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Abstract

Background: Although fold change is a commonly used criterion in quantitative proteomics for
differentiating regulated proteins, it does not provide an estimation of false positive and false
negative rates that is often desirable in a large-scale quantitative proteomic analysis. We explore
the possibility of applying the Significance Analysis of Microarray (SAM) method (PNAS 98:5116-
5121) to a differential proteomics problem of two samples with replicates. The quantitative
proteomic analysis was carried out with nanoliquid chromatography/linear iron trap-Fourier
transform mass spectrometry. The biological sample model included two Mycobacterium smegmatis
unlabeled cell cultures grown at pH 5 and pH 7. The objective was to compare the protein relative
abundance between the two unlabeled cell cultures, with an emphasis on significance analysis of
protein differential expression using the SAM method. Results using the SAM method are
compared with those obtained by fold change and the conventional t-test.

Results: We have applied the SAM method to solve the two-sample significance analysis problem
in liquid chromatography/mass spectrometry (LC/MS) based quantitative proteomics. We grew the
pH5 and pH7 unlabelled cell cultures in triplicate resulting in 6 biological replicates. Each biological
replicate was mixed with a common !5N-labeled reference culture cells for normalization prior to
SDS/PAGE fractionation and LC/MS analysis. For each biological replicate, one center SDS/PAGE
gel fraction was selected for triplicate LC/MS analysis. There were 121 proteins quantified in at least
5 of the 6 biological replicates. Of these 121 proteins, 106 were significant in differential expression
by the t-test (p < 0.05) based on peptide-level replicates, 54 were significant in differential
expression by SAM with A = 0.68 cutoff and false positive rate at 5%, and 29 were significant in
differential expression by the t-test (p < 0.05) based on protein-level replicates. The results indicate
that SAM appears to overcome the false positives one encounters using the peptide-based t-test
while allowing for identification of a greater number of differentially expressed proteins than the
protein-based t-test.

Conclusion: We demonstrate that the SAM method can be adapted for effective significance
analysis of proteomic data. It provides much richer information about the protein differential
expression profiles and is particularly useful in the estimation of false discovery rates and miss rates.
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Background

Fold change is commonly used in quantitative proteomic
analysis where proteins differing by more than an arbi-
trary cut-off value in abundance are considered to be dif-
ferentially expressed [1-5]. A fold change test is equivalent
to a global t-test assuming homogenous variance between
different proteins. Although it is a convenient and cost
effective way to evaluate protein expression level differ-
ences between two conditions, fold change alone is not a
statistical test that can indicate the level of confidence in
differential expression of proteins.

Rapid development of liquid chromatography-mass spec-
trometry (LC/MS) based proteomics has led to gradual
replacement of the traditional 2D gel approach by the LC/
MS approach. Accordingly, variation and quality control
of quantitation by LC/MS has been actively explored [6-
12]. The importance of significance analysis for biomarker
discovery has also been stressed [13]. Molina et al. simul-
taneously measured three states of Hela cells in response
to stimuli using SILAC labeling for quantitation [6]. Fold
changes were evaluated at protein and peptide level by
analysis of variance performed in the statistical program
R. The authors demonstrated the capability of detecting
1.8-fold change at a significance level of 95%. No signifi-
cance score was assigned to individual proteins, however.
Piening et al. proposed Mass Deviance, a quality control
metric, for assessing the accuracy of peptide detection in
Saccharomyces cerevisiae [7]. This approach was rigorous at
validating peptide identification in LC/MS but not yet
directly applicable for quantifying relative abundance.
Meng et al. used the differential mass spectrometry (dMS)
method for label-free LC/MS profiling, demonstrating
detection of peptides with a change as small as 1.5-fold
with ~20% relative errors in peptide relative abundance in
a processed plasma background [8]. Andreev et al. devel-
oped Q-MEND algorithm for label-free quantitation of
relative protein abundances across multiple complex E.
coli proteome samples, achieving 7% quantitation accu-
racy and mean precision of 15% [9]. Wang et al. reported
the algorithm Quoil for label-free quantitation measure-
ments across repeated LC/MS runs with Student's ¢-test
after applying the step-down adjustment of probability
threshold [14]. Most recently, reproducibility assessment
of differential quantitation by SILAC, ICAT, and label-free
methods was reported [11]. In this study, a ratio distribu-
tion analysis was applied to common peptides between
samples to remove outliers until a normal distribution
was obtained. Using the filtered common peptides, it was
assessed that 95% of the total common peptides have
intensities within a ~2-fold change for a pair of cultures of
T47D human breast cancer cells, with SILAC analysis hav-
ing the best summary statistics. These conclusions were
drawn from peptide-level quantitation in combination
with a ratio distribution analysis. Earlier efforts in statisti-
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cal and computational methods for quantitative proteom-
ics by LC/MS was reviewed by Listgarten and Emili [12].
These studies showed a great deal of efforts and progress
in statistical analysis of LC/MS data in proteomics. Cur-
rently, few have systematically assessed significance of
analysis at a systems level along with estimation of false
positive and negative rates.

In this work, we explore the use of the Significance Analy-
sis of Microarray (SAM) method [15] for analysis of a two-
sample significance problem in LC/MS quantitative pro-
teomics. We used Mycobacterium smegmatis cells grown at
pH 5 and pH 7 in unlabeled media as the two-sample
model. We also grew one !5N-labeled M. smegmatis cell
culture and used it as the internal standard to normalize
the protein abundance in the pH5 and pH7 unlabeled
cells by the popular *N/15N quantitation method [16].
Cell protein extracts were first fractionated by SDS/PAGE.
Then a high resolution nanoliquid chromatography/lin-
ear ion trap-Fourier transform mass spectrometry
(nanoLC/LTQ-FIMS) system was used for peptide separa-
tion and identification. The LC/MS data was further quan-
tified by the previously described algorithm [10]. We
report the results of quantifying the protein relative abun-
dance between the pH5 and pH7 unlabeled cells, with an
emphasis on significance analysis of protein differential
expression using the SAM method in comparison with
fold change and conventional t-test methods.

Results and Discussion

In this study, we report using the SAM method to solve the
two-sample significance analysis problem in LC/MS based
quantitative proteomics. We compare the SAM method
with the conventional fold change test and t-tests.

SAM was originally developed for microarray analysis by
Tusher et al. [15]. Development of this method was ini-
tially propelled by the need to resolve the issue of multi-
plicity of testing in conventional t-tests when a large
number of genes were studied simultaneously. As Tusher
et al. stated, "SAM identifies genes with statistically signif-
icant changes in expression by assimilating a set of gene
specific t-tests. Each gene is assigned a score on the basis
of its change in gene expression relative to the standard
deviation of repeated measurements for that gene. Genes
with scores greater than a threshold are deemed poten-
tially significant with an assigned g-value." SAM incorpo-
rated g-value as a measurement of the significance of a
gene based on the work of Storey [17]. Each time when
the threshold is adjusted, a false discovery rate is esti-
mated for the resulting set of genes with significant differ-
ential expression. Low-level data processing in the LC/MS
measurements is typically very different from that in DNA
microarray experiments. However, at the higher level of
protein differential expression determination, we treated
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the protein abundance data the same as the gene abun-
dance data and used the SAM method without modifica-
tion.

For statistical analysis in this work, the pH5 and pH7 M.
smegmatis cell cultures were grown in triplicate resulting in
total 6 biological replicates. We also grew a 15N-labeled M.
smegmatis culture and used it as the reference for normal-
izing the 6 unlabeled biological replicates. Each of the 6
unlabeled biological replicates was first mixed with the
15N-labeled reference. It was then processed for protein
quantitation by the widely used 14N/1>N relative abun-
dance measurement method [10,16]. After all 6 unlabeled
biological replicates were normalized to the >N-labeled
reference, they were analyzed either by fold change test, ¢-
test or the SAM method.

In the following sections, we discuss the experimental lay-
out of sample replicates, fold change analysis, random
fluctuation of measurements, conventional t-tests, SAM
analysis, and differentially expressed proteins.

Sample replicates

In DNA microarray experiments, arrays are often spotted
with gene probes in replicates. The typical practice is to
average the replicates for each probe before assessing the
differential expression of the gene. Since the geometrical
arrangement of gene probes on an array is known before
an experiment, the replicates for a gene can be known a
priori within an array and across multiple arrays. In pro-
teomics, assignment and cross-reference of peptides and
proteins across multiple LC/MS analysis is not as straight-
forward. In a typical LC/MS based proteomics experiment,
a protein is digested with an enzyme into multiple pep-
tides. The mixture of peptides from multiple proteins is
injected into a LC/MS instrument for separation and pep-
tide identification by MS/MS scan. Protein relative abun-
dance is assessed from the quantitation of one or more
peptides originating from the protein. This process is anal-
ogous to the quantitation of genes based on multiple gene
probes.

Contrary to DNA microarray experiments, one distinct
characteristic of LC/MS based quantitative proteomics is
that the number of peptides being quantified is usually
not known a priori. There are different reasons for this. For
example, if a peptide is highly hydrophobic or highly neg-
atively charged, the chance of identifying this peptide by
LC/MS is significantly reduced. There are also LC/MS
instrument related considerations. A data-dependent
acquisition algorithm is employed in most LC/MS instru-
ment methods for peptide identification [18]. Due to the
limited speed with which a mass spec can acquire MS/MS
spectra for peptide identification, only a limited number
of precursor ions with the highest intensities in one MS
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scan will be selected for MS/MS identification. Currently
the sampling rate of a typical LC/MS instrument can easily
be overwhelmed by the complexity of a protein sample.
Saturation of sampling a complex protein mixture
requires more than just a few replicate runs. For this rea-
son, a common way to increase the number of identified
and quantified peptides for a sample is to pool the pep-
tides identified by MS/MS from replicate runs of the same
sample [5].

Callister et al. [19] demonstrated an accurate mass and
time tag (AMT) approach to overcome the above men-
tioned limitation. In this approach, the LC/MS scanning
process is decoupled from the MS/MS peptide sequencing
process. This is done by first accumulating enough MS/MS
identification of peptides followed by high-throughput
LC/MS analysis. This powerful AMT approach skips the
rate limiting MS/MS step. It thus avoids the random sam-
pling effect of the MS/MS peptide identification process.
However, successful application of this approach relies
upon a database containing the AMTs accumulated from
multiple LC/MS/MS runs. This requires precise control of
the LC/MS/MS and LC/MS operation parameters to
ensure the reliability of AMTs.

Because the primary focus of this work was to compare
several statistical significance analysis methods, we opted
to take a straight-forward approach by only quantifying
those peptides with confident MS/MS identification.
These were the peptides assigned a probability of misiden-
tification smaller than 0.01 by the BioWorks software
based on a MS/MS spectrum database search. A probabil-
ity of 0.01 implies one misidentification out of 100 by
chance. A peptide may be identified at different charge
states typically ranging from +1 to +4. The most often
observed charge state is +2 or +3 in the nanoLC/LTQ-
FTMS system. BioWorks assigns a probability for a peptide
detected at each charge state. Accordingly, a peptide
detected at a particular charge state is called a peptide
charge state (PCS) [10].

In this study, we grew the pH5 and pH7 unlabelled cell
cultures in triplicate resulting in a total of 6 biological rep-
licates. Each biological replicate was mixed with the 15N-
labeled reference sample prior to SDS/PAGE fractionation
and LC/MS analysis. Each biological replicate was ana-
lyzed by nanoLC/LTQ-FTMS with triplicate runs. The
PCS's with p < 0.01 from the triplicate runs of a biological
replicate were combined for calculating the protein and
peptide relative abundance [10]. Statistical analysis of rel-
ative abundance between the pH5 and pH7 unlabelled
cells was performed for the proteins quantified in at least
5 of the 6 replicates. The 6 biological replicates were des-
ignated as pH5A, pH5B, pH5C, pH7A, pH7B, and pH7C
(Table 1). The average of the pH5 biological triplicates
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Table I: Sample names. The first number in parenthesis is the number of quantified proteins for the sample replicate name preceding
the two numbers in the parenthesis. The second number in the same parenthesis is the average number of PCS's quantified for a

protein in the same sample replicate. See main text for more details.

Cell sample Culture triplicates

in silico pooled replicate

Average of culture triplicates

pH5 pHS5A (119, I5)
pHSB (120, 14)
pH5C (121, 15)
pH7 pH7A (112, 14)
pH7B (110, 14)
pH7C (113, 13)

pH5p (174, 41)

pH7p (174, 31)

pH5av

pH7av

was named pH5av. Similarly, the average of the pH7 bio-
logical triplicates was named pH7av.

In addition, we pooled the PCS's from the pH5 biological
triplicates to calculate the protein relative abundance for
the in silico pooled replicate for the pH5 cells, which we
called pH5p. Similarly, we also pooled the PCS's from the
pH7 biological triplicates to calculate the protein relative
abundance for pH7p, the in silico pooled replicate for the
pH7 cells (Table 1).

The protein mixture of each biological replicate was frac-
tionated into 5 fractions by SDS/PAGE. Only the center
fraction was further processed for nanoLC/LTQ-FITMS
analysis. Although it was desirable to analyze all the frac-
tions in triplicate LC/MS analysis, we chose to only ana-
lyze the center fraction for each biological replicate for
two reasons. First, focusing on one common fraction for
all 6 biological replicates is sufficient for demonstrating
the principle of statistical analysis we investigated in this
work. Second, we were conservative about the cost of ana-
lyzing all 5 fractions for all 6 replicates because it would
have required 90 LC/MS runs lasting for more than 135
hrs. This estimation was based on 5 SDS/PAGE fractions
per biological replicate, triplicate runs per SDS/PAGE frac-
tion, and 90 min per run (see Methods).

With only the center fraction analyzed, there were 121
proteins quantified in at least 5 of the 6 biological repli-
cates of the pH5 and pH7 samples (Table 1). Ninety were
quantified in all 6 replicates, and 31 in 5 replicates. Figure
1a shows the CV boxplots for these proteins in the 6 bio-
logical replicates and the 2 in silico pooled replicates.
Meanwhile, there were 174 proteins found in common
between pH5p and pH7p. The CV boxplots for these 174
proteins are shown in Figure 1b. The complete set of pro-
tein and peptide data for statistical significance analysis is
summarized in Table 2 (see Additional file 1). Table 2
shows the protein relative abundance, standard deviation,
number of unique peptides and number of PCS's for each
protein in the sample replicates pH5A, pH5B, pH5C,
pH7A, pH7B, pH7C, pH5p, and pH7p. Results of the fold

change test, the 2 t-tests, and the SAM analysis to be
described in a later section are shown to the right of Table
2.

Figure 1 indicates that more than 75% of proteins in every
sample replicate have CV less than 30%. The mean CV
and median CV for all sample replicates was less than
21% and 15%, respectively. It was noticed that the CV
summary statistics were improved only slightly for the
121 proteins in Figure 1a compared to the 174 proteins in
Figure 1b. The average of the average CV's for the biologi-
cal triplicates was 18 + 2% for the pH5 sample, and 18 +
3% for the pH7 sample. For the 174 proteins common
between pH5p and pH7p, the average CV was 19% and
21% for pH5p and pH7p, respectively. These results indi-
cate that the sample replicates have consistent CV sum-
mary statistics. They are suitable for use in subsequent
analysis to compare several significance analysis methods.

Fold change analysis

Since pH5p and pH7p represent the average of both ana-
lytical and biological replicates for the pH5 and pH7 unla-
beled culture samples respectively, we examine the
number of differentially expressed proteins between the
two samples by the fold change test. Within this context,
fold change refers to the ratio of relative abundance of a
protein between the pH5 and pH7 unlabeled samples. It
has a value greater than or equal to 1. This definition is
consistent with that of the SAM.

Based on the simple 2- and 3-fold change tests, 55 and 29
proteins were respectively found to be differentially
expressed between pH5p and pH7p (Table 2). As dis-
cussed earlier, the fold change threshold alone is not a sta-
tistical test that can indicate the level of confidence about
differentially expressed proteins. It does not reveal the
random fluctuation inherent in protein differential
expression levels. It would be of interest to test the level of
such random fluctuation. As described below, we took a
simple approach to test if random fluctuation was con-
fined within a 2- or even 3-fold change boundary.
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CV summary statistics. Boxplots displaying the summary statistics of the coefficient of variance (CV) of protein relative
abundances for the pH5 culture triplicates (pH5A, pH5B, and pH5C), the pH7 culture triplicates (pH7A, pH7B, and pH7C), and
the in silico pooled replicates (pH5p and pH7p). A boxplot summarizes the minimum, 25 percentile, 50 percentile, 75 percen-
tile, and maximum CV's of a sample. a) Boxplots are plotted for the 174 proteins quantified between pH5p and pH7p. These
174 proteins include all those proteins quantified in pH5A(159), pH5B(159), pH5C(161), pH7A(131), pH7B(124), and
pH7C(134). The numbers in parenthesis indicate the number of protein in a sample. b) Boxplots are plotted for the 121 pro-
teins quantified in at least 5 of the 6 replicates of the pH5 and pH7 culture samples. The diamond dots indicate the mean CV's.
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Random fluctuation

To test random fluctuation, the number of quantified
PCS's of a protein was plotted against the log ratio
between the average of relative abundance of its biological
triplicates (A,,, representing either A5, OF Aypy7,,) and
the relative abundance of its in silico pooled replicate (A,
representing either A5, or A,yy7,), as shown in Figure 2.
In addition, the histogram for each sample was also plot-
ted based on protein number and log,(A,,/A,). We rea-
soned that pH5av versus pH5p or pH7av versus pH7p
represents a form of permutation for the biological tripli-
cates of the pH5 or pH7 sample. The distribution of
log,(A,/Ap), as summarized by the histograms, should
therefore reveal some random errors in protein relative
abundance quantitation. We chose the number of PCS's
for plotting against log,(A,,/A,,) because it was interesting
to examine the effect on random errors.
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From Figure 2, it was noted that most of the proteins clus-
tered within 1.5 fold change, or + 0.585 on the log base 2
scale. The 95% interval was -0.52 to 0.48 for the pH5 sam-
ple (red trace) and -0.53 to 0.80 for the pH7 sample (blue
trace). There were 3 proteins in the pH5 sample and 4 in
the pH7 sample falling outside the 2-fold boundary.
There was 1 protein in the pH5 sample and 1 in the pH7
sample falling outside the 3-fold boundary. There were 3
proteins in the pH5 sample and 2 in the pH7 sample fall-
ing within the range of 2- to 3-fold change. There were 2
proteins in the pH5 sample and 6 in the pH7 sample fall-
ing within 1.5- to 2-fold change range.

These results suggested that the random errors could occur
outside a 2- or even 3-fold change boundary. In addition,
the random errors shown in Figure 2 were not limited to
those proteins that had a very low number (< 5) of PCS's,
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Figure 2

Random fluctuation. The number of quantified PCS's of a protein is plotted against the log ratio of the average relative abun-
dance of its biological triplicates (A,,, representing either As,, or A,p7,,) over the relative abundance of its in silico pooled
replicate (A, representing either A,;s, or A7) for the pH5 and pH7 samples respectively. The red diamonds and the small
red dots represent the pH5 sample. The blue diamonds and the small blue dots represent the pH7 sample. The diamond sym-
bols represent the average number of PCS's of a protein of the biological triplicates. The small dots represent the number of
total PCS's of a protein in the in silico pooled replicates. The histograms based on the number of quantified proteins are also
plotted, with the red trace representing the pH5 sample and the blue trace representing the pH7 sample.
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even though the trend was that random errors mostly
occurred below 25 PCS's for pH5av and pH7av or below
70 for pH5p and pH7p.

To evaluate the influence of random fluctuation on the
confidence of measured protein differential expression,
we performed 2 t-tests as described in the following. One
t-test was based on peptide-level replicates. The other was
based on protein-level replicates.

t-tests

In general, a t-test is used to evaluate whether the means
of control and experiment groups are statistically differ-
ent. The t-value is the ratio between the difference of
group means and the variability of groups. The standard
deviation of the ¢ distribution is determined by the
number of degrees of freedom derived from the sample
sizes. The number of degrees of freedom need not be the
same for the control and the experiment groups. For the
same z score, a falling sample size will make the ¢ distribu-
tion take on an increasingly larger standard deviation.
Increased standard deviation of the ¢t distribution has the
tendency to incur a higher false negative rate. On the other
hand, a very large number of degrees of freedom may
allow a higher false positive rate. In this analysis, the
number of degrees of freedom may be very high for pH5p
and pH7p for some proteins when it is based on the
number of PCS's detected for each protein, i.e., peptide-
level replicates. However, the number of degrees of free-
dom is no more than 3 when protein-level replicates are
used. In either case, the t-tests do not require equal
number of degrees of freedom between control and exper-
iment.

For simplicity in describing proteins found to have statis-
tically significant differential expression, the term "signif-
icant protein" is used hereafter with the meaning of
"protein with significant differential expression".

t-test with peptide-level replicates

To test if the observed differential expression of these pro-
teins was significant, a two-sample t-test assuming equal
variances was performed on the 174 proteins using pep-
tide-level relative abundance information. We adopted
the t-test which was previously demonstrated by Wu et al.
[20] in quantitative proteomic analysis of mammalian
organisms. To compute the two-sample t-test, a pooled
standard deviation was first calculated from the standard
deviations of the protein relative abundance of the 2 sam-
ples. The pooled standard deviation was between the 2
standard deviations with greater weight given to the
standard deviation of the sample with larger number of
PCS's detected. The mathematical formula for the t-test
was fully described by Wu et al. [20]. Since all of the PCS's
were pooled to calculate the protein relative abundance in
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pH5p and pH7p, there was only one protein relative
abundance value for each protein in pH5p or pH7p. The
t-test for comparing pH5p and pH7p was thus performed
using peptide-level replicates without protein-level repli-
cates. This means that the number of degrees of freedom
for measuring a protein was represented by multiple PCS
measurements for that protein. This t-test with peptide-
level replicates is different from that described later with
protein-level replicates.

We used the volcano plot in Figure 3 to visualize the pro-
teins categorized as up- or down-regulated based on the
simple 2- and 3-fold change thresholds, and to display
their statistical significance based on the t-test with pep-
tide-level replicates. In the volcano plot, the t-test p value
was plotted against the relative abundance ratio between
pH5p and pH7p on a logarithmic scale. The t-test rejected
one of the proteins found upregulated in pH5p with
greater than 3-fold change (the green dot with an arrow).
This resulted in a total of 53 proteins having greater than
2-fold change with t-test significance (p < 0.05). Of these
53 proteins, 25 had fold change between 2 and 3 (pink
dots), and 28 had greater than a 3-fold change (red dots).
Of the remaining 120 proteins that had less than a 2-fold
change, 32 were not significant (p >= 0.05, green dots),
and 88 were significant (p < 0.05, black dots).

t-test with protein-level replicates

The above t-test with peptide-level replicates utilized the
PCS's of a protein quantified in pH5p and pH7p. Each
PCS should be an independent event for a protein. This
assumption is complicated by several factors. In LC/MS
based proteomic experiments, detection of a PCS depends
not only on its concentration but also on the composition
of the peptide mixture. Ion suppression effect in electro-
spray ionization, space charge effect in FT mass spectrom-
eter, LC column separation efficiency for complex
samples, and data-dependant acquisition, etc.,, can
directly or indirectly affect the quantitation of a PCS.
Therefore, a conventional t-test performed on such data
requires cautious interpretation.

For comparison, we performed the second t-test at a pro-
tein level. This means that only protein relative abun-
dance values were used without referring to the PCS
information as for the t-test shown in Figure 3. Basically,
pH5A, pH5B, and pH5C represented the triplicates for the
pH5 sample. pH7A, pH7B, and pH7C represent the tripli-
cates for the pH7 sample. Using the 2 sets of protein-level
triplicates, we calculated their respective average pH5av
and pH7av. To perform the t-test, the 2 sets of protein-
level replicates were input as two arrays in the Microsoft
Excel TTEST function with option selection of two-sample
equal variance, two-tailed, and type of homoscedastic.
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Figure 3

Volcano plot for pH5p and pH7p. Volcano plot for the in silico pooled replicates pH5p and pH7p. The green dots represent
the proteins found insignificant (p >= 0.05) by the t-test based upon the protein relative abundances of pH5p and pH7p and the
number of PCS's used for quantifying each protein. The black, pink, and red dots represent the significant proteins with fold

change of less or equal to 2, greater than 2 but lees or equal to

3, and greater than 3 respectively. The arrow indicates the pro-

tein with 3-fold change but found not significant by the t-test. See text for more details.

Figure 4 shows the volcano plot for the protein relative
abundance ratios between the pH5 and pH7 samples
based on the triplicate protein relative abundances for
each sample. Compared to Figure 3, one apparent differ-
ence is that a smaller number of significant proteins
(55%) had fold change less than 1.5 (0.585 on log base 2
scale). The percentage of significant proteins was also
reduced to 24% in Figure 4 compared to 81% in Figure 3.
Of the 14 proteins with greater than 3-fold change, 9
(69%) were tested significant, compared to 28 out of 29
(97%) in Figure 3.

There is an apparent discrepancy between the t-test results
shown in Figure 3 and Figure 4 based on respective pep-
tide- and protein-level information. This suggests that we
need a third method to examine whether the two conven-

tional t-test methods are overly aggressive or conservative.
To do so, we need to assess not only the individual protein
significance but also the false positive and false negative
rates for the group of proteins under significance testing.
A similar issue has been extensively investigated in DNA
microarray data analysis. SAM is one of the widely
accepted methods for such analysis in DNA microarray. In
the following, we explore the applicability of the SAM
method towards our proteomics problem.

Significance analysis with SAM

As described earlier, SAM is a statistical technique origi-
nally developed for finding genes with significant differ-
ential expression in a set of microarray experiments [21].
SAM is capable of taking input from different response
variables. For our proteomics problem of two-sample sig-
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Volcano plot for pH5av and pH7av. The blue diamonds, pink squares, and red triangles represent proteins with fold
change of less or equal to 2, greater than 2 but lees or equal to 3, and greater than 3 respectively. The x marks indicate that a
protein is found significant (p < 0.05) by the t-test based on triplicate protein relative abundances without referring to peptide

information. See text for more details.

nificance analysis between the pH5 and pH?7 cell cultures,
the response variable is equivalent to a grouping of
untreated (pH7) and treated (pH5) samples (unpaired).
For each sample, at least two replicates are required by
SAM. Using the protein-level replicates from the pH5 and
pH7 samples, SAM calculates observed and expected
scores for each protein. The observed score represents the
relative difference of a protein between the pH5 and pH7
samples. The expected score represents the random fluctu-
ation when there is no difference between the two sam-
ples. When the difference between the observed and
expected scores is beyond a certain threshold, the protein
is called significant in differential expression.

To perform the SAM analysis, the protein relative abun-
dance data from the pH5 and pH7 biological triplicate
samples were input as two-class unpaired response type
into SAM, with 600 permutations, t-statistic test, 1% fixed
percentile for estimation of sO factor for denominator,

and K-nearest neighbors imputer as the imputation
engine with 5 neighbors for filling missing values. Due to
the space limit here, we will not repeat further detail
description of the SAM software and its operation. The
users guide and technical documents for SAM are readily
available elsewhere by Chu et al. [21]. We will instead
focus on the result output and interpretation of the
method.

Figure 5 shows the results from the SAM analysis. The
SAM plotsheets are presented with slight graphical modi-
fication, with the A value and fold change inserted into
the upper right corner for convenience of comparison.
Each SAM plotsheet contains all the proteins plotted by
their observed scores and expected scores.

The observed score is the relative difference [15] in pro-
tein expression. It is calculated by dividing the difference
between protein relative abundances in the pH5 and pH7
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SAM plotsheet outputs. SAM plotsheet outputs under the four sets of criteria: a) A = 0.68, fc = |; b) A = 0.68, fc = 2;c) A
= 0.68, fc = 3; d) A = 0, fc = 3, which are indicated at the upper right corner of each plotsheet. The red, green, and black dots
represent upregulated, downregulated, and insignificant proteins respectively. The upper and lower 45° degree lines indicate
the A threshold boundaries. Proteins with A = 0 would fall on the 45° line through the origin. The number of significant pro-
teins, median number of false positives, and false discovery rate are indicated at the upper left corner of each plotsheet.

samples by the pooled standard error of repeated meas-
urements of that protein in the pH5 and pH7 samples
[15]. The expected score is calculated using the large set of
permutations of protein relative abundance data of the 6
biological replicates from the pH5 and pH7 samples.

The observed score provides a control over random fluc-
tuation, while the expected score allows assignment of sta-
tistical significance. The correlation of these two scores is
used for identifying proteins with potentially significant
differential expression as shown in Figure 5. If a protein
has absolutely no differential expression, the observed rel-
ative difference would be the same as the random fluctu-
ation that is represented by the expected score. The data
point of such a protein in the SAM plotsheet would fall on
the 45° line through the origin. Data points representing

differentially expressed proteins will deviate from this 45 °
line. The point displacement of a protein from the 45°
line through the origin is quantitatively measured by a A
value in SAM. Proteins with A values beyond a certain
threshold are called significant. The 45° upper and lower
A lines indicate the boundary defined by a selected A
value.

SAM provides an estimation of false discovery rate (FDR)
for the proteins called significant by each A value. A A
value can be set together with a fold change threshold.
FDR is calculated from the average number of falsely sig-
nificant proteins in all the permutations divided by the
number of proteins called significant above that A thresh-
old.
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Figure 5a presents the results with A = 0.68. This A value
results in 6.23 estimated false positives out of the 121 pro-
teins under testing, equivalent to a 5.1% false positive
rate. This is the same as the nominal false positive rate
defined by a p < 0.05 threshold in a conventional t-test.
Fifty-four proteins are called significant with a FDR of
11.54%, with 22 upregulated and 32 downregulated in
the pH5 versus the pH7 sample.

Combination of A = 0.68 with 2-fold change reduces the
number of significant proteins to 21 with a FDR of 2.28%
(Figure 5b). When A = 0.68 is used together with 3-fold
change, the number of significant proteins are further
reduced to 12, with a FDR of 0 (Figure 5c). When the 3-
fold change criterion is used alone, there are 13 proteins
called significant with a FDR of 7.37% (Figure 5d). The
13th protein (MSMEG4520) increases the total significant
proteins determined by SAM using the four different crite-
ria to 55, as shown in Figure 5. For comparison, Table 3
lists these 55 proteins with their analysis output by SAM
and the 2 conventional t-tests (see Additional file 2).

Of the 55 proteins, 26 were found significant by the t-test
(p < 0.05) performed on the triplicates of the pH5 and
pH7 samples (Figure 4), and all were found significant by
the t-test (p < 0.05) performed on the in silico pooled rep-
licates of the pH5 and pH7 samples (Table 2). Of the 13
proteins with greater than 3-fold change in Table 3, only
9 were found significant by the t-test shown in Figure 4. It
is noted that there are 14 proteins with greater than 3-fold
change shown in Figure 4. This extra 14t protein
(MSMEG2382) with greater than 3-fold change in Figure
4 has a significant fold change of 2.8 calculated by SAM
after imputation. This protein was not found significant
under the t-test in Figure 4, even though it showed a fold
change of 3.1 in Figure 4. Of the 121 proteins analyzed by
SAM, 106 are called significant by the t-test (p < 0.05)
shown in Figure 3, whereas only 54 are called significant
by SAM with A = 0.68 cutoff which controls false positive
rate at 5% and FDR at 13.1%. Therefore, the t-test for the
in silico pooled replicates pH5p and pH7p shown in Fig-
ure 3 is overly aggressive while the t-test in Figure 4
appears to be overly conservative. These results indicate
that SAM provides more reasonable results. The resam-
pling approach used by SAM appears to overcome the
false positives one encounters using the peptide-based t-
test while allowing for identification of a greater number
of differentially expressed proteins than the protein-based
t-test.

Most importantly, for each significant protein, SAM
assigns a g-value that represents the minimum FDR of the
list of proteins having A values and/or fold changes equal
to or greater than that at which the protein is called signif-
icant in differential expression. Therefore, g-value quanti-
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tatively measures how significantly the protein is
differentially expressed. This is the lowest FDR at which
the protein is called significant [17,21]. As further
explained by Chu et al. [21], it is like the familiar 'p-value'
but adapted to the analysis of a large number of genes. In
other words, it is the p-value at which proteins with A val-
ues and/or fold changes smaller than the significant
threshold are actually differentially expressed. The g-val-
ues for proteins called significant under different A and/or
fold change criteria are presented in Table 3 in compari-
son with conventional ¢-tests.

Thirty-four (63%) of the 54 proteins called significant
with the A = 0.68 threshold have fold change between 1.2
and 2.0. Of these 34 proteins, 22 (65%) have a g-value
greater than 5%. For the 20 (37%) proteins with greater
than 2-fold change, 3 (15%) have a g-value greater than
5% (Table 3). This illustrates that g-value properly pre-
dicts the significance of protein differential expression.
While conventional t-tests provide an estimation of prob-
ability for individual proteins, the distribution of errors is
not known.

Combination of A = 0.68 and 2-fold change results in 21
significant proteins, of which 15 have a g-value of 0 and 6
have a g-value between 2.3 and 3.0. Combination of A =
0.68 and 3-fold change results in 12 significant proteins
all of which have a g-value of 0. Using the 3-fold change
criterion alone generates 13 significant proteins that
include the 12 proteins called significant by A = 0.68 and
3-fold change. The 13th additional protein (MSMEG4520)
has a g-value of 7.4%. The other 12 proteins all have a g-
value of 0. SAM predicts that 1 out of the 13 proteins (13
x 7.4%=1) would be a false positive. Since MSMEG4520
has the lowest observed score d = 1.2 and a g-value of
7.4%, by definition, MSMEG4520 is the one most likely
to be falsely called significant by the 3-fold change crite-
rion. The t-test performed in Figure 3 identifies this pro-
tein as significant with a p value of 7.2 x e which is not
the lowest among the proteins with greater than 3-fold
change (Table 3). MSMEG4520 was originally annotated
as nitrite reductase (NirA), but is recently re-annotated as
sulfite reductase (SirA) [22]. SirA is essential for growth of
mycobacteria on sulfite or sulfate as the sole sulfur source.
It does not appear to have an apparent role in acid stress
response.

SAM also generates a miss rate table for each A and/or fold
change threshold. The miss rate is equivalent to a false
negative rate for the proteins that are between specified
score cut points and do not make the list of significant
proteins. The contents of the miss rate tables for the four
conditions shown in Figure 5 are presented graphically in
Figure 6. The general feature is that the proteins in the
0.25-0.75 quantile range tend to have the lower miss rate,
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and the proteins at the two tails tend to have a higher miss
rate. This is totally as expected. Comparison of panels a
and b does not reveal apparent difference in the overall
miss rates, suggesting that a combination of A = 0.68 and
2-fold change can reduce FDR without increasing miss
rates compared to either A = 0.68 or 2-fold change alone.
Thus, this combination is a more optimum criterion.
Panel c shows increase in miss rates. This is expected when
the 3-fold change threshold is applied in combination
with A = 0.68. When only the 3-fold change threshold is
used, the overall miss rate decreases (Panel d). The miss
rate for the upregulated proteins decreases more than
those for the downregulated ones. This suggests the 3-fold
change threshold does not work equally for the up- and
down-regulated proteins. This may be because fold
change cutoff alone assumes a normal distribution, while
SAM does not impose this restriction. Asymmetrical cutoff
is preferred because the observed scores for up- and down-
regulated proteins may behave differently in some biolog-
ical experiments [15]. The samples analyzed in this study
appear to be such a case.

Differentially expressed proteins

By the 2-fold cutoff and FDR of 2.28% with A = 0.70 (Fig-
ure 5b), SAM found 9 induced and 12 repressed proteins
in the pH5 versus the pH7 samples (Table 3). There were
more repressed than induced proteins. This trend was
similar to that observed in a microarray study of 15 min
acid shocked M. tuberculosis by Fisher et al. [23], in which
20 genes were found induced while 58 were found
repressed by SAM with a 1.5 fold cutoff and 2.86% FDR.
Similarly, more genes were also repressed than induced
when Shewanella oneidensis was exposed to acidic pH [24].

Of the 9 induced proteins, 2 (MSMEG1600 and
MSMEG5766) are involved in purine ribonucleotide bio-
synthesis, 3 (MSMEGO0772, MSMEG1024, and
MSMEG5516) in energy metabolism, 2 (MSMEGO0366
and MSMEG5709) in fatty acid and phospholipid degra-
dation, 1 (MSMEG2382) in glutamyl-tRNA aminoacyla-
tion, and 1 (MSMEG4283) in protein degradation.
Inosine-5-monophosphate (IMP) dehydrogenase
(MSMEG1600;GuaB) is an important enzyme involved in
guanine nucleotide synthesis, catalyzing the oxidation of
IMP to xanthosine 5'-monophosphate with the concomi-
tant reduction of NAD to NADH. The enzyme was identi-
fied as a DNA binding protein [25]. It has been reported
that protein GuaB was induced by acid in E. coli K-12 [26],
consistent with our result here that GuaB was induced in
M. smegmatis grown at pH 5.

Genome analysis of mycobacteria has revealed an array of
genes involved in lipid metabolism [27]. It has been sug-
gested that mycobacteria grown in vivo are largely lipolytic
rather than lipogenic due to the variety and quantity of
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lipids available within mammalian cells and the tubercle
[28]. The acidic growth condition probably triggers induc-
tion of fatty acid degradation related proteins such as
MSMEG0366 and MSMEG5709, even though there was
no fatty acid supplied in the growth media for M. smegma-
tis in this study.

Cytosolic protein degradation is central to regulating var-
ious aspects of cell biology, including stress response [29].
Proteins targeted for degradation are unfolded and
cleaved to release large peptides in an ATP-dependant
manner. These peptides are further cleaved or degraded by
endopeptidases such as aminopeptidases in an ATP-inde-
pendent manner. This general scheme of cytosolic protein
degradation is conserved in all organisms. While most of
the enzymes involved in the upstream ATP-dependant
proteolysis are more organism-specific, the enzymes
involved in the downstream ATP-independent proteoly-
sis, including leucine aminopeptidase (PepA), are present
in most organisms. Induction of cytosol aminopeptidase
(MSMEG4283;PepA) in pH5 grown M. smegmatis is con-
sistent with the putative function of PepA in stress
response.

Of the 12 repressed proteins, 2 (MSMEG3082 and
MSMEG3837) have roles in biosynthesis of cofactors,
prosthetic groups, and carriers. One (MSMEG3166) is an
enzyme involved in central intermediary metabolism. The
remaining 9 proteins are involved in energy metabolism
including the ATP synthase F1 Dbeta subunit
(MSMEG4921;AtpD). Decrease in ATP synthesis and
downshift of metabolism is commonly observed in cells
under stressful conditions.

Schnappinger et al. used SAM as the significance analysis
program for transcriptional analysis of adaptation by M.
tuberculosis in phagosomal environment [30]. The results
indicated that all the seven ATP synthase subunit genes
(atpBEFHAGD) were repressed for intraphagosomal M.
tuberculosis, consistent with the stressful condition within
phagosomes. Similarly, in a gene expression analysis of
Corynebacterium glutamicum in response to acid adaptation
at pH 5.7, the seven F F;-type ATP synthase subunits
(NCgl1159-1165) were repressed [31]. In our recent study
of protein turnover in M. smegmatis [32], AtpD was found
to have lower protein turnover when logarithmically
growing cells were shifted to acidic (pH5) or low iron
medium, suggesting downregulation of AtpD under both
stress conditions. This result further supports our finding
here that AtpD was repressed in pH5 grown M. smegmatis
cells. Since only 1 of the 5 SDS/PAGE fractions was ana-
lyzed in this study, it is reasonable to expect that other
ATP synthase subunits could be found repressed as well if
all the SDS/PAGE fractions were analyzed [32]. This
expectation is based on the transcriptional analysis of M.
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tuberculosis and C. glutamicum under stress [30,31], as well
as our work on protein turnover analysis of M. smegmatis
in which three detected ATP synthase subunits
(MSMEG4920, MSMEG4921, and MSMEG4926) had
lower protein turnover when the M. smegmatis cells
encountered an acidic or low iron condition [32].

Conclusion

We have shown that the SAM method for DNA microarray
data analysis can be adapted for significance analysis in
LC/MS based quantitative proteomics. SAM assigns a sig-
nificance value, a false discovery rate, and a miss rate for
differential expression of individual proteins and groups
called significant or insignificant. Such information is not
readily available by conventional ¢-test or fold change test
alone. The SAM method provides richer information and
is more adaptive to different biological experiments that
may have asymmetrical distribution of differential pro-
tein expression profiles.

One limitation of applying the SAM method for quantita-
tive proteomics is that it requires sample replicates. Such
data sets require more effort to obtain them in proteomics
than in microarray analysis due to the limited MS/MS
sampling speed in LC/MS analysis. In this work, we per-
formed multiple runs for each biological replicate to cover
as many proteins as possible so that enough proteins were
commonly quantified between replicates. In on-going
work, we will incorporate the cross-reference method that
has already been developed by other research groups to
align peptides between runs based on accurate mass and
elution time information [6,8,9,19]. This will allow a pep-
tide identified by MS/MS scan in one run to also be quan-
tified in another run, even if the peptide is missed by MS/
MS scan in the other run. Implementation of this cross-
reference method will also make it possible to perform
time course study using SAM [21]. Storey et al. showed
that "an actual time course analysis offers a sizable
increase in statistical power over a static design analysis"
[33]. Measuring differential expression over time with sin-
gle sampling at each time point will likely be a more sen-
sitive study design than a typical static design even if
replicates are sampled at the single time point. Once the
issue of protein cross-reference between samples is
addressed for quantitation of LC/MS data, it is more desir-
able to perform a time course study for quantitative pro-
teomics than a single time point design with replicates.
SAM is a suitable statistical analysis software for such a
time course study [33].

Methods

Chemicals and bacterial strain

Dextrose, Tween 80, citric acid, biotin, pyridoxine, NaCl,
Na,HPO,, KH,PO,, MgSO,-6H,0, CuSO,-5H,0,
ZnSO, - 6H,0, CaCl, 2H,0, ferric ammonium citrate,
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ammonium bicarbonate, and acetonitrile were purchased
at certified ACS or reagent grade from Fisher Scientific
(Pittsburgh, PA). 7H9 broth base and 99At%
(**NH,),SO, were purchased from Sigma (St. Louis, MO).
At% denotes atomic percent. Sequencing grade trypsin
was obtained from Promega (Madison, WI). M. smegmatis
strain mc2 155 was obtained from the American Type Cul-
ture Collection (ATCC; Rockville, Md). BCA Protein Assay
kit was obtained from Pierce (Rockford, IL).

Cell culturing

Two unlabeled (i.e. “N labeled) M. smegmatis culture
samples were grown for study, one at pH 5 and the other
at pH 7. Each culture sample was grown in triplicate and
harvested at approximately the same OD during the expo-
nential growth phase. During exponential growth, the
cells are at the same physiological state so that the only
difference is the pH value of the cultures. It is more impor-
tant to ensure that cells are collected in the exponential
phase rather than at the same OD [34] because cell cul-
tures under different stresses may grow to different maxi-
mum OD. For quantitative proteomic analysis by isotope
ratios, one single 15N labeled culture was grown as the
common reference for all the replicates of the pH5 and
pH7 culture samples. Since this 1°N labeled culture was
used as the reference for comparing the 4N labeled pH5
and pH7 cultures, we chose to collect this culture at OD
1.1 in the late exponential phase for a high cell yield.

The medium for growing the unlabeled cells was prepared
with Sigma 7H9 base plus 0.05% Tween80 and 0.2% glu-
cose. The medium pH was adjusted to 7.0 or 5.0 by titrat-
ing with 1 M sodium hydroxide or 2 M hydrochloric acid.
The six unlabeled culture replicates were grown at 100 ml
in loosely capped 250-ml nephelo culture flasks under
shaking at 37°C. Growth was monitored by measuring
turbidity in a Spec20 spectrometer (Thermo Fisher Scien-
tific, Waltham, MA) at 600 nm. The triplicates of the pH5
culture were collected at OD 0.71, 0.69, and 0.67 and
named pH5A, pH5B, and pH5C respectively. Similarly,
the triplicates of the pH7 culture were sampled at OD
0.77, 0.74, and 0.76 and named pH7A, pH7B, and pH7C
respectively. Only 30 ml from each culture was collected,
allowing the rest of the culture to continue to grow until
stationary phase for recording the complete growth
curves.

The medium for growing 15N labeled cells consisted of (g/
L) 99At% (1°NH,),S0,: 0.5; glucose: 2; Tween 80: 0.5; cit-
ric acid: 0.094; biotin: 0.0005; pyridoxine: 0.001; NaCl:
0.1; Na,HPO,: 2.5; KH,PO,: 1; MgSO,-6H,0O: 0.1;
CuSO,-5H,0:  0.001;  ZnSO,-6H,0:  0.002;
CaCl,-2H,0: 0.0007; ferric ammonium citrate: 0.04;
pH5.0. The single 15N labeled cell culture was grown at 50
ml in a loosely capped 250-ml nephelo culture flask under
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shaking at 37°C. Thirty milliliter of the 15N labeled refer-
ence culture was collected at OD 1.1 in the late-log phase.
All the collected 30 ml cultures were centrifuged at 4000
rpm in a 5810R refrigerated Eppendorf centrifuge (Fisher
Scientific, Pittsburgh, PA) for 10 min at 4°C to collect the
cell pellets.

Sample preparation

Proteins were extracted from each cell pellet by bead beat-
ing using a protein extraction buffer that consisted of 100
mM ammonium bicarbonate. A protease inhibitor cock-
tail (Pierce) was added at 1x as recommended by manu-
facturer into the mixtures of cell pellet and extraction
buffer during protein extraction. The mixtures were vigor-
ously agitated for total 2 min at maximum speed in a
Mini-BeadBeater™ (BioSpec, Bartlesville, OK) with 30 sec
of ice cooling at the 1 min intermittent. The resulted mix-
tures were cleared by centrifugation at 13,000 g at 4°C for
30 min. The protein concentrations were determined with
the BCA Protein Assay kit according to the standard pro-
tocol. The protein extract concentrations were 3.2, 3.2,
3.3, 3.9, 3.7, and 3.4 mg/ml for pH5A, pH5B, pH5C,
pH7A, pH7B, and pH7C respectively. The concentration
of the protein extract of the 15N labeled reference was 6.3
mg/ml.

The quantified six unlabeled protein extracts were respec-
tively spiked with an equal amount of the 15N labeled ref-
erence protein extract. The six spiked protein extracts were
separated by 1D-SDS/PAGE. One hundred micrograms of
total proteins of a spiked protein extract was loaded for
separation in each lane on a 10% Tris-HCI SDS-PAGE gel
(Pierce) of 5-cm length. Gel bands were revealed by Impe-
rial Protein Stain (Pierce) and destained overnight in
water. Each lane of the gel was divided into 5 fractions.
The band cutting pattern was maintained the same across
all the lanes.

Only the 3rd fraction from each of the lanes was processed
for mass spectrometry analysis. Gel pieces were minced to
1-mm3 cubes, washed, and processed for in-gel digestion
and peptide extraction as previously described [35]. The
final peptide extract for each spiked protein extract was
concentrated to near dryness in an Eppendorf Vacufuge
concentrator (Fisher Scientific) and reconstituted to 25 pl
with 5% formic acid for mass spectrometry analysis as
below.

Mass spectrometry analysis and data processing

Samples were submitted for analysis at the Mass Spec-
trometry Laboratory of Research Resource Center at Uni-
versity of Illinois at Chicago. The resulted raw data files
were processed with the BioWorks software (Finnigan,
San Jose, CA) licensed to the facility.
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The peptide extracts of all the six spiked protein extracts
were analyzed by the nanoLC/LTQ-FTMS system. The
LTQ-FTMS is the Finnigan hybrid mass spectrometer con-
sisting of a linear ion trap and a Fourier transform ion
cyclotron resonance instrument as a second mass analyzer
manufactured by Thermo Finnigan (San Jose, CA). Each
peptide extract was analyzed in triplicate runs. The instru-
ment was operated in 24-hr unattended service mode with
samples injected from an auto-sampler.

For each run, about 5 pl of peptide extract solution was
loaded for separation on a 150 mm x 75 um ZORBAX C18
reverse phase column (Agilent, Germany) with a 5-35%
acetonitrile (v/v) gradient in 0.1% TFA over 60 min and
detected by the LTQ-FTMS. The 60-min gradient was fol-
lowed by a step-gradient elution program with 80% ace-
tonitrile in 0.1% TFA, resulting in 90 min per run. The
LTQ-FIMS was operated in a data-dependant acquisition
mode with up to 10 MSMS spectra acquired after each
FTMS scan. The acquired RAW data files were searched
against the M. smegmatis strain mc2 155 NCBI database in
two separate searches by BioWorks, one corresponding to
14N labeling and the other 15N labeling. The precursor ion
tolerance was set to + 1.5Da and digestion enzyme was
designated as trypsin with 2 missed cleavages allowed.
Peptide and protein probabilities were calculated in Bio-
Works.

Protein quantitation procedure was based upon the previ-
ously described QN algorithm [10]. The program was
kindly provided by Prof. Barry L. Karger's laboratory at
Northeastern University and was modified in Matlab v7.2
environment to accommodate using peptide probabilities
calculated by BioWorks. Relative abundance was calcu-
lated for every identified PCS [10] with p < 0.01. The rela-
tive abundance of a peptide is expressed as the ratio of the
unlabeled sample isotopologue intensity and the >N
labeled reference isotopologue intensity for this peptide.

To compute the protein relative abundances, the peptide
lists of replicate runs for each spiked protein extract were
combined. Outliers were filtered by Dixon's Q-test (95%
confidence level) before being used to calculate the pro-
tein relative abundance. Protein relative abundance refers
to the ratio of the abundance of an unlabeled protein rel-
ative to that of the 15N labeled reference. It was calculated
by averaging the qualified peptide relative abundances of
a protein. Relative abundance was calculated only for pro-
teins with at least two qualified PCS identifications
[10,34]. The resulted protein relative abundances were
then normalized by median.

We also generated an in silico pooled replicate for the pH5
and pH?7 culture samples respectively. To do so, the com-
bined peptide relative abundances for each biological rep-
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licate were first normalized by the median of these
peptide relative abundances. For each sample, i.e. pH5 or
pH7, the normalized peptide relative abundances from
the biological triplicates were combined for computing
the protein relative abundances. The protein relative
abundances were finally normalized by the median of the
protein relative abundances. The in silico pooled replicates
for the pH5 and pH7 samples were named pH5p and
pH7p respectively.

Significance analysis

The significance analysis was carried out with the software
Significance Analysis of Microarray (academic version 3.0
for Windows XP) obtained from Stanford University [21].
The software functions as an add-in in Microsoft Excel.
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Additional material

Additional file 1

Table 2 — Protein and peptide data for statistical significance analysis.
The table shows the protein relative abundance, standard deviation (SD),
number of unique peptides (#Pep) and number of PCS's (#PCS) for each
protein in the sample replicates pH5A, pH5B, pH5C, pH7A, pH7B,
pH7C, pH5p, and pH7p. Results of the fold change test, the 2 t-tests, and
the SAM analysis are shown to the right of the table. The *-' sign indicates
missing value (for abundance data) or insignificant change (for statistical
testing). The table is in Microsoft Excel format.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-9-187-S1.xls]

Additional file 2

Table 3 - Comparison of the SAM outputs with the conventional t-test
results. The first column contains the locus numbers for the locus names
http://www.tigr.org with the prefix ‘MSMEG" omitted for brevity. d -
observed score in SAM. fc - fold change. '-' — not significant. This table is
a condensed version of Table 2 showing only the regulated proteins and
their statistical testing results. The table is in PDF format.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-9-187-52.pdf]
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