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Abstract
Background: With the rapid emergence of RNA databases and newly identified non-coding
RNAs, an efficient compression algorithm for RNA sequence and structural information is needed
for the storage and analysis of such data. Although several algorithms for compressing DNA
sequences have been proposed, none of them are suitable for the compression of RNA sequences
with their secondary structures simultaneously. This kind of compression not only facilitates the
maintenance of RNA data, but also supplies a novel way to measure the informational complexity
of RNA structural data, raising the possibility of studying the relationship between the functional
activities of RNA structures and their complexities, as well as various structural properties of RNA
based on compression.

Results: RNACompress employs an efficient grammar-based model to compress RNA sequences
and their secondary structures. The main goals of this algorithm are two fold: (1) present a robust
and effective way for RNA structural data compression; (2) design a suitable model to represent
RNA secondary structure as well as derive the informational complexity of the structural data
based on compression. Our extensive tests have shown that RNACompress achieves a universally
better compression ratio compared with other sequence-specific or common text-specific
compression algorithms, such as Gencompress, winrar and gzip. Moreover, a test of the activities of
distinct GTP-binding RNAs (aptamers) compared with their structural complexity shows that our
defined informational complexity can be used to describe how complexity varies with activity.
These results lead to an objective means of comparing the functional properties of heteropolymers
from the information perspective.

Conclusion: A universal algorithm for the compression of RNA secondary structure as well as
the evaluation of its informational complexity is discussed in this paper. We have developed
RNACompress, as a useful tool for academic users. Extensive tests have shown that RNACompress is
a universally efficient algorithm for the compression of RNA sequences with their secondary
structures. RNACompress also serves as a good measurement of the informational complexity of
RNA secondary structure, which can be used to study the functional activities of RNA molecules.
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Background
Ribonucleic acid (RNA) is an important class of molecules
which performs a wide range of biological and chemical
functions. Traditionally, most RNA molecules were
regarded as being involved in the process of translation,
including transfer RNA (tRNA) and ribosomal RNA
(rRNA). Since the late 1990s, it has been widely acknowl-
edged that there exists other type of functional RNA mol-
ecules such as non-protein-coding RNAs. These RNAs are
found in organisms ranging from bacteria to mammals
and affect a wide variety of processes including plasmid
replication, phage development, bacterial virulence, chro-
mosome structure, DNA transcription, RNA modification
[1-5]. RNA has recently become the center of much atten-
tion because of its functions as well as catalytic properties,
leading to a substantially increased interest in identifying
new RNAs and obtaining their structural information [6-
8]. Furthermore, the growth of RNA databases, such as
NONCODE [9], Rfam [10], RNaseP [11] and RNAdb [12]
has increased two to three fold annually.

To facilitate the maintenance and analysis of such RNA
data, an efficient compression algorithm of RNA
sequences is needed. Algorithms for compressing DNA
sequences include GenCompress [13], DNACompress [14],
Biocompress [15] and Cfact [16]. However, these algo-
rithms are only suitable for compressing the primary
sequences of DNA. As for RNA sequences, we are more
interested in designing a novel compression algorithm to
compress RNA primary sequence together with its second-
ary structure information. RNA secondary structure is sim-
ilar to an alignment of nucleic acid sequences, except that
the sequence folds back on itself and "complementary
bases" pair (commonly A-U, G-C, G-U) rather than iden-
tical or similar bases [17]. The functions of RNA are
closely related to its structural characteristics and as such
obtaining RNA secondary structure information (both
experimentally or computationally) has been an impor-
tant and interesting problem for several decades [17].

From a strictly mathematical point of view, compression
implies understanding and comprehension [18]. Biologi-
cal sequence compression is a useful tool to recover infor-
mation from biological sequences. Better compression
often implies better understanding. Compressing RNA
sequence with secondary structure means that we can cap-
ture the essences of RNA sequence information and its
structural information simultaneously. From an applica-
tion point of view, we can derive the informational com-
plexity of RNA structural data based on compression,
which can be used to study the structural features and
other various properties of RNAs.

In our study, we have developed an efficient grammar-
based algorithm to compress RNA sequence and its sec-

ondary structure. The software RNACompress developed in
Windows and Linux platforms is accessible freely at our
website. We have also defined the informational complex-
ity of RNA structural data based on compression coupled
with the theory of Kolmogorov complexity [18]. This kind
of informational complexity will be used to study the rela-
tionship between binding activities and structural com-
plexity of RNA aptamers.

To the best of our knowledge, this is the first study to be
published about the compression of biological sequences
with structural information. Additionally, we apply the
results to study functional activities of RNAs. The key idea
of our compression algorithm is to use dot-bracket nota-
tion [17] to represent the secondary structure of RNA and
define specific context free grammars (CFG) to model
RNA secondary structure together with its primary
sequence during compression (decompression). Further-
more, several computational parser and coding
approaches are incorporated to facilitate the whole proce-
dure, including (1) Utilizing the LL(1) parser to derive the
left-most derivation of defined grammars for RNA pri-
mary sequence and its secondary structure and (2) Using
Huffman coding to encode the symbol stream of left-most
derivation to achieve the most economical compression
result, etc. Extensive tests have shown that our algorithm
is fast, robust, effective and obtains a universally better
compression ratio than the common text-based compres-
sion tools or primary-sequence-specific compression tools
in the compression of RNA sequence with its structure.
These results show that our program is a useful tool for
RNA data maintenance and analysis.

Results
Algorithm
Generally speaking, grammar-based compression starts by
inferring the context-free grammar to represent the string.
The resulting grammar is encoded as a symbol stream,
which is then converted into binary. Each step affects the
final size of the compressed file. In our algorithm, each
step will be designed specifically to facilitate the particular
goal of RNA sequence and structure compression. The
main schema of our grammar-based compression and
decompression is shown in Figure 1. Two specific gram-
mars G1 and G2 are defined in our study: G1 is viewed as
the key grammar to represent RNA primary sequence
together with its secondary structure, while G2 is only used
to model the dot-bracket sequence of RNA secondary
structure and serves as a complementary to G1 to guide its
generation order (As will show later). We start with pars-
ing the dot-bracket sequence in G2 using the left-most deriv-
ing [19] to get a grammar tree T2. At the same time, each
deriving step is mapped to construct another grammar
tree T1 based on G1. Finally this left-most deriving symbol
stream of T1 is encoded using Huffman coding theory
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[20], so that the probability of each unpaired bases and
base pairs occurring in the whole secondary structure is
considered to get the most economic coding result. As for
decompression, the reverse procedure is performed. It
should be noted that once the grammar tree T1 or T2 is
regenerated during decompression, the corresponding
primary sequence and secondary structure in dot-bracket
notation can be regained using the post-order traversal [19]
of the leaves of these grammar trees, respectively. More
details will be presented in the following.

A. Content free grammars of RNA sequence and structure
In our study, RNA primary sequence is represented in
FASTA format beginning with a single-line description or
comment, followed by lines containing sequence data.
The description line is distinguished from the sequence
data by a greater-than (">") symbol in the first column.
For each sequence, the corresponding secondary structure
is represented in dot-bracket notation. Dot-bracket nota-
tion is the dominant RNA secondary structure format. It

uses dot to represent un-paired bases and brackets to rep-
resent base pairs in RNA stems. Many useful tools use this
format as input (and output) and hence it has become an
unofficial standard [21,22]. As for our compression, the
dot-bracket notation was proved to be an efficient way to
represent RNA secondary structure and suitable for our
grammar parser. A simple example of our input file for
compression is shown in Figure 2.

We have defined two concise content free grammars G1
and G2 to model RNA primary sequence and its secondary
structure information. A CFG is very similar to a finite
automaton [23], and has been proved to be an efficient
model to study RNA secondary structure. It contains the
following elements, which are defined as follows:

(1). Terminals – a symbol that represents a constant value

Schema of grammar-based compression and decompressionFigure 1
Schema of grammar-based compression and decompression.
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(2). Non-terminals – a symbol that has the capability of
being further defined in terms of terminals and/or non-
terminals, usually denoted by a capital letter.

(3). Production rules – rules by which non-terminals can
be replaced.

In our study, two grammars are defined as:

G1:

S: LS | e

L: aSu | uSa | cSg | gSc | uSg | gSu | a| u| c| g

G2:

S: LS | e

L: (S) | •

For both grammars, S and L are non-terminals, e is empty
string, and the symbols a, u, c, g, (,) and • are terminals
representing the 4 different bases, left bracket, right
bracket and dot, respectively.

Here G1 is a combination grammar to analyze RNA pri-
mary sequence and secondary structure simultaneously. It
can model Watson-Crick base pairs A-U, G-C and Wobble
base pair G-U in RNA secondary structure. G2 is aimed at
modeling the dot-bracket sequence of RNA secondary
structure. With these two grammars, two kinds of gram-
mar trees can be generated for the RNA primary sequence
and secondary structure, respectively, as shown in Figure
3. It should be noted that G1is ambiguous, meaning that
the same primary sequence can be generated with more
than one grammar tree, while G2 is unambiguous which
means that one dot-bracket string corresponding to only
one grammar tree [19]. Thus we have utilized G2 to guide

G1during the grammar parsing to identify the grammar
tree of G1.

B. Compression algorithm
Based on the two grammars we have defined, we are able
to perform the compression as shown in Figure 1. In the
following we also take the RNA sequence in Figure 3 as an
example to demonstrate the whole compression proce-
dure. First we discuss several computational approaches
used in our work.

LL(1) parser
We start from parsing the dot-bracket sequence of RNA
secondary structure using G2, and the LL(1) parser is used
to derive the left-most derivation of the input sequence. A
LL parser is a top-down parser for a subset of the context-
free grammars [24]. It parses the input from left to right,
and constructs a left-most derivation of the sentence. Practi-
cally, there are two common ways to describe how a given
string can be derived from the start symbol of a given
grammar. The simplest way is to list the consecutive
strings of symbols, beginning with the start symbol and
ending with the string, and the rules that have been
applied. If we introduce a strategy such as "always replace
the left-most non-terminal first" then for context-free
grammars the list of applied grammar rules is by itself suf-
ficient. This is defined as the left-most derivation of a string
[19].

As for LL(1) parser, it uses one token of look-ahead when
parsing a sentence. The parser consists of:

(1) an input buffer, a string from the grammar

(2) a stack on which to store the terminals and non-termi-
nals from the grammar yet to be parsed.

An example of input file for compressionFigure 2
An example of input file for compression.
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(3) a parsing table which tells it what (if any) grammar
rule to apply given the symbols on top of its stack and the
next input token.

In our study, the parser applies the rule in the parser table
(Table 1) which we have defined for grammar inference of
RNA secondary structure, by matching the top-most sym-
bol on the stack (row) with the current symbol in the
input stream (column). When the parser starts, the stack
already contains two symbols: [S, #], where '#' is a special
terminal to indicate the bottom of the stack and the end
of the input stream, and 'S' is the start symbol of the gram-
mar. The parser will attempt to rewrite the contents of this
stack to what it sees on the input stream. Three types of
steps for our left-most derivation are followed depending
on whether the top of the stack is a non-terminal, a termi-
nal or the special symbol #:

(1) If the top of the stack is a non-terminal symbol, the
non-terminal symbol and the symbol on the input stream
is looked up in the parsing table to determine which rule
of the grammar to use. The number of the rule is written
to the output stream. If the parsing table indicates that
there is no such rule then it reports an error and stops.

(2) If the top of the stack is a terminal symbol, then it is
compared to the symbol on the input stream. If they are
equal they are both removed. If they are not equal, the
parser reports an error and stops.

(3) If the top is # and on the input stream there is also a #
then the parser reports that it has successfully parsed the
input, otherwise it reports an error. In both cases the
parser will stop.

These steps are repeated until the parser stops, and then it
will have either completely parsed the input or written a
left-most derivation to the output stream or it will have
reported an error.

Map left-most derivation of G2 to G1
As mentioned above, G2 is used to guide the left-most deri-
vation of G1 since it is ambiguous. The mapping of the left-
most derivation of G2 to G1 is straightforward: '()' will be

mapped to the corresponding base pairs of the RNA sec-
ondary structure and '•' will be mapped to the corre-
sponding un-paired bases. After this mapping, a left-most
derivation of G1 is obtained and the Huffman coding is
performed on the symbol stream of this left-most deriva-
tion to encode them into a bit stream, as discussed follow.

Huffman coding
Huffman coding is an entropy encoding algorithm used
for lossless data compression. The term refers to the use of
a variable-length code table for encoding a source symbol
where the variable-length code table has been derived in a
particular way based on the estimated probability of
occurrence for each possible value of the source symbol
[20]. Huffman coding is able to design the most efficient
compression method of this type: no other mapping of
individual source symbols to unique strings of bits pro-
duces a smaller average output size when the actual sym-
bol frequencies agree with those used to create the code.

We use variable-length code table to encode the symbol
stream of left-most derivation of G1 based on the probability
associated for each production rules. G1 can be viewed as
a stochastic context free grammar (SCFG) [25]. We have
derived the rule probabilities based on a complete statistic
analysis of the frequency distribution of base pair and un-
paired bases in different RNA secondary structure using
the RNA structural database RNABase [26]. Nearly 1200
RNA sequences which cover diverse RNAs including
tRNA, rRNA, non-coding RNA etc. are examined and the
final statistical probabilities are listed in Table 2.

It should be noted that for different types of RNA or RNA
in different species, the frequency distribution of their
base pairs or un-paired bases are different, thus the pro-
duction probabilities of the rules are different. However,
from a statistical perspective, we aim at designing a uni-
versal compression algorithm for all types of RNA, thus
we make use of these general probabilities here. For more

Table 2: Huffman coding of production rules of grammar G1

Production rules Probability Huffman code

S: LS / 0
S:e / 1
L: a 0.183076 00
L: u 0.158666 100
L: c 0.087876 1111
L: g 0.101709 010

L: aSu 0.071603 0110
L: uSa 0.094386 1110
L: cSg 0.144020 110
L: gSc 0.113914 101
L: uSg 0.026851 01110
L: gSu 0.017901 01111

Table 1: LL(1) parser table for dot-bracket sequence of RNA 
secondary structure.

( ) • #

S S:LS S:e S:LS S:e
L L:(S) \ L: • \

Each cell in the table gives the production rules used when matching 
the top-most symbol on the stack (row) with the current symbol in 
the input stream (column).
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specific RNA types, more specific probabilities can be
used.

The Huffman tree based on our statistical probabilities is
shown in Figure 4. Finally variable-length bit codes are
generated to encode the different production rules.

Example
We took the RNA sequence in Figure 3 as an example to
demonstrate the whole compression procedure, as shown
in Table 3. The input is a RNA primary sequence with its
secondary structure in dot-bracket notation. Each step of
the LL(1) parser and the corresponding operation is also
listed.

Huffman coding of production rules of G1Figure 4
Huffman coding of production rules of G1. This binary tree is generated from left to right taking the two least probable 
symbols and putting them together to form another equivalent symbol having a probability that equals the sum of the two sym-
bols. The process is iterated until we have only one symbol. Finally, the tree is read backwards, from right to left, to assign dif-
ferent bits to different branches.
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The final bit stream of this left-most derivation is 0 01111
0 1110 0 101 0 00 0 010 0 1111 1 1 1 0 010 1, for a total
of 35 bits.

Definition of compression ratio
In our work, the compression ratio of the compression
algorithm can be computed in two ways:

R1 = uncompressed_file_bytesize/compressed_file_bytesize, or
R2 = (n × (H1 + H2))/o, where n is the number of the bases
in input RNA sequence. H1 and H2 are the information
entropy of the RNA primary sequence and secondary
structure, respectively. o is the number of bits in com-
pressed file.

While R1 is a straightforward way to compute the com-
pression ratio based on the byte size of the input file and
the compressed file, R2 is more specific based on entropy
theory. In the definition of R2, the uncompressed input
file is divided into two parts: RNA primary sequence and
RNA secondary structure in dot-bracket notation. From an
information entropy perspective [27], since there exists
four bases (A, U, G, C) for primary sequence and 3 char-
acters " (", ") " and "." for secondary structure, the average

information entropy for the primary sequence (H1) and
secondary structure (H2) can be computed as:

Where Pi and P'i are the occurrence probabilities of each
bases and characters in dot-bracket notation. If we con-
sider a RNA sequence with infinite length, then Pi = 1/4
and P'i = 1/3, assuming an independent probability distri-
bution of 4 base pairs and 3 characters, thus H1 = 2 and H2
≈ 1.585. This means that 2 bits is enough for encode the
RNA primary sequence and 1.585 bit can be used to
encoding RNA secondary structure in dot-bracket nota-
tion. Note that in our implementation, the occurrence
probabilities of 4 bases and 3 characters will be computed
according to the particular RNA.

C. Informational complexity
The definition of informational complexity of RNA struc-
tural data underlies the concept of Kolmogorov complex-
ity. The Kolmogorov complexity K(•) of an object o is
defined by the length of the shortest program P for a Uni-
versal Turing Machine U that is needed to output o [18].

H P P H P Pi i i i1 2

1

4

2 2

1

3

= − = −∑ ∑log log’ ’and

Table 3: An example of compression

Step Stack Input buffer Production Rules of G2 Map to G1 Huffman code

1 # S (((...))).# S:LS S:LS 0
2 # S L (((...))).# L:(S) S:gSu 01111
3 # S) S ( (((...))).#
4 # S) S ((...))).# S:LS S:LS 0
5 # S) S L ((...))).# L:(S) S:uSa 1110
6 # S) S) S ( ((...))).#
7 # S) S) S (...))).# S:LS S:LS 0
8 # S) S) S L (...))).# L:(S) S:gSc 101
9 # S) S) S) S ( (...))).#
10 # S) S) S) S ...))).# S:LS S:LS 0
11 # S) S) S) S L ...))).# L: • L:a 00
12 # S) S) S) S . ...))).#
13 # S) S) S) S ..))).# S:LS S:LS 0
14 # S) S) S) S L ..))).# L: • L:g 010
15 # S) S) S) S . ..))).#
16 # S) S) S) S .))).# S:LS S:LS 0
17 # S) S) S) S L .))).# L: • L:c 1111
18 # S) S) S) S . .))).#
19 # S) S) S) S ))).# S:e S:e 1
20 # S) S) S) ))).#
21 # S) S) S )).# S:e S:e 1
22 # S) S) )).#
23 # S) S ).# S:e S:e 1
24 # S) ).#
25 # S .# S:LS S:LS 0
26 # S L .# L: • L:g 010
27 # S . .#
28 # S # S:e S:e 1
29 # #
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Intuitively, K(x) represents the minimal amount of infor-
mation required to generate × by an algorithm.

It is well known that there is a relationship between Kol-
mogorov complexity of sequences and Shannon informa-
tion theory [28]: the expected Kolmogorov complexity of
a sequence x is asymptotically close to the entropy of the
information source emitting x. However, Kolmogorov
complexity is non-computable in the Turing sense [18]
and in practical applications it is approximated by the
length of the compressed sequence calculated by a com-
pression algorithm [18].

In summary, the informational complexity of a given RNA
sequence with its secondary structure is approximated by
the compressed bit string using RNACompress. This defini-
tion is straightforward, yet with rigorously theoretical sup-
port. Later experiment will prove that our informational
complexity can reveal the relationship between structural
complexity and functional activity of RNA aptamers,
which could be useful in predicting the functional utility
of novel heteropolymers.

Experimental testing
Our experiments are performed in two parts: first the com-
pression ability of RNACompress is tested, and secondly
the results are applied to reveal the relationship between
binding activities and structural complexity of RNA
aptamers.

A. Compression ability
We have tested the compression ability of RNACompress
on 7 benchmark files that are access freely at our website.
These 7 data files are generated from different databases or
curated from literatures, covering diverse types of RNA
molecules with their secondary structures (computation-

ally predicted or experimental validate), including rRNA,
tRNA and small non-coding RNAs. Note that the com-
pression of one RNA sequence makes no sense from the
statistical perspective, since RNA sequence is generally
much shorter than the DNA sequences or the whole
genomes. In our test, the input file contains a set of RNAs.
Also the sequence identities in each input file are differ-
ent. The intention to use these extensive data files is two
folds: to test the behavior of our algorithm in compres-
sion of files with different sequence identities and to dem-
onstrate that our algorithm is universally efficient for
different type of RNAs. Detail descriptions of these 7 test
files are listed in Table 4.

We have compared the running time and compression
ratios (R1 and R2) of RNACompress with three other algo-
rithms: Gencompress, winrar and gzip. Gencompress (DNA-
Compress is the newest version of Gencompress) has
reported to be the top algorithm among all the other
sequence-specific compression algorithms, such as Bio-
compress and Cfact. The other two algorithms, winrar
(commercially) and gzip (based on Lempel-Ziv coding/
LZ77), are two classical text compression algorithm
widely used in Windows and Linux, respectively. Detail
comparisons between RNACompress and these three algo-
rithms are listed in Table 5.

It can be seen that RNACompress achieves the best com-
pression ratio with comparable speed among the other
algorithms, except for two tests file rRNA.txt and
miRNA.txt. For rRNA.txt, the sequence identities are nearly
90%. Gencompress and other two common compression
algorithms are efficient to capture the pattern repeats in
this file, thus achieve better results. For miRNA.txt, the
same reason also holds. Furthermore, microRNAs are gen-
erally short RNA molecules of about 21–23 nucleotides in

Table 4: Descriptions of benchmark data files

File Type Source Size Description Sequence identities

rRNA.txt rRNA 5S ribosomal RNA database [34] 10.8 KB 45 metazoan rRNA sequences High
tRNA.txt tRNA GtRDB-Genomics tRNA Database 2.06 KB 14 tRNA from various eukaryotes Medium

miRNA.txt microRNA miRBase [35] 328 KB 1855 mammalian miRNAs obtained from 
the latest release of miRBase.

High

evofold.txt Mixed ncRNA [36] 3.72 MB 47509 functional RNAs identified by 
Evofold, utilizing a comparative genomics 
method based on phylogenetic stochastic 

context-free grammars.

Low

asRNA.txt Mixed ncRNA [37] 148 KB 97 putative antisense ncRNAs identified 
from cDNA and EST databases for human 

and mouse.

Low

snoRNA.txt snoRNA snoRNA-LBME-db [38] 82.5 KB 411 human snoRNAs and scaRNAs 
selectedd from snoRNA-LBME-db (release 

3, August 2006)

Low

151Rfam.tx
t

Mixed ncRNA Rfam database [10] 40.7 KB 151 non-coding RNA structures 
downloaded from Rfam, as collected by Do 

et al. for CONTRAfold training [39]

Low
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length, thus their ability to be compressed are reduced
compared to longer sequences. Although efficient at
searching for approximate matches and reverse comple-
ments, the running time for Gencompress was found to be
unpractical long when the input file is large.

Essentially, our compression algorithm is based on gram-
mar inference and Huffman coding, and currently does
not consider the repeat patterns of the input file. This is
why RNACompress failed to achieve the better compres-
sion ratio when the sequence identities are high in a set of
RNAs. Our algorithm is, however, very robust to different
types of RNA and influenced little by the arrangement of
the input file. As for the three other algorithms, if we rear-
range the same set of RNAs in different order and artifi-
cially space out two highly identical sequences, their
compression ratios will decrease dramatically. In addi-
tion, there also exist other algorithms that are based on
different mechanisms besides searching repeat pattern,
one of these is PPM [29], which uses a specialized form of
compression based on Markov modeling. Unfortunately,
these algorithms are generally computation extensive in
their exchange for higher compressions.

B. Aptamer activity and complexity
To further demonstrate the applications of RNACompress,
we present a comparison of the structural complexities
and activities of RNA aptamers, which was initially con-
ducted by Carothers et al.[30]. In their study, a remarkable
correspondence between the affinities of eleven GTP-
binding RNAs and the intricacy of their secondary struc-
tures is found, i.e., aptamers with higher-affinity binding
to a target molecule are likely to have more structural
informational complexity. However, an efficient calcula-
tion of informational complexity was missing in their
study. The authors have pointed out the difficult and
ambiguity to determine the amount of information of
stems in RNA secondary structures and presents three
complicated methods to compute it. In our study, we have
applied our defined informational complexity to measure

the whole structural complexity of RNA aptamers, which
makes the calculation more straightforward. Moreover,
we have also calculated the Spearman rank correlation
coefficient (rs) of the aptamer informational complexity
onto the binding activities, as done by Carothers et al..
Our results are consistent with their study, which proves
that the informational complexity defined here is reason-
able when studying the relationship between functional
activities and structural complexity of RNA molecules
(Table 6). More detail information of eleven GTP-bind
RNAs is listed in Additional file 1.

Discussion
Generally speaking, if we treat both RNA sequences and
the representation of their secondary structures as text,
any text-specific compression algorithms can be used to
compress them. However, these compressions have no
biological meaning and disturb the original RNA structure
information, although they may achieve higher compres-
sion ratios. From a biological perspective, RNACompress is
more competitive than any others because it is not only an
efficient algorithm to compress RNAs, but also a nice
model to represent RNA data. These kinds of compression
and representation abilities are based on our grammar
inference, which is inherently suitable to capture the
structural essence of RNA.

In addition, there still exist several interesting issues in our
study, which needs to be discussed or investigated in the
future.

(1) currently we are focused on modeling two dominant
types of base pairs in RNA secondary structure: Watson-
Crick pairs and Wobble pairs. There also exists other
minor variations of base-pairing in nucleic acids, such as
Hoogsteen base pair (A-T) [31]. One challenge remain
problem is how to incorporate the modeling of these
minor base pairs and keep the compression ratios simul-
taneously.

Table 5: Comparisons of compression ratios and running times of RNACompress, Gencompress, winrar and gzip.

Test data RNACompress Gencompress Winrar Gzip

RT(s) CR (R1) CR (R2) RT (s) CR (R1) CR (R2) RT(s) CR (R1) CR (R2) RT(s) CR (R1) CR (R2)

rRNA.txt 0.16 5.234 1.133 0.55 8.103 1.753 0.13 10.689 2.312 0.11 10.294 2.227
tRNA.txt 0.08 5.215 1.100 1.12 4.581 0.964 0.11 4.054 0.853 0.06 4.355 0.917

miRNA.txt 0.24 5.248 1.126 316.23 9.171 1.969 0.32 7.847 1.684 0.27 6.176 1.326
evofold.txt 6.56 5.252 1.046 / / / 4.24 4.302 0.857 2.25 4.241 0.845
asRNA.txt 0.43 4.966 1.104 241.36 4.703 1.043 0.41 4.123 0.846 0.32 4.048 0.898
snoRNA.txt 0.52 5.073 1.089 71.29 4.778 1.025 0.67 4.324 0.928 0.61 4.113 0.883

151Rfam.txt 0.12 4.812 1.032 21.70 4.655 0.997 0.33 3.990 0.850 0.21 3.908 0.837

Tests are performed on Windows and Linux platforms with 512 RAM and 2.0 MHz CPU. (RT: Running Time; CR: Compression Ratio; '/' means that 
for evofold.txt, Gencompress becomes inapplicable because of the large size of this file.)
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(2) one promising way to improve the compression abil-
ity of RNACompress is to consider the repeat pattern of
RNA motifs in RNA secondary structure. This is different
from the repeat pattern identified in primary sequences,
as used in Gencompress etc. Also it will be helpful to
approximate the Kolmogorov complexity and evaluate
the informational complexity more accuracy. RNA motifs
are basic building blocks used repeatedly, and in various
combinations, to form different RNA types and define
their unique structural and functional properties. Cur-
rently many algorithms for RNA motif identifications
have been proposed [6,32,33]. However, these efforts
were moderately successfully in define simple RNA struc-
ture. A powerful algorithm to capture complex structural
domains or various non-canonical pairings in RNA motifs
is still needed.

(3) another application of compression RNA secondary
structure is that it is a great alignment-free tool for RNA
secondary structure comparison. A universal (dis)similar-
ity measure (USM) can be defined to measure the pair-
wise distance of RNA secondary structures based on the
compression, as we will demonstrate elsewhere (Qi Liu et
al., RNA secondary structure comparison based on com-
pression: a methodological study, manuscript in prepara-
tion).

Conclusion
In this article we have introduced a universal algorithm
for the compression of RNA secondary structure as well as
the evaluation of its informational complexity. We have
developed RNACompress, as a useful tool for academic

users. Extensive tests have shown that RNACompress is a
universally efficient algorithm for the compression of
RNA sequences with their secondary structures. RNACom-
press also serves as a good measurement of the informa-
tional complexity of RNA secondary structure, which can
be used to study the functional activities of RNA mole-
cules. Furthermore, future studies will show that our com-
pression algorithm can facilitate the comparisons of RNA
secondary structure and studying of non-coding RNA
structures, provides a new way to investigate RNA proper-
ties based on compression.

Availability and Requirements
Project name:

RNACompress: Grammar-based compression and infor-
mational complexity measurement of RNA secondary
structure

Project home page: http://www.wigs.zju.edu.cn/educa
tion/students/liuqi/RNACompress.html

Operating systems:

Windows 2000/XP and Linux

Programming language:

C/C++

Table 6: Spearman Correlation Coefficients (rs) of aptamer activity onto the informational complexity.

Aptamer Kd(nM)a Information content(bits)

Apt(A)b Apt(B)b Apt(C)b Our defined information complexity

9-4 9 ± 1 65.0 56.0 65.0 225
Class V 17 ± 4 54.5 44.5 54.5 221
10-10 30 ± 6 71.0 65.0 67.0 206
Class I 76 ± 3 45.0 41.0 45.0 136
10-59 250 ± 20 60.5 53.5 42.5 184
10-24 300 ± 50 50.0 44.0 44.0 186
9-12 300 ± 50 58.5 54.5 52.5 148
10-6 300 ± 100 71.0 65.0 67.0 186

Class II 400 ± 200 38.0 36.0 40.0 102
Class IV 900 ± 200 36.5 32.5 32.5 142
Class III 8000 ± 1000 43.5 38.5 41.5 129
rs of Kd 0.58 0.56 0.65 0.78
P value <0.050 <0.050 <0.025 <0.005

It can be seen that there is a positive correlation between the aptamer activity and the informational complexity. For more detail information of 
eleven GTP-bind RNAs, please refer the original paper [30] or the additional file 1.
* Kd: solution dissociation constant. (Measurement of the affinity activities of GTP-binding RNAs). The smaller the dissociation constant, the more 
tightly bound the ligand is, or the higher the affinity between ligand and protein. Three different methods for treating the stems were applied to 
calculate the aptamer information content [30]. These are indicated as Apt (A), Apt (B), and Apt(C).
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