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Abstract
Background: Determining the function of uncharacterized proteins is a major challenge in the post-genomic era
due to the problem's complexity and scale. Identifying a protein's function contributes to an understanding of its
role in the involved pathways, its suitability as a drug target, and its potential for protein modifications. Several
graph-theoretic approaches predict unidentified functions of proteins by using the functional annotations of
better-characterized proteins in protein-protein interaction networks. We systematically consider the use of
literature co-occurrence data, introduce a new method for quantifying the reliability of co-occurrence and test
how performance differs across species. We also quantify changes in performance as the prediction algorithms
annotate with increased specificity.

Results: We find that including information on the co-occurrence of proteins within an abstract greatly boosts
performance in the Functional Flow graph-theoretic function prediction algorithm in yeast, fly and worm. This
increase in performance is not simply due to the presence of additional edges since supplementing protein-protein
interactions with co-occurrence data outperforms supplementing with a comparably-sized genetic interaction
dataset. Through the combination of protein-protein interactions and co-occurrence data, the neighborhood
around unknown proteins is quickly connected to well-characterized nodes which global prediction algorithms
can exploit. Our method for quantifying co-occurrence reliability shows superior performance to the other
methods, particularly at threshold values around 10% which yield the best trade off between coverage and
accuracy. In contrast, the traditional way of asserting co-occurrence when at least one abstract mentions both
proteins proves to be the worst method for generating co-occurrence data, introducing too many false positives.
Annotating the functions with greater specificity is harder, but co-occurrence data still proves beneficial.

Conclusion: Co-occurrence data is a valuable supplemental source for graph-theoretic function prediction
algorithms. A rapidly growing literature corpus ensures that co-occurrence data is a readily-available resource for
nearly every studied organism, particularly those with small protein interaction databases. Though arguably biased
toward known genes, co-occurrence data provides critical additional links to well-studied regions in the
interaction network that graph-theoretic function prediction algorithms can exploit.
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Background
The putative characterization for unknown proteins has
traditionally relied on sequence homology, for example as
assessed by BLAST score. This approach is inadequate for
proteomic-wide function identification as it has a failure
rate of 20–40% in newly sequenced genomes [1]. Sources
of error stem from difficulties in determining the correct
homologue, evolutionary divergence of function and even
the lack of annotated homologues [2].

New methods for proteomic-scale function prediction
which do not rely on sequence homology draw from high-
throughput data to make inferences, including several
techniques that use protein-protein interaction graphs
[1,3-8]. Protein function is predicted based on the func-
tions assigned to a protein's neighbors in the interaction
graph, using either a simple majority vote of the functions
assigned to the immediate neighbors [3] or propagating
functional assignments through a more global neighbor-
hood [5-7].

Previous research has significantly improved algorithmic
performance by integrating more diverse interaction
types, such as gene expression data, genetic interactions,
or phylogenetic based features [6,9,10]. Including addi-
tional sources affects the graph topology and its correct-
ness, whether by joining previously disconnected areas of
the graph, reinforcing support for existing edges or poten-
tially adding false positives. Thus, one obvious question
becomes how useful is each of these sources to a graph-
theoretic function prediction algorithm.

This paper examines closely the use of Medline literature
abstracts as a potential high-throughput annotation
source. Literature offers a valuable resource as the original
and historical source of information contributed by biol-
ogists; however, much of that information has yet to be
human-curated in a computable form. Moreover, the cur-
rent pace of paper submissions outstrips curators' ability
to extract information. Thus, a popular trend is to develop
sophisticated natural language processing methods to
mine free-text data for protein relationships. Previously,
various researchers have tried directly mining text for
functional information [11-17], yet the accurate auto-
matic characterization of protein interaction remains a
challenge for current systems [18,19].

In this paper, we consider the straight-forward approach
of mining for potential interactions by identifying co-
occurrence of protein names in Medline abstracts, similar
to the use of co-occurrence data by Schlitt [20] as a way of
validating possible protein-protein interactions. The cave-
ats of such derived relationships are a strong bias towards
previously studied proteins and a potentially high false
positive rate owing to the difficulty of identifying protein

names and mapping them to the appropriate identifiers
[18]. Despite these issues, the readily available co-occur-
rence data can be a valuable supplement to protein-pro-
tein interaction data for graph-theoretic function
prediction algorithms. Medline abstracts describe many
different relationships apart from protein-protein interac-
tions, such as shared pathway membership, co-regulation,
genetic interactions and structural similarity, that can
inform function prediction. Observed co-occurrence may
also highlight previously uncharacterized relationships.
In organisms where there are very few protein-protein
interactions reported in the public databases, co-occur-
rence data can provide critical linkages among otherwise
sparsely-connected annotated regions of the protein inter-
action graph.

While we could further combine co-occurrence data with
other interaction information, here we purposefully iso-
late the literature data source and quantify its individual
contribution as a supplement to protein interaction data.
The originality and benefit of our study is many-fold.
Firstly, to our knowledge, there has been no systematic
study of the use of literature-based information in graph-
theoretic function prediction algorithms. While systems
such as STRING [10], PubGene [15], CoPub [17], Prolinks
[21] and iHoP [22] use co-occurrence information to infer
pairwise functional linkages between proteins, those
efforts do not report function prediction results using
graph-theoretic algorithms applied to networks con-
structed from those linkages. Since graph-theoretic
approaches can consider the global network structure,
these approaches are especially powerful given the ten-
dency for literature to describe relationships over disjoint
subsets of high-studied proteins.

Secondly, nearly all previous demonstrations of function
prediction have been benchmarked on a single organism,
typically yeast. Even when algorithms use multi-organism
data to make predictions, particularly for prokaryotes (e.g.
[23,24]), the majority still only report evaluations on a
single organism. Exceptions include, for example [25,26].
Focusing on eukaryotes, we provide results using identical
experimental settings for not only yeast but worm and fly,
both of which have sparser coverage than yeast in func-
tional annotation and interaction databases. Thirdly, the
simplest use of co-occurrence data asserts an interaction
between proteins mentioned together at least once (or
twice) in literature abstracts. We investigate the perform-
ance of prediction algorithms when that requirement
becomes more stringent, moving beyond a simple binary
indicator to requiring an interaction surpass a confidence
threshold before asserting it as true. In addition to com-
paring two quantitative methods from the literature based
on the hypergeometric distribution [21,27] and mutual
information [17] which are symmetric in bias with respect
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to a given protein pair, we introduce an asymmetric con-
fidence score which encodes a bias for the number of co-
mentions relative to mentions for an individual protein
and argue its preferred relevance to this application.

Finally, we explore several parameters that affect graph-
theoretic function prediction algorithms. Nabieva et al.
[7] consider yeast annotation at Level 2 of the MIPS Func-
tional Classification hierarchy [28]. We supplement their
analysis by considering algorithm performance as the
granularity for a given assignment increases, comparing to
using Level 3 in MIPS. We also consider the effect of using
different gold-standard annotation sources by comparing
the yeast results using MIPS to those using Biological
Process and Molecular Function SLIM terms from the
Gene Ontology (GO) [29]. Nabieva et al. also experi-
mented with GO and report that using GO annotations
does not affect their overall conclusions; we provide a
complete side by side comparison in order to highlight
differences in coverage and informativeness when using
these annotation sources.

Methods
Extracting protein names from Medline abstracts
For each species, all Medline [30] abstracts that contained
keywords for the common and Latin species names in the
abstract, title or MeSH header were collected. Text strings
referring to a gene (or gene family) were tagged using
LingPipe [31] which takes as input individual blocks of
text, called tokens, representing a word, number or sym-
bol. The tagger extracts gene mentions from text using a
hidden Markov model (HMM) trained on a corpus of sen-
tences manually annotated for gene mentions [32]. There
are eight states in the HMM representing the beginning,
middle and end tokens of a gene mention as well as the
surrounding tokens and those that are not part of gene
mentions. The instances of gene mentions are then
mapped to Entrez Gene identifiers after canonicalization
by lowercasing, removing punctuation and whitespace
and replacing Roman numerals with Arabic numerals
[33]. If a single text string mapped to multiple Entrez
identifiers, such as glycosyltransferase or C Type
lectin, a separate instance of co-occurrence was asserted
from each of those Entrez identifiers. To alleviate false
positives resulting from abstracts that mention a very large
number of proteins or contain text which maps to non-
specific gene names such as pseudogene, any data from
Medline abstracts that resolve to more than 100 Entrez
identifiers was removed.

Determining co-occurrence
Typical applications of literature co-occurrence assert an
interaction if the pair of proteins is mentioned at least
once (or twice) in a Medline abstract. However, this
method is prone to false positives and a more rigorous

method should be used that quantifies the strength in
belief of the literature association. Jenssen et al. [15] exam-
ined the accuracy and type of interactions found among
genes mentioned more than once or more than five times
together and found a decrease in the number of false pos-
itives as the number of co-occurrences increased. Exten-
sions have been used to assess confidence of co-
occurrence using mutual information [17] and the hyper-
geometric distribution [21,27] measures. Other alterna-
tives might be to use the Normalized Google Distance
[34], term frequency inverse document frequency (TF-
IDF) [35] or a z-score like method [36]. We evaluate the
two methods based on mutual information and the
hypergeometric distribution in our comparisons. Let nx be
the number of documents retrieved from Medline citing
protein x, nxy be the number of documents that cite both
proteins x and y and N be the total number of Medline
abstracts. Then the relative mutual information score [17]
between proteins x and y (normalized to the range 0–1,
with 1 meaning high confidence) is

where R = log10([nxyN]/[nxny]) and Rmin and Rmax are the
lowest and highest R values over all pairs x and y. The
hypergeometric score [27] calculates the probability that
the number of co-citing abstracts is greater than or equal
to a value l as

where p(k | nx, ny, N) is the hypergeometric distribution:

This value computes the significance of co-occurrence,
such that smaller numbers mean the observed co-occur-
rence is less likely by chance, i.e. low numbers mean high
confidence. To scale the values to be analogous to the
other measures, where high values mean high confidence
edges, we define the hypergeometric-based co-occurrence
measure as

HY G(x, y) = 1 - p(nxy >= l | nx, ny, N).

One potential disadvantage of these measures for our
application is the fact that each is symmetric with respect
to the contribution of the protein pair and does not
emphasize the frequency of co-occurrence relative to the
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individual occurrence frequencies. For example, a low co-
occurrence frequency of two proteins x and y becomes sig-
nificant when the individual protein occurrence fre-
quency of x is also low since it implies that x, though
hardly mentioned, is always mentioned in conjunction
with y. This is true regardless of the occurrence frequency
of a protein y.

An asymmetric measure is important for biology applica-
tions since some genes are more well studied than others,
and there is particular interest in genes with little prior
information. For this reason, we define the Asymmetric Co-
occurrence Fraction (ACF) which includes a bias towards
genes mentioned infrequently:

Mathematically speaking, the measure itself is symmetric,
since ACF(x, y) = ACF(y, x) yet we label the measure as
asymmetric to emphasize the bias towards less character-
ized proteins. We compare our new measure to the two
alternatives, MUT and HY G, to investigate whether
important relationships are overlooked under symmetry.
To reduce false positives for any of the three co-occurrence

based measures, we add the additional requirement that
nxy > 1, otherwise the co-occurrence value is set to zero.

Regardless of the co-occurrence measure used, the method
for handling ambiguity in normalizing gene names arti-
factually inflates the values within gene families. For
example, the text string clec resolved to 83 distinct Ent-
rez identifiers of C Type lectin genes in worm, resulting in
all pairwise interactions among those genes, all with
weights of 1.0 regardless of the co-occurrence measure.
The consequence is that at high co-occurrence thresholds,
the graphs contain many clusters representing gene fami-
lies [see Additional files 1, 2 and 3].

Interaction dataset creation
Protein-protein interactions were extracted from the Data-
base of Interacting Proteins (DIP) [37] for yeast, worm
and fly according to the publication or experiment type as
given in Table 1. Genetic interactions for yeast were also
taken from DIP as referenced by the publications in Table
1, while the genetic interactions for worm and fly were
taken from WormBase and FlyBase (see Availability and
requirements section for URL). For each of the three co-
occurrence measures, eleven datasets of edges were
extracted by fixing a threshold in increments of 0.1 and
including all edges where the confidence value assigned

ACF x y
nxy
nx ny

( , )
min[ , ]
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Table 1: Physical and Genetic Correspondence to Annotation

PHYSICAL
Yeast MIPS MF BP Worm MF BP Fly MF BP

Uetz 1498 37 15 32 Y2H 2619 10 6 Y2H 20045 10 14
Ito 4469 19 8 17 Aff Chr 26 19 0 Immunoblotting 2 100 100
Fromont 175 26 15 37 Immuno Prec 5 60 100
Gavin 3139 67 41 70 Gel Retardation 2 100 100
Ho 3464 38 15 36 Experimental 1 100 100

Biophysical 3 100 100
Alanine Scanning 2 100 100

GENETIC
Yeast MIPS MF BP Worm MF BP Fly MF BP

Bellaoui 34 79 0 82 All 20543 42 50 All 6523 32 69
Davierwala 564 40 13 39
Huang 58 55 5 55
Goehring 63 65 5 61
Kozminski 30 70 7 53
Krogan 36 50 11 78
Parsons 86 55 2 43
Tong 5907 49 12 39

Percentage of edges in the full graph which connect proteins sharing the same annotation according to the gold standard. These values are the ri 
used in the calculation of edge weights by the noisy-or function. The number of edges scored is shown following the experimental group name. 
Listed by first author, PubMed identifiers for the groups are: Uetz PMID:10688190, Ito PMID:10655498, PMID:11283351, Fromont PMID:9207794, 
Gavin PMID:11805826, Ho PMID:11805837, Bellaoui PMID:12912927, Davierwala PMID:16155567, Huang PMID:12077337, Goehring 
PMID:12686605, Kozminski PMID:12960420, Krogan PMID:12773564, Parsons PMID:14661025, and Tong PMID:14764870. Abbreviations: GO 
SLIM Molecular Function (MF), GO SLIM Biological Process (BP), yeast two-hybrid (Y2H), affinity chromatography (Aff Chr), immunoprecipitation 
(Immuno Prec).
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by the measure meets or exceeds the threshold. These
datasets are referred to by the threshold fraction, e.g. ACF
≥ 0.3.

Functional annotation and evidence type scoring
Yeast proteins were annotated using the MIPS [28] func-
tional catalog at Levels 2 and 3 in the hierarchy. Yeast, fly
and worm were annotated to their Molecular Function
and Biological Process SLIM terms in the Gene Ontol-
ogy(GO) [29] using the generic SLIM ontology for fly and
worm and the yeast-specific SLIM ontology for yeast; all
are available from the GO website [38]. The genes were
mapped from the full-ontology gene association file to the
GO SLIM terms using the program map2slim.perl
script also available from the GO website. According to
Ofran et al. [2], predicting GO classification is now
becoming the standard in the field of automated function
prediction. Though the Biological Process ontology of GO
more closely matched the MIPS categories in semantics,
Molecular Function was also included as it offered compa-
rable coverage to Biological Process in yeast and fly while
offering much greater coverage in worm. Under either
MIPS or GO SLIM, a protein can be assigned to more than
one category.

Following the approach of Nabieva et al. [7] and the
STRING database [10], the functional annotation source
was used to evaluate the quality of each interaction data
set. The quality score of each interaction source, separated
by publication or experiment type as given in Table 1 and
2, was based on the percentage of all interactions from the
group that link two proteins assigned to the same category
by the annotation gold standard. For example, approxi-
mately 37% of interactions from the Uetz dataset connect
two proteins with shared MIPS functions, giving each
interaction from the Uetz dataset a reliability score of rUetz
= 0.37. Interactions supported by more than one source
received a combined weight based on the scores of the
individual contributors, using the noisy-or function
[7,10]. The noisy-or edge weight was computed as 1 - ∏i(1
- ri) where the product was taken over all experiment
groups i where the interaction was found and ri was the
corresponding reliability of group i. Thus, if the Gavin
experimental group had a protein-protein interaction that
was also in Uetz, the MIPS Gavin evidence score of rGavin =
0.67 was combined with the rUetz = 0.37 for Uetz using
noisy-or to increase the final score for the edge strength.
When using MIPS, an annotation was shared if for the
depth of annotation examined, both proteins had identi-
cal annotation, so YOR396W, in functional category
10.01.03.01, and YPL001W in functional category
10.01.09.05, would share an annotation at depth 2 (both
are 10.01 or "DNA Processing") but would not share an
annotation at depth 3. For the co-occurrence datasets cre-
ated from a particular threshold, all edges which meet or

exceed the threshold were considered as a single group
when calculating the reliability, ignoring the actual value
assigned to the edge by the co-occurrence measure.

Prediction algorithms
To test the performance and stability of local and global
graph-theoretic approaches, the highest performing algo-
rithms as characterized by Nabieva et al. (2005), Majority
and Functional Flow, were examined. The Majority algo-
rithm (as proposed by [3] and extended by [7]) predicts
annotations as the weighted majority vote of annotations
of adjacent nodes, using the noisy-or edge strengths as
weights. Functional Flow treats each annotated protein as
a source of functional flow and propagates support for
each annotation of that protein across its outgoing edges,
subject to the capacity of the edges as defined by noisy-or
edge strengths. The algorithm iterates for a fixed number
of time steps (the previously used value of six was used),
using local rules to combine and propagate incoming
functional flow with outgoing functional flow at each pro-
tein at each time step. The final prediction score for each
annotation term at an unannotated protein node repre-
sents how much support for the function flowed through
that node during execution.

Evaluation
Performance of prediction algorithms using a given graph
was measured using a modified receiver operator charac-
teristic (ROC) curve that measures the number of true
positive predictions against the number of false positive
predictions as the prediction strength threshold changed.
As in the previous work ([7]), when an algorithm scores
more than one function annotation above the prediction
strength threshold for a protein, the prediction counts as
a true positive when the (strict) majority of predicted
annotations are contained in the set of functions assigned
by the annotation gold standard. Otherwise, the predic-
tion counts as a false positive. Treating the annotations in
MIPS or GO SLIM as a gold standard, all results use two-
fold cross-validation, hiding the functional annotations
for half of the known proteins and predicting the other
half. Results are reported as the sum of the true and false
positives from both crosses. While leaving out half of the
annotations rather than using a smaller percentage or per-
forming leave-one-out cross validation may underesti-
mate the capability of a given prediction algorithm, the
aim was to evaluate performance in the type of extreme
setting that exists for less well-studied organisms or for
proteins with few well-studied neighbors. This severe
sparsity gives results that are more relevant to biologically
interesting conditions than a more conservative setting
where the prediction task is easier.
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Results
Complementing the PPI data with co-occurrence data
Using the most general definition of co-occurrence,
whereby an interaction exists between two proteins men-
tioned at least twice together in the literature (denoted
COLIT), co-occurrence data was a significant source of
interactions for all organisms (Table 3). The contribution
was particularly significant for worm for which little PPI
data exists relative to the number of genes (Table 3, panel
1 and 2). The COLIT graphs were denser for worm and fly
(Table 3, panel 3), due in part to the presence of larger

gene families in these organisms relative to yeast [see
Additional files 1, 2 and 3].

The GENETIC and COLIT graphs had a comparable
number of edges in yeast and worm, with a particularly
strong overlap in worm (Table 3, panel 4). The overlap
may reflect that worm gene name conventions often
define genes by phenotype, e.g., mechanosensory
abnormality (mec genes) or synthetic lethal
with mec-8 (sym genes), causing co-occurrence to
implicitly discover genetic relationships. The interactions
offered by COLIT or GENETIC data were a significant

Table 2: Co-occurrence Correspondence to Annotation

Mutual Information Measure (MUT)
Fraction Yeast MIPS MF BP Worm MF BP Fly MF BP

> 0.0 8621 80 41 71 21847 76 57 17508 47 70
≥0.1 8615 80 41 71 21711 77 57 17422 47 70
≥0.2 8554 80 41 71 21177 78 58 16753 47 71
≥0.3 8210 80 41 71 20209 80 60 14494 49 72
≥0.4 7216 80 43 72 18811 83 63 10625 53 76
≥0.5 5592 82 46 73 17813 85 64 7021 56 76
≥0.6 3605 82 51 74 15857 91 67 4112 63 74
≥0.7 1856 82 56 74 12770 91 61 1965 59 68
≥0.8 700 77 54 72 10924 94 61 1002 56 63
≥0.9 159 65 45 75 6360 94 91 308 38 40

Hypergeometric Measure (HYG)
Fraction Yeast MIPS MF BP Worm MF BP Fly MF BP

>0.0 8621 80 43 73 21847 76 57 17508 47 70
≥0.1 8614 80 43 73 21739 77 57 17125 47 71
≥0.2 8607 80 43 73 21680 77 57 17044 47 71
≥0.3 8600 80 43 73 21671 77 57 16907 47 71
≥0.4 8591 80 43 73 21397 78 58 16719 47 71
≥0.5 8572 80 43 73 21202 78 58 16575 48 71
≥0.6 8557 80 43 73 21183 78 58 16360 48 71
≥0.7 8532 80 44 73 21159 78 58 16060 48 71
≥0.8 8466 80 44 73 20650 79 59 15665 48 71
≥0.9 8368 80 44 73 20386 80 60 14764 49 72

Asymmetric Co-occurrence Fraction Measure (ACF)
Fraction Yeast MIPS MF BP Worm MF BP Fly MF BP

>0.0 8621 80 41 71 21847 76 57 17508 47 70
≥0.1 6220 82 45 73 20063 80 60 9610 56 75
≥0.2 4241 82 49 74 17836 84 63 6786 58 76
≥0.3 2947 82 54 76 17353 86 63 5078 61 76
≥0.4 2283 82 56 76 17023 87 64 4178 64 77
≥0.5 1745 80 55 74 16875 87 63 3589 66 77
≥0.6 1195 78 55 73 16574 88 64 2922 68 76
≥0.7 713 78 56 72 16082 88 64 2494 70 76
≥0.8 536 74 52 69 15938 89 63 2277 71 77
≥0.9 390 68 47 65 15821 89 64 2031 72 75

Percentage of edges in the full graph which connect proteins sharing the same annotation according to the gold standard. These values are the ri 
used in the calculation of edge weights by the noisy-or function. The number of edges scored is shown in the columns labeled by organism name. 
Abbreviations: GO SLIM Molecular Function (MF), GO SLIM Biological Process (BP).
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addition to the PPI data (Table 3, panel 5 and 6), with up
to 90% of the total number of edges in the combined net-
works contributed solely by the non-PPI source. The
amount of overlap between COLIT and PPI data (7.2%)
was similar to previous findings for the human protein-
protein interaction map with curated interactions from
the literature and yeast two-hybrid data [39].

Characterization of annotation source
The coverage of functional annotation used in the predic-
tion task varied depending on the type of data and the
organism (Table 4). Yeast annotation sources generally
had better coverage than the worm and fly sources, with
around 30% uncharacterized proteins versus 40–50% in

the other organisms. High throughput PPI data was a val-
uable source for all organisms, involving the highest per-
centage of uncharacterized genes (with the exception of
fly), relative to the COLIT and GENETIC sources. The PPI
network also showed a larger percentage of proteins com-
pletely surrounded by uncharacterized proteins. In con-
trast, COLIT offered the lowest percentage of interactions
among uncharacterized genes, demonstrating the bias
toward well-known proteins. The PPI interactions gener-
ally also had the poorest correspondence to shared func-
tion, while the COLIT interactions had strong
correspondence.

Table 4: Characterization of Annotations

Source Yeast MIPS Yeast GO Worm GO Fly GO
MF BP MF BP MF BP

Annotation Terms 85 37 32 37 48 39 49
Percentage Unknown Nodes PPI 23 38 28 41 51 39 42

GENETIC 14 32 16 24 26 53 41
COLIT 2 15 7 17 24 9 7

Percentage Connected to ≥ 1 Unknown PPI 31 53 36 46 61 69 70
GENETIC 14 40 24 53 50 32 17
COLIT 4 34 18 53 59 33 28

Percentage Only Surrounded by Unknowns PPI 4 9 5 17 29 15 16
GENETIC 0.9 7 4 4 4 7 1
COLIT 0.08 2 1 4 2 1 1

Percent Edges Connecting Nodes Sharing Function PPI 37 18 36 10 6 10 14
GENETIC 48 12 40 42 50 32 70
COLIT 80 40 71 59 53 47 70

Various measures to characterize the completeness and connections among gold-standard annotations in the graphs. All values are given for all 
nodes in the Largest Connected Component of the graph. The number of nodes and edges from which these percentages are calculated are shown 
in panel 2 of Table 3. Unknown refers to proteins uncharacterized by the annotation source. Other abbreviations are as given in Table 3.

Table 3: Characterization of Graphs

Source Yeast Worm Fly

Number of Edges (Nodes) in Full Graph PPI 12177 (4581) 2619 (1955) 20056 (6689)
GENETIC 4429 (1304) 20543 (2934) 6523 (2734)
COLIT 8621 (2605) 21847 (1665) 17508 (2228)

Number of Edges (Nodes) in Largest Connected Component PPI 12001 (4463) 2451 (1685) 19992 (6573)
GENETIC 4427 (1301) 20359 (2736) 6418 (2551)
COLIT 8390 (2291) 12018 (921) 17324 (2022)

Median (Maximum) Number of Neighbors PPI 3 (288) 1 (145) 3 (173)
GENETIC 2 (153) 6 (150) 2 (191)
COLIT 4 (88) 16 (243) 8 (278)

% Edges Intersect GENETIC PPI 0.09 0.9 0.2
COLIT 1 21 6

% Edges Intersect PPI GENETIC 0.2 0.1 0.6
COLIT 7 0.07 0.7

% Edges Only From SOURCE in PPI+SOURCE GENETIC 27 89 24
COLIT 40 90 46

Various measures to characterize the density and overlap of graphs. All values are given for the largest connected component of the graph except 
in the first panel as indicated. Abbreviations: PPI – only edges from experiments measuring protein-protein interactions; GENETIC – only edges from 
genetic assays; COLIT – only edges between proteins mentioned at least twice together in literature abstracts.
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For the PPI and GENETIC interactions, the low-through-
put assays were generally more reliable in terms of captur-
ing functional relationships than the high throughput
sources (Table 1). Also, the correspondence of these inter-
action sources with annotation in yeast was comparable
for GO BP SLIM terms and the MIPS categories. All
sources generally showed less correspondence to Molecu-
lar Function than Biological Process, with the exception of
worm PPI sources.

Comparison of co-occurrence measures
Three measures were used to modify the definition of co-
occurrence from a simple binary indicator to a qualitative
assessment of interaction confidence. The Mutual Infor-
mation co-occurrence measure (MUT) typically assigned a
mid-range confidence level to the majority of edges (Fig-
ure 1) which had the consequence that there was a sharp
decrease in the number of edges in the graph for thresh-
olds greater than 0.5 (see Table 2 under organism name
for graph sizes). In contrast, the Hypergeometric co-occur-
rence measure (HY G) tended to assign a high value to
nearly all edges (Figure 1) which meant that the graph was
nearly the same at all thresholds (Table 2). In fact, the HY
G graphs at a threshold of 0.9 contained 97%, 93% and
84% of the number of edges in the 0.0 threshold graph for
yeast, worm and fly, respectively. For the MUT graphs, the
corresponding values were 2%, 29% and 2%, a remarka-
ble difference. The Asymmetric Co-occurrence Fraction
typically assigned a majority of the edges a lower confi-
dence (Figure 1).

With respect to the functional annotation sources, the
range of reliabilities was comparable across all three
measures, regardless of organism or annotation source
(Table 2). The same trends observed for PPI and GENETIC
sources was observed for the co-occurrence sources. In
yeast, correspondence to MIPS was again comparable to
GO SLIM Biological Process. Biological Process had
higher correspondence than Molecular Function in yeast
and fly, but surprisingly the opposite was true in worm.

Co-occurrence differences by asymmetry
To examine whether the asymmetry was a real factor in
our application, the high scoring edges by ACF were com-
pared to their MUT and HY G values to identify examples
where the ACF assigned an edge a high score yet the other
two did not. Examining particular examples offers an
intuition for the differences among the measures; a more
quantitative assessment appears further below.

Since HYG essentially assigned a high weight to all edges,
high valued ACF edges always corresponded to high val-
ued HYG edges. The major difference between ACF and
HYG was seen in cases where the individual mentions
were relatively high and the overlap was low. For example,
in yeast where the total number of abstracts indexed was
N = 30471 and fewer than 2% of the genes were men-
tioned in more than 100 abstracts, ACF = 0.03 while HYG
= 1.0 when nx = 100, ny = 101 and nxy = 3. In this case, it is
arguable whether the small overlap should indeed be seen
as significant and HYG preferred. The difference between
a high MUT and low ACF was seen in the opposite case

Histogram Comparison of Co-Occurrence MeasuresFigure 1
Histogram Comparison of Co-Occurrence Measures. Histogram of the number of proteins assigned a given confidence 
value by the co-occurrence measures. Abbreviations: MUT – Mutual Information Measure; HYG – Hypergeometric Measure; 
ACF – Asymmetric Co-occurrence Fraction.
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where the number of individual mentions was small. For
example, ACF = 0.16 and MUT = 0.69 for an edge in yeast
between two proteins, each mentioned 12 times, with an
overlap of 2. It is unclear whether MUT should be pre-
ferred in this case since infrequently studied proteins
should be emphasized so perhaps for these cases, ACF
does not show an advantage.

Conversely, large differences between high ACF and low
MUT occur when one protein has many mentions, the sec-
ond protein has only few, yet each of the mentions
includes the first protein. Generally for the top differences
between ACF and MUT in yeast, the MUT score was
approximately 0.5 while the ACF score was 1.0. In the top
three examples, one protein was mentioned more than
300 times, the other was mentioned only 2 or 5 times, and
always together with the first protein. These examples
included a link between GCN4 and PCL5, where the Ent-
rez Gene description and GeneRif of PCL5 mentioned
that it is specifically required for GCN4 degradation and
stabilization, a link between RAD51 and MEI5, where the
description and GeneRif again contain text connecting the
two, and a link between HSC82 and HCH1, where inter-
estingly Entrez Gene listed two physical binding assays
which support this interaction, though neither publica-
tion was in the PPI network used here. All three examples
captured real relationships between the proteins, suggest-
ing that there is a true benefit in accounting for the asym-
metry of protein mentions and that interactions assigned
high ACF values are likely biologically correct.

Use of Functional Flow to evaluate benefits of co-
occurrence data
In all organisms, the performance of the Functional Flow
algorithm was greatly boosted by the inclusion of co-
occurrence data within the protein-protein interaction
(PPI) network (Figure 2, Best and Worst correspond to
combinations of co-occurrence measure and confidence
threshold, chosen as explained below, yield the best and
worst performance over all combinations). Most impor-
tantly, the difference was strong in the low false positive
range, an area of particularly interest to biologists since
false positives imply wasted experimental effort to vali-
date the predictions (Figure 3). The strong data contribu-
tion to worm by non-PPI sources was reflected in large
prediction performance differentials for Functional Flow,
compared to the other two organisms (Figure 2 and 3).

Performance improvements of Functional Flow were not
due merely to the presence of additional interactions, but
rather to the type of relationship captured by the data
sources. Supplementing the PPI network with a similarly-
sized set of genetic interactions did not show as marked a
performance gain as incorporating co-occurrence data
(Figure 2 and 3). In nearly all cases, Functional Flow on

the PPI+COLIT graphs performed better than when using
PPI+GENETIC graphs, even though in most cases per-
formance on the PPI+GENETIC graphs also showed mod-
est to substantial improvement over using the PPI ONLY
graphs. This suggests that the relationships implicit in lit-
erature abstracts prove more informative for function pre-
diction than those captured by genetic screens.

Co-occurrence data also boosted the performance for the
local algorithm, Majority which uses the majority assign-
ment of immediate neighbors method (Figure 4a).
Including co-occurrence information did not change that
Functional Flow outperformed the Majority method in all
settings (data not shown). For the harder problem of pre-
dicting more finely grained function annotations, using
co-occurrence data proved to be useful even when the
number of annotation categories increased (Figure 4).
When the granularity level of annotation was changed
from Level 2 in the MIPS hierarchy to Level 3, both Major-
ity and Functional Flow showed a drop in performance
which reflected the increased difficulty of the prediction
task. However, in all cases, prediction performance was
better in the PPI+COLIT graphs versus the PPI ONLY
graphs.

Examining effect of threshold on co-occurrence
The performance boost offered by including literature
data was seen regardless of the method for determining
co-occurrence. The set of interactions offered in the co-
occurrence data varied depending on a threshold. The best
and worst combinations of co-occurrence measure and
threshold (corresponding to Best and Worst in Figure 2
and 3) were chosen by examining the number of true pos-
itives when the number of false positives was fixed at 100,
for PPI ONLY graphs and each setting of the threshold
from 0 to 0.9 in increments of 0.1 (Figure 5). The addition
of co-occurrence information for any measure, showed
considerable improvement over the PPI ONLY graphs
(marked as -1 on the x-axis), over most thresholds, with
the exception of HYG and certain thresholds in yeast using
Molecular Function. The worst often occurred for the 0.0
threshold, the simplest definition of co-occurrence, dem-
onstrating the benefit of moving beyond a simple binary
indicator of co-occurrence to methods based on confi-
dence levels.

Among the three measures, the relatively flat performance
of HYG reflected the fact that the measure essentially
reduced to the binary indicator, causing the graphs to be
nearly the same at any threshold. The sharp decrease in
MUT reflected the behavior seen in the distributions (Fig-
ure 1) where a concentration of edge assignments mid-
range resulted in a sharp decrease in graph size after 0.5.
The general decrease at higher thresholds reflects that the
combined PPI and MUT graphs contain fewer edges,
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which limits the ability of Functional Flow to exploit
neighborhood information.

For ACF, the performance was generally high across all
thresholds in worm and fly. Though the values in worm
and fly might be inflated at higher thresholds due to large
gene families in these organisms, ACF generally per-
formed above MUT, despite a similar decrease in graph
size. In yeast, the opposite was true where MUT perform-
ance at any fraction was generally higher than ACF regard-

less of the annotation source. This difference may be due
to the lack of large families in yeast but may also include
differences due to coverage and overlap of multiple PPI
sources which occurred in yeast but not worm or fly. Over-
lap causes a strengthening of support for particular edges.

Overall, the HYG measure did not discriminate well
between which co-occurrences were reliable or unreliable
and therefore may not be ideal for this application. The
MUT co-occurrence measure performs well for thresholds

Modified ROC curves for Functional FlowFigure 2
Modified ROC curves for Functional Flow. Number of proteins predicted incorrectly (FP) versus number of proteins pre-
dicted correctly (TP). Abbreviations: GOMF – GO SLIM Molecular Function; GOBP – GO SLIM Biological Process; PPI ONLY 
– only edges from experiments measuring protein-protein interactions, such as yeast two-hybrid and affinity precipitation; 
GENETIC ONLY – only edges from genetic assays, such as synthetic lethality studies; PPI+GENETIC – edges from both PPI 
and from genetic assays, such as synthetic lethality studies; PPI+COLIT – edges from both PPI and edges between proteins 
found by literature co-occurrence, where Best and Worst correspond to the best and worst combinations of threshold setting 
and co-occurrence measure, respectively (c.f. Figure 5).
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near 0.5, allowing a favorable compromise between edge
reliability and graph connectiveness. However, the ACF
measure shows comparable performance at lower thresh-
olds, which allows a larger supplement of co-occurrence
edges to the PPI graph.

Discussion
Understanding the effect of supplemental data sources on
a graph-theoretic function prediction algorithm involves
asking three questions not typically asked – how readily
available is this data source across species, how does
changing species affect the source's impact, and what is
the best way to include the source. Our results show that
the amount of co-occurrence data extracted from the liter-

ature provides a significant fraction of the data available
for an organism relative to the available protein-protein
interaction data. Moreover, this additional resource offers
interactions that are more likely to connect two function-
ally related proteins than the physical interaction data,
which stems from the obvious bias of co-occurrence data
toward well-studied proteins. The question then becomes
how useful is co-occurrence data for unstudied proteins.

In our testing, function predictions is actually made for
proteins with known functions, where the function is sim-
ply hidden to the algorithm. We do not alter the datasets
in any additional way to reflect whether a protein's func-
tion is truly unknown. If a protein truly does not have a

Detailed Modified ROC curves for Functional FlowFigure 3
Detailed Modified ROC curves for Functional Flow. Number of proteins predicted incorrectly (FP) versus number of 
proteins predicted correctly (TP), for FP up to 100. Abbreviations as in Figure 2.
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known function, a high-throughput protein-protein inter-
action is much more likely in our data than an abstract co-
occurrence. In yeast, 96% of the uncharacterized proteins
(using MIPS) have neighbors in the graph based solely on
PPI data (3% have PPI and COLIT edges) versus 42% of
the known proteins (45% have PPI and COLIT). Worm
has a similar ratio with 80% PPI ONLY edges for the
uncharacterized versus 53% PPI ONLY edges for the
knowns, while fly follows with 93% PPI ONLY edges for
the uncharacterized versus 60% PPI ONLY edges for the
knowns.

The real concern then is how co-occurrence data can affect
the prediction algorithm performance since the majority
of true unknowns are solely connected to the rest of the
graph through high-throughput protein-protein interac-
tions. This question is particularly relevant in worm and
fly with a larger percentage of truly uncharacterized pro-
teins. The performance gain of the global Functional Flow
algorithm over the local Majority algorithm precisely
demonstrates how information can flow from a region of
more well-characterized genes, where co-occurrence data
is present, through regions surrounding the true
unknowns and thus dominated by physical interaction
data. In fact, the average minimum path distance between

Varying Annotation GranularityFigure 4
Varying Annotation Granularity. Performance as the level of annotation detail increases from Level 2 to Level 3 in the 
MIPS functional hierarchy. a) Majority, b) Functional Flow. Abbreviations: PPI ONLY – only edges from experiments measuring 
protein-protein interactions; PPI+COLIT – PPI edges combined with edges between proteins mentioned at least twice 
together in literature abstracts.
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unknown proteins in yeast and proteins appearing in a
least two Medline abstracts (thus likely to have a co-occur-
rence link) is 1.41 in yeast, 1.60 in worm and 1.387 in fly.
Through the combination of protein-protein interactions
and co-occurrence data, the neighborhood around
unknown proteins is quickly connected to well-character-
ized nodes which global prediction algorithms can
exploit.

The importance of the mix of protein-protein interaction
data and co-occurrence data can also affect algorithm per-
formance through individual edge weights. Since each
source of evidence for an interaction is given a different
weight based on its correspondence to shared function
(Table 1), those interactions with multiple sources of evi-
dence can have a variety of different weights in contrast to
those edges added by a single source. Surprisingly, there
was very little overlap between the protein-protein inter-

Varying the Co-occurrence ThresholdFigure 5
Varying the Co-occurrence Threshold. Relative performance of Functional Flow when varying the threshold used to 
define the co-occurrence interaction set. Shown is the number of true positives (TP) when the scoring threshold is set to yield 
100 false positives (FP) (y axis). The values of the x-axis denote instances of Functional Flow on graphs combining PPI and the 
interaction sets for each corresponding setting of the co-occurrence threshold (x = -1 shows PPI ONLY and x = 0–9 denote 
PPI plus the datasets obtained using thresholds 0.0 to 0.9). The lines are annotated to denote the MUT, HYG and ACF metrics. 
The best and worst performers respectively, over all co-occurrence measure and all thresholds, are shown in parentheses 
below the plot title. These combinations appear as Best and Worst in Figures 2 and 3.
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action data and the other sources (Table 3) which limits
the ability of one source to reinforce evidence for the
other. Regardless, the dramatic improvements in perform-
ance using co-occurrence data were seen as its edge
weights were generally the highest for any data source,
indicating strong concurrence with shared function. With
respect to how changing the species affects performance,
the relative performance of Function Flow on PPI net-
works augmented with ACF or MUT co-occurrence edges
differed in yeast with respect to worm or fly (Figure 5).
Also, the reliability estimates for the annotation sources
suggested worm was different in that GO Molecular Func-
tion was a better characterization than GO Biological
Process of the type of relationships represented by PPI and
COLIT, while the opposite was true in yeast and fly (Table
1 and 2). The difference in worm may be attributed to the
fact that over 65% of the GO annotations have the evi-
dence code IEA (Inferred from Electronic Annotation)
compared to 24% in fly and 0% in yeast. This disparity
suggests that it is easier to infer Molecular Function from
annotation sources than Biological Process. These organ-
ism-specific variations highlight the importance of bench-
marking results in multiple organisms.

The comparison of co-occurrence measures is convoluted
by the fact that for any given threshold, the graphs are not
the same. Examples taken from the experiments show
high ACF values capture cases missed by MUT, when a
rarely studied protein is consistently associated with a
highly-studied protein. These high ACF edges appear in
the MUT ≥ 0.5 threshold dataset and might explain the ris-
ing edge of the MUT curve in Figure 5 for thresholds lower
than that. An alternative experiment would be to fix the
graph topology, use the co-occurrence weight as the actual
reliability of the edge (instead of using the reliability com-
puted on the edge set at a given threshold) and evaluate
function prediction performance in this setting. Such an
experiment would further explore the benefits of using an
asymmetric measure. Although co-occurrence data was
still very useful when the annotation detail increased by
one level on the MIPS hierarchy, it is possible that co-
occurrences might become less useful if annotating pro-
teins at the highest level of detail. Extremely specific rela-
tionships captured in the annotation source may not be
represented at the same level of detail in the literature
abstract text, and therefore not extracted as co-occurrence
data. Some information such as the involvement of two
given proteins in the same pathway might be as useful
when looking at protein function described only by gen-
eral categories. However, some information, such as
shared structural features might be more useful when the
function annotation source is in finer detail. It would be
interesting to identify which sort of interactions a particu-
lar co-occurrence indicates and then examine which kind
of abstract co-occurrences contribute the most at each

level of detail in the annotation source. That sort of auto-
matic categorization of interaction is currently at the lim-
its of natural language processing systems; any such
attempt still requires a great deal of hand curation.
Regardless, whether by automatic or manual creation, the
set of interactions suggested by co-occurrence which can-
not be characterized as physical, genetic, structural or oth-
erwise are the most interesting since these non-obvious
links provide fruit for further study.

Conclusion
Function prediction systems give uncategorized proteins
likely annotations, helping biologists formulate testable
hypotheses. We have demonstrated in at least two of these
systems that performance can be greatly improved by
including co-occurrence relationships drawn from
abstracts. This increase in performance is not simply due
to the presence of additional edges; supplementing pro-
tein-protein interactions with co-occurrence data outper-
forms supplementing with a comparably-sized dataset of
genetic interactions. Following our success with graph-
theoretic methods, machine learning approaches such as
semidefinite programming based support vector
machines may be able to use these co-occurrence graphs
as well.

We have shown that co-occurrence data improves func-
tion prediction in a variety of circumstances. Our results
hold across all three organisms of yeast, worm and fly
despite significant differences in coverage and annotation
for the sources. We demonstrated that the use of co-occur-
rence data can benefit from using a qualitative measure
for determining interaction instead of a binary indicator
and that generally a threshold of ACF ≥ 0.1 or MUT ≥ 0.5
is a reasonable compromise regardless of organism or
annotation source. Co-occurrence data provides a signifi-
cantly large and readily available source of interaction
data which, together with the guidelines and results
reported here, will prove valuable especially for organisms
in which protein-protein interaction data is sparse.
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Additional file 1
Yeast co-occurrence graph where ACF is greater than .9. The complete PPI 
and co-occurrence network using ACF scoring at the highest threshold. 
Nodes correspond to yeast proteins and are colored by GO SLIM categories 
such that white nodes indicate Unknown Function. Edges between nodes 
x and y indicate ACF(x, y) > 0.9. Note that at this threshold, large clus-
ters of like color indicate protein families.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-9-198-S1.pdf]

Additional file 2
Worm co-occurrence graph where ACF is greater than .9. The complete 
PPI and co-occurrence network using ACF scoring at the highest thresh-
old. Nodes correspond to yeast proteins and are colored by GO SLIM cat-
egories such that white nodes indicate Unknown Function. Edges between 
nodes x and y indicate ACF(x, y) > 0.9. Note that at this threshold, large 
clusters of like color indicate protein families.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-9-198-S2.pdf]

Additional file 3
Fly co-occurrence graph where ACF is greater than .9. The complete PPI 
and co-occurrence network using ACF scoring at the highest threshold. 
Nodes correspond to yeast proteins and are colored by GO SLIM categories 
such that white nodes indicate Unknown Function. Edges between nodes 
x and y indicate ACF(x, y) > 0.9. Note that at this threshold, large clus-
ters of like color indicate protein families.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-9-198-S3.pdf]
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