among the
top-ranked pairs in the list. Counting the predicted iPfam
domains provides an assessment of quality of domain
interaction prediction that is far from ideal, since only a
small percentage of interacting domains are captured by
crystallization experiments. Furthermore, according to

our estimations, what is captured is a biased sample of
interactions in the network. Nevertheless, we expect the
top-scoring interactions to be enriched in iPFAM domain
pairs. An assessment of the retrieval of benchmark pairs
among the top-scoring pairs predicted by GPE and PE is
given in Figure 1. The increased recovery rate of iPfam
domains by the GPE method is measurable, although not
overwhelming. The performances of the two methods
measured with ROC curves are shown in Figure 2.

Benchmark pairs among top-scoring predictionsFigure 1
Benchmark pairs among top-scoring predictions.

PE
GPE

SNARE SNARE 1 0.005 1 1
efhand efhand 1 0.00781 1 7
Homeobox WD40 1 0.00781 0 7
PP2C Pkinase 1 0.00781 0 7
RRM_1 TPR 1 0.00781 0 7
Zn_clus Zn_clus 1 0.00781 1 7
HSP90 Pkinase 0.999 0 0 0
RHD RHD 0.999 0 1 0
RHD TIG 0.999 0 1 0
TIG TIG 0.999 0 1 0
KE2 Prefoldin 0.999 0.00098 1 10

Table 3: The seventy top-scoring domain pairs with pw-score at most 0.01. (Continued)
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Comparison with other methods
To compare GPE to the top methods, we use each method
to predict the mediating domain pair(s) of a given protein
interaction. The domain pair(s) with the highest score
among the potentially interacting domain pairs is
returned as the result of such prediction. Each protein
interaction considered in this experiment contains one or
more potential contacts in the iPfam benchmark set,
which are assumed to be the true mediating pairs (such an
experiment has been used before in a number of previous
studies [2,25,38]). To make the comparison as fair as pos-
sible, the dataset used in this experiment is constrained by
additional conditions detailed in the Methods Section,
resulting in a set of 192 protein interactions, which are
listed in Additional file 7.

The results of the accuracy represented by the positive pre-
dictive value (PPV= TP/(TP+FP)) of the above experiment
are shown in Figure 3. Note that the performance of Ran-
dom (choosing a mediating pair by chance) varies with

the considered definition of a domain. GPE performs
about 16 percentage points above

To evaluate the statistical differences between the meth-
ods, we computed for each method the number of times
it wins and loses relative to Random and compared the
corresponding fractions. By this measure the performance
of PE and GPE was non-distinguishable (note that
although the difference between the PPV values of GPE
and PE is measureable, introducing supra-domains makes
it easier for Random to guess the solution). The difference
between the parsimony based methods and the next best
method, the Integrative Bayesian method (IB) was, how-
ever, statistically significant (p-value < 0.005). This is
interesting, since the IB scores were defined based on a
wider range of information [3]. Due to the similar per-
formance of GPE and IB, we were interested in determin-
ing which type of pairs, if any, were recovered by SPE and
not by IB. Analysis of domain pairs predicted by our
method and missed by IB suggests three reasons for

ROC Curves of GPE and PEFigure 2
ROC Curves of GPE and PE.
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unique selections made by our approach: using witnesses
count, concatenating indistinguishable domains, and the
linear programming optimization itself. The first two
could be incorporated in any prediction method. Under
the assumption of no systematic bias towards false posi-
tives, multiple occurrences of single domain protein inter-
actions in the given network should be considered as
experimental evidence. Combining domains into supra-
domains had both obvious and more subtle effects. After
combining multi-domain chains of RNA polymerase
(RNA_pol_Rbp2), the interaction of this supra-domain
with RNA_pol_L was easily detected. Obviously, which of
the domain pairs are actually involved in the interaction
cannot be determined based on the network alone.
Another example involves the Retinoblastoma-like pro-
tein consisting of domain pair RB_A and RB_B, neither of

which is ever observed without the other in our data. After
combining them into one supra-domain, we recovered a
known interaction with the E2F transcription factor [39-
41] Our method uncovered also another known interac-
tion of the RB supra-domain, namely with Histone
deacetylase domain [42]. Based on the scores assigned by
IB to individual domain pairs, we can speculate that this
particular interaction would also be predicted by that
method, should the domains be merged. The third class of
predictions that obtained high scores by our method but
were missed by IB contains groups of specific interactions
where one or both of the partners are frequently occurring
domains (e.g., signaling domains, DNA binding domains,
etc). This is the most difficult class to predict correctly
since it contains domain pairs that interact only in a spe-
cific context. Here, again, the domain pair (Hormone

Comparison of the Positive Predictive Values for several methods relative to the corresponding random performanceFigure 3
Comparison of the Positive Predictive Values for several methods relative to the corresponding random per-
formance. The methods are grouped according to the domain definition. Note that performance of Random varies between 
the groups. GPE* denotes results obtained by projecting supra-domain from the GPE method is back into Pfam domains where 
the "children" domains inherit the scores from the supra-domain. A more formal comparison method from different groups 
and relies on counting how often each of them over/under-performed the corresponding random selection and is described in 
the text. The performance of GPE and PE was identical while their desistance to the next closed method was statistically signif-
icant.

Generalized domains                   Pfam-A only domains                           All original domains 
Pfam-A and Supra 

Universe of domains considered 
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Receptor, bZIP), predicted exclusively by GPE, is consist-
ent with the literature [43]. These predictions should be
attributed to the parsimony based formulation of the
problem. Additional file 8 contains a list of the 50 top-
scoring domain pairs predicted by GPE that were not pre-
dicted by IB.

Impact of the presence of PFAM-B domains
Because interactions involving Pfam-B domains are not
documented by crystal structures, any method that is
benchmarked using crystal structure data achieves better
accuracy when Pfam-B domains are excluded. To make all
methods comparable, we excluded pairs involving Pfam-
B domains from the analysis. However, for all methods
for which we had the corresponding data, we examined
how these methods are affected by including Pfam-B
domains. The results are presented in Figure 3.

Since the difficulty of the problem decreases with exclu-
sion of Pfam-B, one should assess the performance of a
method in a given setting relative to a random selection
under the same setting. We found that the performances
of the Association and the EM methods are drastically
reduced upon inclusion of Pfam-B (they become worse
than Random), while the performances of the parsimony
method and DPEA remain well above random. We note
that both the DPEA method and the parsimonious expla-
nation method attempt (in different ways) to find domain
pairs that are most prominent in explaining the interac-
tion of proteins in the network. It is also important to
stress the fact that although EM and Association per-
formed worse than Random on this test, it does not mean
that they would not outperform Random on other meas-
ures. For example, for all these methods, it has been dem-
onstrated that high scoring predictions are enriched in
iPfam pairs.

Conclusion
In this paper, we studied the utility of the parsimony
approach in detecting interacting domain partners. Fur-
thermore, we introduced several improvements to our
earlier Parsimonious Explanation (PE) method [2]. In its
generalized version (GPE) the method adjusts the granu-
larity of the domain definition to the granularity of the
input data set and permits domain interactions to have
different costs.

We also studied the impact of including versus excluding
Pfam-B domains from predictions. In general, there are no
crystal structures documenting interactions between
Pfam-B domains. Thus, any method benchmarked using
crystal structures can only benefit from excluding Pfam-B
domains from predictions. This is unfortunate; as the pre-
diction of interactions involving those not so well-studied
domains are also of great interest. Therefore, we consid-

ered the impact of including Pfam-B on parsimony,
DPEA, EM, and the Association methods. We found that
among those, only the parsimony and the DPEA retained
performance better than random.

The new objective function employed in GPE allows for
assigning different costs to different types of interactions.
We used this feature of GPE to study the effect of assigning
a lower cost to domain pairs involving co-occurring
domains. Despite this low cost, only about 23% of pre-
dicted domain interactions were between co-occurring
domains – much less than in the benchmark crystal struc-
ture data which included 62% of this type of interactions.
To see if the difference between these propensities is not
an artifact of our prediction method, we computed, under
the assumption that protein interactions are mediated by
domain interactions, a lower bound on the number of
domain interactions needed to explain protein interac-
tions in the network. This in turn allowed us to estimate
that the fraction of co-occurring domains among all inter-
acting domains is at most approximately 11%. This esti-
mation is made under the assumption that protein
interactions are mediated by domain interactions but it is
independent of any prediction method.

We also investigated another interesting observation that
was made about domain-domain interactions, based on
crystal structure data: enrichment in homodomain inter-
actions [37]. Keeping in mind that data collected based on
crystal structures may not be representative of genome
wide properties, we sought to take advantage of the high
confidence predictions and test if the observation holds
for this data. Indeed, we found a significant bias toward
homodomain interactions (14.5%) but much smaller
than what has been observed in crystal structure bench-
mark data (55.4%). Once again, using the same counting
argument as for the co-occurring domains, we confirmed
that these differences are a real phenomenon and not an
artifact of the prediction method.

These findings parallel the previously established fact that
PDB data is not representative of genome wide protein
data [17,34,35]. We stress that our computations have
been made under the assumption that protein interac-
tions are mediated by domain interactions. While this
assumption is made by most domain interaction predic-
tion methods, one should keep in mind that this is a sim-
plification. Domains may also interact with peptides that
are not part of any known domain. Alternatively, it is also
is quite possible that protein-protein interactions present
in high throughput networks are not a representative sam-
ple of all protein interactions and have their own biases.
Therefore our estimation should be treated as evidence of
a difference in the frequencies of certain types of domain-
domain interactions in the two sets: the iPFAM set and the
Page 10 of 14
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set of domain interactions mediating protein interactions
in our high throughput network and not necessarily as an
absolute truth about domain interactions in nature.

Methods
Formulation of the parsimony method as an LP problem
Our implementation of the parsimony principle uses lin-
ear programming optimization (LP) to find the smallest
weighted set of domain-domain interactions that explains
all protein-protein interactions.

The implementation is similar to the original LP formula-
tion for the PE method. Intuitively, the linear program for-
malizes the task of finding a smallest weighted set of
domain pairs subject to the constraints that all protein
interactions are "explained". Formally, there is a variable
for each unique potentially interacting domain pair (that
is, a domain pair (A, B) such that A ∈ P1, B ∈ P2, and pro-
teins P1 and P2 interact in the network), which can take
any real value between zero and one. Additionally, each
domain pair has assigned a cost (a number between 0 and
1) so that the interaction types that are known to be bio-
logically more likely obtain a lower cost. Each protein
interaction in the network is represented by a constraint
requiring that the sum of the values assigned to the poten-
tially interacting domain pairs must be at least 1.0. The
goal of the LP is to minimize the weighted sum of the val-
ues assigned to all variables. Formally, if CO is the set of
domain pairs that co-occur in the architecture of some
protein in the network, NCO is the set of pairs that do not
co-occur, and PPI represents the set of the protein interac-
tions in the network, we have:

Since, as discussed in section 2.2, the results were (statis-
tically) indistinguishable for a wide range of values of α,
as long as α < 1; we have arbitrarily set α = 0.95.

LP-score and pw-score
As in the original PE formulation, GPE also takes into
account the reliability of the edges in the protein interac-
tion network. This is done by creating 1000 random vari-
ants of LP instances where each constraint is included
with probability equal to the reliability of the correspond-
ing interaction. The actual LP-score of a variable is taken
as the average of the values over all runs. Throughout this
work, that reliability is assumed to be 50% [12-15].

Additionally, we provide the pw-score, which combines
the traditional p-value (probability of obtaining a score at
least this high by chance) and the so called witness-score.
A witness to a domain-domain interaction is a pair of
interacting single domain proteins where one protein
contains the first domain in the pair and the second pro-
tein contains the other. If a domain pair (i, j) has w(i, j)
witnesses and the reliability of each witness is r, then the
witness-score is (1 - r)w(i,j). That is, the witness support is
the probability that all the witnesses of a given pair are
false, as a function of the network reliability. The p-value
is estimated in an independent randomization experi-
ment where 1000 networks are created with the same pro-
teins (with the same domain compositions) and the same
number of protein interactions, but the protein pairs in
the networks are chosen at random. The two indicators are
then combined together to generate the pw-score as fol-
lows.

pw_score(i, j) = min(p_value(i, j),(1 - r)w(i,j))

Data sets
We used the data set by Riley and colleagues [26] which
has also been used by Guimarães and colleagues [2], and
is available online with the earlier paper. The protein
interaction pairs were originally taken from the DIP data-
base [44], and the domain architecture of the proteins
were produced by HMM profiles from Pfam.

Adjusting the granularity of the data set yielded 162 supra-
domains, which all together replaced 368 of the original
domains. Replacing each group of commonly occurring
domains with the corresponding supra-domains yielded
2,529 domains, a reduction of 7.5% in the total number
of original PFAM-A domains (2,735). The list of the 162
supra-domains with the original domains that they
encompass is in Additional file 1.

To formulate the LP we used only potential domain inter-
actions involving Pfam-A domains or supra-domains.
That led to a drastic reduction in the number of variables
in the LP to 26,113 (with Pfam-B domains included, that
number was about 170,000). Accordingly, in the protein
interaction network we considered only the 10,025 pro-
teins that had at least one Pfam-A domain in their archi-
tecture, which also affected the size of the LP, since the
number of constraints went down to 20,625 (the entire
dataset contained 26,032 constraints).

The benchmark set was a subset of the domain pairs in the
iPFAM database [36], version of December 2005. We
included only interchain interactions. The granularity of
the benchmark set was adjusted to the granularity of our
domain definition following the principle that supra-
domains inherit the interactions of the domains they con-

Minimize x xij

i j NCO

ij

i j CO( , ) ( , )∈ ∈
∑ ∑+ α

Subject to P P PPI xpq

p q P P

: ( ) ( )
( , )
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∈
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tain. The 691 benchmark pairs are listed in Additional file
2.

To compare pairs of methods that use different domain
definitions, we compared the performance of each
method to the performance of the Random method for
the same domain definition. For each method we com-
puted the number of times it performs better or worse
than the Random method. This in turn was quantified by
computing the percentage of iPfam domains (if any) in
the set of highest scoring domain pairs. The proportion of
"wins" to "losses" was then compared using the (2-sided)
Fisher test.

The dataset for the comparison of all methods
To be able to include the IB method in the comparison of
our method with others, we needed to restrict ourselves to
the 25,352 domain pairs with likelihood greater than 0.0
listed by Lee and colleagues [3] (as the scores of other
domain pairs have not been provided.) Although the total
number of pairs in that list is comparable to our 26,113,
the two sets contain only 5,500 domain pairs in common.
An important difference is that the 25,352 domain pairs
published by Lee and colleagues is a selected set of
domain pairs (which they predict to be more likely to
interact than other domains in their original set) while
our set contains all domain pairs that could potentially
form interacting domain pairs given our set of interacting
proteins. Furthermore, while the IB set contains 2,080
iPfam pairs (8.2%), the GPE set has only 691 iPfam pairs
(2.6%). The small size of the overlap and the different
iPfam ratio in the data suggest that the two datasets are
rather different, so, for the sake of fairness, we use a more
rigorous setting, where we only consider protein pairs for
which scores from all methods are available. Additionally,
we require that each interacting protein pair has an iPfam
pair as a possible explanation. Finally, we removed all
redundancies from this set, that is, no two interacting pro-
tein pairs have the same domain architecture. That led to
a set of 192 protein interactions; those interactions are
listed in Additional file 7.

In the comparison of the methods, we used the scores
reported by Riley and colleagues [26] for DPEA, EM and
Association, and the scores published by Lee and col-
leagues [3] for the IB method.
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Additional material

Additional file 1
Mapping of Supra-domains to domains. This file contains 162 rows, 
each containing one supra-domain name followed by the names of the 
original domains included in it, separated by a blank character.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-9-171-S1.txt]

Additional file 2
Set of gold standard pairs. This file contains the 691 generalized domain 
pairs in the gold standard set. Each line contains the names of two 
domains that comprise a pair, separated by a TAB character.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-9-171-S2.txt]

Additional file 3
GPE predictions. This file contains a heading line and 1399 rows with 
the GPE predicted domain pairs ordered by LP-score. All pairs listed have 
LP-score ≥ 0.60 and pw-score ≤ 0.01. Each row contains five fields: Gen-
eralized Dom A, Generalized Dom B, GPE LP-score, GPE pw-score, and 
Gold Std (1 if pair is in GPE benchmark set, 0 otherwise).
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-9-171-S3.xls]

Additional file 4
GPE LP-scores ≥ 0.50. This file contains the 7,554 generalized domain 
pairs that had GPE LP-score ≥ 0.50, regardless of their pw-scores. Each 
row contains five fields: Generalized Dom A, Generalized Dom B, GPE 
LP-score, GPE pw-score, and Gold Std (1 if pair is in GPE benchmark set, 
0 otherwise).
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-9-171-S4.xls]

Additional file 5
Impact of pw-score cut-off on the quality of predictions. This file con-
tains the numbers of domains pairs predicted and the fraction of those that 
are in the benchmark set, for different values of pw-score cut-off. As the 
cut-off becomes more stringent, the accuracy of the predictions improves.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-9-171-S5.xls]

Additional file 6
Impact of reliability cut-off on the quality of predictions. This file con-
tains five tables for five different reliability cut-offs, showing the number 
of predictions and the number of predicted pairs in the benchmark set as 
a function of LP-score cut-off.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-9-171-S6.xls]
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