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Abstract
Background: Compared to other omics techniques, quantitative metabolomics is still at its
infancy. Complex sample preparation and analytical procedures render exact quantification
extremely difficult. Furthermore, not only the actual measurement but also the subsequent
interpretation of quantitative metabolome data to obtain mechanistic insights is still lacking behind
the current expectations. Recently, the method of network-embedded thermodynamic (NET)
analysis was introduced to address some of these open issues. Building upon principles of
thermodynamics, this method allows for a quality check of measured metabolite concentrations
and enables to spot metabolic reactions where active regulation potentially controls metabolic flux.
So far, however, widespread application of NET analysis in metabolomics labs was hindered by the
absence of suitable software.

Results: We have developed in Matlab a generalized software called 'anNET' that affords a user-
friendly implementation of the NET analysis algorithm. anNET supports the analysis of any
metabolic network for which a stoichiometric model can be compiled. The model size can span
from a single reaction to a complete genome-wide network reconstruction including
compartments. anNET can (i) test quantitative data sets for thermodynamic consistency, (ii) predict
metabolite concentrations beyond the actually measured data, (iii) identify putative sites of active
regulation in the metabolic reaction network, and (iv) help in localizing errors in data sets that were
found to be thermodynamically infeasible. We demonstrate the application of anNET with three
published Escherichia coli metabolome data sets.

Conclusion: Our user-friendly and generalized implementation of the NET analysis method in the
software anNET allows users to rapidly integrate quantitative metabolome data obtained from
virtually any organism. We envision that use of anNET in labs working on quantitative
metabolomics will provide the systems biology and metabolic engineering communities with a mean
to proof the quality of metabolome data sets and with all further benefits of the NET analysis
approach.
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Background
Metabolomics, the technique to measure intra- and extra-
cellular small molecules, was introduced a few years ago
as the youngest child in the omics family. The technique
provides data that, for example, can help us to comple-
ment our picture of metabolic pathways through identifi-
cation of novel metabolites, or – by means of statistical
analyses – to spot metabolic differences between strains or
conditions [1,2].

Beyond these already valuable qualitative insights, how-
ever, further interpretation of metabolite data is difficult.
This is due to the fact that the metabolome does not have
a direct link to the genome such as mRNA or proteins. Fur-
thermore, metabolite concentrations are the result of a
multitude of interrelated molecular actions ranging from
the gene expression level to the metabolic level and con-
sequently the cause for an increased or decreased metabo-
lite concentration is not intuitively accessible. Hence, in
order to obtain mechanistic biological insights from
metabolome data, we need rigorous integration in math-
ematical models [3,4]. Here, an obvious strategy would be
the integration of metabolome data in kinetic models
[5,6]. To date, however, this approach is still impractica-
ble because of the sparse knowledge about in vivo reaction
mechanisms and kinetic parameters. In addition, the con-
tinuing challenges in the area of computational analysis
[7] make it very unlikely that large-scale kinetic models
will be available in the near future. In brief, there is a
pressing need for computational methods that allow
extracting mechanistic insights from quantitative metabo-
lome data.

Apart from the lack of suitable methods for interpretation
of metabolome data, also the quantitative measurement
of intracellular metabolite concentrations still faces seri-
ous issues [8,9]. Specifically, experimental problems arise
from the technical difficulty of sampling rapidly enough
to avoid artifacts for metabolites with fast turnover rate,
and from the heterogeneous nature of the species that
compose the metabolome, which calls for complex and
thus error prone sample preparation procedures and
diversified analytical platforms. Due to the numerous
potential pitfalls associated with concentration measure-
ments, a computational method that can check suppos-
edly quantitative dataset for potential errors is highly
desired to guarantee high-quality data to be used in fur-
ther analyses, such as in computational systems biology
[10].

Recently, we presented a method called network-embed-
ded thermodynamic (NET) analysis that can be utilized to
address both aspects [11]: NET analysis can check for ther-
modynamic inconsistencies in quantitative metabolome
data sets and can extract mechanistic biological insights

from these data. In brief, NET analysis couples metabolite
concentrations to an operating metabolic network via the
second law of thermodynamics and the metabolites'
Gibbs energies of formation. The underlying optimization
framework determines the feasible range (i.e. upper and
lower bounds) of the Gibbs energy of a particular reaction
k, ∆rG'k,, using metabolite concentrations ci, reaction
directionalities rj, the reaction stoichiometry of a meta-
bolic network sij and predetermined standard formation
energies ∆fG'°i:

It should be emphasized that the reaction directionalities
rj are not equivalent to enzyme reversibility. A non-zero
reaction direction rj implies a non-zero net flux of reaction
j. Lower and upper bounds for each reaction's Gibbs
energy are determined by minimization and maximiza-
tion of ∆rG'k in the non-linear system described Eq. (1),
respectively. NET analysis can indicate, in which direction
a reversible enzyme is operating under the experimental
conditions: When the estimated upper bound of ∆rG'k is
negative, the net flux of reaction k can only proceed in the
forward direction. Analogously, when the estimated lower
bound of ∆rG'k is positive, the net flux of reaction k can
only proceed in the reverse direction.

In addition, a determined displacement of ∆rG'k from zero
reflects the distance, at which the particular reaction oper-
ates from equilibrium. Reactions that operate far from
equilibrium (at least 10 kJ mol-1) are likely to be actively
regulated. No conclusions can be drawn if lower and
upper bounds are negative and positive, respectively, as
estimated on the basis of the provided measurement data
and constraints. Similarly, also the feasible ranges for
metabolite concentrations cj can be determined by opti-
mization. For detailed information on the method, the
reader is referred to [11].

So far, the routine for network-embedded thermody-
namic analysis was only available as a research tool that
was not appropriate for non-expert users. In order to facil-
itate a more widespread use, we developed a Matlab-
based software called anNET. anNET is a generalized
implementation of NET analysis and thus can be applied
(i) for consistency analysis of measured metabolite con-
centrations, (ii) for prediction of metabolite concentra-
tions beyond the actually taken measurements and (iii)
for identification of putative active sites of genetic or allos-
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teric regulation. anNET is generalized to the extent that
virtually any cellular reaction network (including com-
partmentalized reaction networks) and any set of quanti-
tative metabolome data can be integrated. Its user-friendly
implementation does not sacrifice correctness of the anal-
ysis even in complex cases. The precondition is a stoichio-
metric model that describes the metabolic network of
interest. Notably, the size of the model can span from one
reaction to a comprehensive genome-wide reconstruction
of metabolism. In large to genome-wide models, the
resolving power of a NET analysis increases only when
metabolome data or flux directions are available on
peripheral pathways. Also when applied to a single reac-
tion, NET analysis can verify whether measured concen-
trations are compatible with the expected flux direction.

It is important to note that unknown pathways missing in
the used metabolic network model as well as unknown
and thus not specified flux directions, or unavailable ther-
modynamic data for certain metabolites will never render
a data set infeasible, and thus NET analysis is rather con-
servative. Further, thermodynamic feasibility is only a
necessary but not a sufficient condition for correct quanti-
fication of metabolite concentrations. However, NET
analysis as an easy-to-apply tool can test for major exper-
imental errors, while relying only on indisputable (i.e.
thermodynamic) facts.

We envisage that anNET will be used in labs working on
quantitative metabolomics to check for thermodynamic
consistency of metabolome data and, thus, pinpoint com-
pound-specific flaws in the analysis procedure from sam-
pling to quantification. We hope this will contribute to
further improve the quality of metabolome measure-
ments.

In the following, we give a brief overview on possible uti-
lizations of anNET, and then describe the algorithmic
workflow, the user interface, the details of how cellular

compartments are handled as well as depict two addi-
tional tools that support NET analysis to (i) identify errors
in thermodynamically infeasible data sets and to (ii) iden-
tify minimal flux direction sets in metabolic reaction net-
works. Then, we demonstrate the validity of the
generalized NET analysis implementation in anNET and
compare different solvers, we apply anNET to recently
published metabolome data sets and demonstrate its
novel function to troubleshoot infeasible data sets.

Applications
Examples for applications of anNET are listed in Table 1.
A NET analysis has three inputs: a stoichiometric model,
metabolite concentrations, and flux directions. Techni-
cally only the first is compulsory, but in practice all avail-
able information is typically used to constrain the
optimization and yield the most detailed results. Depend-
ing on the goal of the analysis (Tab. 1), the user can
choose to estimate either the feasible ranges of concentra-
tions for every metabolite in the model with known ∆fG°,
feasible ranges of ∆rG' for each reaction, or values for arbi-
trary non-linear terms such as the oxidation state of
NADH/NAD+ or the energy charge of the adenylate pool.

Implementation
Workflow
The general workflow of anNET is depicted in Figure 1. All
input data are parsed from spreadsheets every time an
analysis is requested. The available thermodynamic data
and the specified pH and ionic strength values are then
used to calculate the transformed standard Gibbs energy
of formation, ∆fG'°, for all metabolites and pseudoi-
somers in each compartment. From the complete list of
reactions in the model, only those for which all reactants
have a known ∆fG'° are selected to constitute the core
model that is used for NET analysis. From this set of reac-
tions, a system of linear constraints is built that describes
Eq. (1). A set of routines is then called to handle the spe-
cial cases of transporters (described below) and of reac-

Table 1: Examples of anNET applications

Application Ranges estimated Notes

Check thermodynamic consistency none Check only once feasibility. For non-feasible systems, use the 
troubleshooting routine.

Estimate unmeasured concentrations concentrations
Resolve concentrations in different compartments concentrations
Find minimum/maximum feasible NADH/NAD ratio or 
adenylate energy charge

Non-linear terms Define the ratio of interest as input with very loose (wide) 
bounds

Infer reaction direction ∆rG' Find reactions that have a ∆rG' with a unique sign
Verify reversibility in model ∆rG' Infer reaction directions from NET analysis and compare with 

reversibility in model or literature
Spot putative control sites ∆rG' Find reactions that are known to be active and operate far from 

equilibrium
Exclude activity of transporters ∆rG' Transporters with non-zero, positive ∆rG' are either not active 

or have reversed flux.
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tions that only convert reactants in a specific charge state.
The overall standard Gibbs formation energies of reac-
tants that can occur in two or more charge states are calcu-
lated by combining the standard Gibbs formation
energies of the pseudoisomer according to their molar
fractions.

Next, the provided information on known flux directions
is added as linear constraints to constrain the respective
reactions' Gibbs energies, ∆rG'. The provided metabolite
data is handled according to whether the measurement
specifies a concentration of a single intermediate, a sum of
multiple concentrations, or a ratio of concentrations.
Concentration data that relates to a single intermediate in
a specific compartment directly translates into lower and
upper bounds for that concentration. As a consequence,
these kinds of constraints preserve linearity in Eq. 1
because we take the logarithm of the concentrations as
variables in the optimization. In contrast, the provision of
concentration sums and ratios result in non-linear con-
straints.

A first single optimization is performed to check whether
the defined system is actually feasible, meaning that it is
not contradictingly constrained by either flux directions
or measured concentrations. If the system happens to be
infeasible, a special routine is called to spot the conflicts
in the dataset (see below). A successful feasibility test
implies that the measured data is thermodynamically con-
sistent. In this case, a complete NET analysis is performed
by cycles of minimization and maximization that deter-
mine the feasible ranges of Gibbs reaction energies, of
metabolite concentrations and of the non-linear terms
that the user had specified to be estimated.

Interface
A single main window (Figure 2) acts as graphical user
interface to pass all inputs and options to the core rou-
tines. The dialog is divided into four panels, which are
connected to the modules that are executed in sequence
each time the analysis is invoked: definition of input files,
definition of constraints, choosing options for the analy-
sis and definition of the output files.

Analysis workflow in anNETFigure 1
Analysis workflow in anNET.
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In the first panel, the user specifies where the information
required to execute a NET analysis can be retrieved. Inputs
are grouped into three categories: (i) defining the stoichi-
ometric model and physicochemical properties of com-
partments (i.e. pH and ionic strength), (ii) specifying
metabolite concentrations and flux directions, and (iii)
providing the thermodynamic input data (i.e. the stand-
ard formation energies). All these input data are provided
via flat files (comma separated values) or Excel spread-
sheets using an intuitive syntax.

More specifically, the stoichiometric model is entered as
an array of reactions. Each reaction is defined with reac-
tants of unique names, the stoichiometric coefficients,
and the compartment, in which the reaction takes place.
Transport processes between cellular compartments or
between the intra- and extracellular environment are
defined analogously and are automatically recognized as
transport processes, when two or more compartments are
defined for the participating reactants. For cases, where a
participating reactant can only be transported in a specific
charge state (e.g. some transport reactions can only shuttle
either neutral or charged species), the user can also define
reactants' charge states in order to perform a mechanisti-
cally more correct NET analysis. Based on the provided list
of reactions, a list with all metabolites occurring in the
stoichiometric network is generated by anNET.

Measured metabolite concentrations can be entered by
the user as exact values, as ranges, as sum of concentra-
tions of two or more metabolites, or as ratios between
(sums of) concentrations of multiple metabolites. Hence,
anNET seamlessly can process semi-quantitative metabo-
lome data (i.e. ratios of metabolite concentrations) and
pooled concentrations of e.g. structural isomers that could
not be resolved by the employed separation or analytical
technique. Known flux directions are defined in a separate
worksheet with the flux sign. Thermodynamic properties
are provided in a list that for each metabolite specifies the
standard Gibbs energy of formation (if known), its
charge, and the number of hydrogen atoms. These three
quantities enable to accurately estimate the Gibbs energy
of formation as a function of pH and ionic strength – spe-
cific for each compartment [12]. Notably, for reactants
that at physiological pH can occur in more than one
charge state (so-called pseudoisomers, e.g. all amines,
organic acids, or phosphorylated compounds), the men-
tioned three quantities are reported for each one of them.
The relative abundance of the different pseudoisomers in
the different compartments and thus the overall charge
state of an intermediate is then calculated automatically
by anNET. Currently, with anNET we enclose thermody-
namic properties for more than 200 metabolites (more
than 350 pseudoisomers) that condense a decade of
experimental values published by Robert A. Alberty [13]

and which we further extended and curated. Since this set
of thermodynamic data covers most of the analytes that
can be detected in routine metabolome experiments, we
decided not to include Gibbs energies of formation that
were determined via the group contribution approach
[14] because they partly significantly deviate from experi-
mentally determined values. Nevertheless, the provided
list of the Gibbs energies of formation can be freely
extended or be replaced by the user via the respective
spreadsheet.

The second panel of the graphical user interface affords a
mean to rapidly set the constraints for the analysis. In the
third panel, the user can decide what has to be estimated
and which solver to use (if multiple are available), while
in the fourth panel different options for reporting and the
destination of the reported result can be defined. Cur-
rently, anNET can utilize two optimizers to solve the non-
linear optimization: fmincon from the Matlab
Optimization Toolbox (The Mathworks) or the LINDO
API library (LINDO Systems Inc.). The computational per-
formance of the two solvers is compared in the Result sec-
tion.

Handling of compartments and transporter reactions
To cope with biochemical reaction networks of virtually
any organism, anNET has the capability to handle com-
partmentalized models and various kinds of transport
reactions. For this purpose, metabolites present in differ-
ent compartments are treated as independent entities and
compartment-specific Gibbs energies of formation are
computed (see also above). By default, the pools of a
metabolite that is present in different compartments can-
not exchange unless a respective transport process is
defined in the model. Most metabolome platforms do not
allow distinguishing between compartments and the
measurements reflect the average over the entire cell.
Therefore, a measured concentration typically translates
into a constraint on the sum of the concentrations in all
compartments weighted by the compartment volume.
The context of the network operation that is specified by
the user in terms of flux directions provides – amongst
other things – also information about active transport
processes across compartmental boundaries. These trans-
port processes together with the network operation as a
whole in several cases then enforce a distinct distribution
of metabolite concentration in the different compart-
ments. For example, if a metabolite has to cross a mem-
brane separating two compartments by passive diffusion,
then a fall in concentration must exist at steady state to
sustain the flux.

Two aspects must be taken into account to calculate the
∆rG' of a transport process: First, proton transport is
affected by the pH gradient between the two compart-
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ments. Second, when a charged molecule is transferred
across a membrane with an electrical potential, the ther-
modynamics of acting upward or downward the mem-
brane potential has to be considered. anNET
automatically checks and corrects for these potential con-
tributions (Figure 3). In our implementation, these steps
are merged with the correction for pseudoisomers and do
not increment the size of the optimization model.

Identifying potential errors in infeasible data sets
Infeasible systems occur when constraints on concentra-
tions and/or flux directions are conflicting such that no
solution exists. Only in very rare cases, we observed that
infeasibility was an artifact of the non-linear solver, which
failed to spot a feasible solution e.g. because of numerical,
scaling, or convexity issues.

Tracking the source of infeasibility in the non-linear prob-
lem of the NET analysis is problematic as in most cases
only the combination of several constraints causes an
infeasibility and thus pinpointing a unique source for an
infeasibility is not possible. For this reason, we opted for
a practical semi-combinatorial approach.

The developed approach seeks to identify conflicts
between pairs of metabolite concentrations or between
metabolite concentrations and flux directions. Here, we
developed a two stage procedure: In the first stage, all
defined constraints on reaction directions are set to be
active, whereas all bounds on metabolite concentrations
are first removed from the system. Then, upper and lower
bounds on concentrations are introduced sequentially –
one metabolite at the time. The sequence of additions is
ordered such that first the metabolites are reintroduced,
for which no measurement value was available (i.e. for
which broad default concentration bounds were defined),
followed by metabolites, for which measurement values
were specified in the input spreadsheet, and then followed
by the non-linear expressions for concentration sums and
ratios.

Whenever inclusion of a metabolite leads to an infeasible
system, the metabolite is blacklisted and the correspond-
ing constraint is removed again. Once all concentration
constraints and the non-linear constraints are tested, the
blacklisted metabolites are taken to the second stage,
where the flux direction constraints conflicting with the
blacklisted metabolites are screened by a similar combina-
torial approach. Overall, this procedure delivers a list of

Extensions of linear constraints to integrate the thermodynamics of transport processes and charge-specific catalysisFigure 3
Extensions of linear constraints to integrate the thermodynamics of transport processes and charge-specific 
catalysis.
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conflicting pairs of concentration/concentration con-
straints or of concentration/reaction direction constraints,
which are useful in spotlighting infeasible subsystems.

Prediction of the minimum flux directions set
Generally, the amount of information gathered from a
(correctly quantified) metabolite data set scales with the
number of constraints imposed on the system [11]. As the
provision of flux directions heavily constrains the system,
it is desirable to define as many flux directions as possible.
Such definition, however, is somewhat problematic for
peripheral pathways, for which typically no information
can be obtained from experimental 13C-flux analysis [15].
For this reason, we devised a computational tool that pre-
dicts the minimum flux direction set from a metabolic
network model on a given substrate.

The underlying idea is the following: Growing cells must
synthesize certain biomass components. These compo-
nents must either be taken up from the extracellular
medium or they must be synthesized from the nutrients.
Provided a certain medium composition, this fact can be
used to predict a set of reactions whose flux must be non-
zero and must be oriented in a certain direction to ensure
that all biomass precursors can be synthesized. The only
requisite for this analysis is a list of biomass components.
Curated biomass models exist for most of the available
manually reconstructed genome-scale metabolic network
models [16,17]. In the case of poorly described organ-
isms, only validated precursors should be included. Omis-
sion of an essential intermediate from the list of biomass
components does never restrict flux variability and, thus,
it does not invalidate the minimal flux direction set
obtained when starting from an incomplete list. A routine
to scavenge this minimum set of flux directions is distrib-
uted with anNET. The algorithm is based on flux balance
analysis [18] and minimizes and maximizes the flux
through each reaction in the stoichiometric model under
the constraint that the biomass yield is non-zero. For this
analysis presented here, we omit all reaction direction def-
initions that typically come along with these models and
rather use a fully reversible model in order to reduce the
number of false positives that could be obtained in case of
incorrectly defined reaction irreversibilities in these mod-
els. Further, here, we allowed all metabolites that we not
explicitly declared as substrates to be produced if this is
necessary for biomass formation. It should be noted that
the user can freely modify these assumptions and that also
models with defined reaction directions (for example
derived from systematic assignment [19]) can be
employed for this analysis.

Results and discussion
Validation of the implementation
To ascertain the correct NET analysis implementation in
anNET, we analyzed the E. coli dataset published by
Schaub et al. [20] with anNET using the iJR904 model
[21] (see Additional file 1). The results obtained with
anNET were compared to the published results that were
obtained independently with the NET analysis implemen-
tation based on the non-generalized code [11]. The origi-
nal model of 923 reactions and 762 metabolites was
reduced to a core model with 166 reactions and 147
metabolites after the available thermodynamic informa-
tion was propagated. The data set from Schaub et al. con-
sisted of 6 metabolite concentrations and 4 sums of
concentrations that resulted from not fully analytically
resolved analytes. Further 3 ratios were added to the sys-
tem to assess the feasible range of the adenylate energy
charge (AEC) and the redox state of the cofactors NAD+/
NADH and NADP+/NADPH. The input concentration
ranges of these three ratios were chosen very wide to avoid
that they become active constraints. Notably, the two
analyses delivered equivalent results for all ranges of con-
centrations and of ∆rG (see Additional file 2). Minor vari-
ations are caused by the fact that in the previously
published NET analysis an uncertainty for all ∆fG° of ±
0.5 kJ/mol was employed to account for possible errors in
the thermodynamic input variables.

Comparison between solvers
Two different non-linear solvers can be used by anNET for
the optimization, i.e. the LINDO API library, which relies
on the CONOPT3 algorithm, or the fmincon function
from the Matlab Optimization Toolbox. Independent
NET analyses of the aforementioned E. coli dataset with
the two solvers delivered identical results for metabolite
concentration and ∆rG estimates (see Additional file 3),
thus validating the robustness of the solution. However, it
should be noted that fmincon occasionally failed to mini-
mize/maximize the value of concentration ratios. For
example, in the data set from Schaub et al., the ranges for
the summation constraints and the adenylate energy
charge (i.e. resembling a ratio) were estimated in agree-
ment with LINDO, while fmincon underestimated the fea-
sible ratios between NADP/NADPH and NAD/NADH.
Despite several modifications in the optimization set-
tings, including the starting point and maximum dura-
tion, we were not able to find a universal configuration
that lead to robust optimization of non-linear terms with
fmincon. Furthermore, the LINDO solver consistently
proved to complete the optimization 2–3 orders of mag-
nitude faster than fmincon (Table 2). The speed of the solv-
ers did not significantly improve when explicit functions
to calculate the gradients of the non-linear terms or the
objective function were provided. The computation time
of the fmincon solver could be decreased by almost one
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(page number not for citation purposes)



BMC Bioinformatics 2008, 9:199 http://www.biomedcentral.com/1471-2105/9/199
order of magnitude by allowing less restrictive optimiza-
tion tolerance criteria. Unfortunately, this resulted occa-
sionally in premature termination and thus sub-optimal
results. For reasons of robustness and speed, we opted to
utilize the LINDO library for all following analyses.

Application of anNET to published metabolome data sets
We tested the thermodynamic consistency of three
recently published metabolome data by Schaub et al. [20],
Hiller et al. [22], and Ishii et al. [23], all of which relate to
wild-type E. coli glucose-limited continuous cultivations
at a growth rate of 0.10–0.13 h-1. For these conditions,
fluxes in central carbon metabolism were measured exper-
imentally by 13C metabolic flux analysis [24,25]. We used
this information to manually compile a list of 36 direc-
tion constraints in central carbon metabolism (which, in
the following, we refer to as 'Set 1'). An independent sec-
ond set of direction constraints was obtained in silico
using our above mentioned tool for the prediction of the
minimum set of essential flux directions. For growth on
glucose and by using the biomass vector specified in the
model iJR904 [21], we obtained a total of 131 reactions
('Set 2') that need to be active under the assumption that
all reactions in the model are reversible. Notably, all these
reactions are located in peripheral regions of the metabo-
lism, where unique biosynthetic routes to the biomass
precursors have to be active. A knockout in these genes is
lethal unless the model topology or the biomass vector is
ill-defined. Interestingly, by this approach no flux direc-
tion is predicted in central carbon metabolism, where
multiple alternative pathways exist. Owing to the comple-
mentary nature of Set 1 and Set 2, we merged them to con-
struct Set 3.

We found that not all of the three data sets were thermo-
dynamically feasible, even when we allowed a 10% error
on all measured concentrations (Table 3 and Additional
file 4). Consistent with the previous analysis [11], the
Schaub data set was proven to be feasible with all sets of
flux constraints. In contrast, both the Hiller and the Ishii
data sets were not feasible when the set of flux constraints
obtained from 13C flux analysis was employed.

Troubleshooting of non-feasible systems
We used our troubleshooting routine to localize the con-
flicts that provoke the infeasibility in the above datasets.
Despite the large number of measured metabolites in the
dataset of Ishii et al. and the therewith involved increased
risk for system infeasibility, only one apparent thermody-
namic inconsistency was found to exist in the data set,
which is the concentration range of ribulose-5-phosphate
(ru5p-D) (see Additional file 5). Conflicts were found to
exist with the concentration of ribose-5-phosphate (r5p)
and the directions of three enzymes: ME2, ICDHyr, and
RPI. Removal of the directions constraints for ME2 and
ICDHyr did not relax the unfeasibility, thus locating the
inconsistency around RPI, which catalyzes the isomeriza-
tion between ru5p-D and r5p. In fact, removal of the
measurement of ru5p-D or r5p, or of the RPI reaction
direction constraint turned the system into a feasible sys-
tem. Owing to the high confidence of the RPI flux direc-
tion estimate based on 13C metabolic flux analysis, we
conclude that the problem is likely due to an erroneous
concentration. From thermodynamics, roughly equimo-
lar concentrations are expected for the two intermediates
ru5p-D and r5p, whereas a 4–5 fold higher amount was
detected for ru5p-D. Interestingly, Ishii et al. reported

Table 2: Comparison of performance of fmincon and LINDO solver for estimation of feasible ranges. 

Solver
Computation time for Ranges to estimate fmincon LINDO

- parsing 20 ± 1 s 20 ± 1 s
- feasibility check 1 25 ± 3 s 0.2 ± 0.1 s
- ranges of concentrations 166 51 min 23 s
- ranges of ∆rG 147 145 ± 20 min 30 s
- non-linear constraints 7 n.d.a 1 s

The time is given for at least duplicate analyses of the Schaub data set on a Pentium IV 3 GHz processor. Note: a, no runtime is provided because 
no robust optimization was possible (see text).

Table 3: Consistency check of three recent E. coli metabolome datasets. 4

Measured concentrations Constraints on flux directions
Data set CCM Redox cofactors Energy carriers Others Set 1 Set 2 Set 3 (= Set 1 + Set 2)

Schaub 8 0 2 0 F F F
Hiller 8 3 3 1 NF F NF
Ishii 14 5 3 71 NF F NF

The flux directions sets are described in the main text. Abbreviations: F, feasible; NF, not feasible, CCM, central carbon metabolism. Details can be 
found in Additional file 4
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additional wild-type metabolome data sets for different
growth rates: four out of five wild-type data sets exhibited
the same inconsistency.

In the data set by Hiller et al., our analysis identified two
problematic concentration ranges: glucose-6-phosphate
(g6p) and glyceraldehyde-3-phosphate (g3p) (see Addi-
tional file 6). In the first case, measured g6p concentra-
tions are not compatible with the assumed direction of
the phosphoglucoisomerase (pgi). In glucose-limited
continuous cultures, the glycolytic flux through the pgi is
directed from g6p to fructose-6-phosphate (f6p) [24].
Because of the resulting constraint on ∆rG'(pgi), the con-
centration of g6p has to be at least 3.1-fold larger than that
of f6p, in contrast with the measured ratio of 2.3. The con-
flict is relieved when a relative error of at least 25% is
allowed for both concentrations. In the second problem,
g3p is incompatible with the concentrations of dihydroxy-
acetone-phosphate (dhap) and fructose-1,6-bisphosphate
(fdp) and the connecting reactions catalyzed by the triose-
phosphate isomerase (tpi) and the fdp-aldolase (fba). The
reaction directions imposed by the glycolytic flux dictate
that the g3p concentration has to be in the range between
2–38 µM when the concentrations of fdp and dhap are
assumed to be within 30% of the measured values. This
range, however, is largely lower than the measured g3p
value of 200 µM. Interestingly, no feasible system could
be obtained when removing the experimental concentra-
tions of either fdp or dhap from the dataset, because this
resolved the infeasibility around either fba and tpi, respec-
tively, but not both simultaneously. Overall, these exam-
ples demonstrate the usefulness of the troubleshooting
function to identify the loci of thermodynamic infeasibil-
ity and to suggest potential error sources.

In general terms, it is important to emphasize two aspects.
Firstly, apparent inconsistencies in metabolite concentra-
tions may be linked to bad measurements but also reflect
faulty thermodynamic data or local differences in reactant
activity. The troubleshooting routines can not distinguish
between these causes, but diagnoses all of them simulta-
neously by the requisite to further relax concentration
constraints around specific nodes. Secondly, the fact that
modification or removal of one constraint (or more) in an
unfeasible system lead to a feasible one proves neither
that the modified constraints were wrong, nor that the
others were correct. It is a mere indication that requires
experimental verification.

Conclusion
anNET is the first tool publicly available for network-
embedded thermodynamic analysis of metabolome data.
The most immediate application of anNET is the consist-
ency check of quantitative metabolome measurements
[11]. As outlined in several recent papers [8,26], reliable

quantification of intracellular metabolites is still
extremely challenging. Thus, anNET can help here.

In this context, however, it is important to note that ther-
modynamic feasibility approved by NET analysis is not a
sufficient condition to certify that the measured concen-
trations reflect the true state of a cell. Nevertheless, despite
the rather conservative quality filter that is given by NET
analysis, a previous study showed that out of seven pub-
lished metabolite datasets, three were thermodynamically
not consistent [11]. A data set that fails to be thermody-
namically consistent must be carefully checked before it is
used for further analyses that rely on quantitative infor-
mation. To this respect it is important to stress that in an
unfeasible system not only the experimental data should
be questioned, but also the respective input data (i.e.
assumed reaction directions, thermodynamic data) as
well as the inherently underlying assumptions (i.e. well-
mixed compartments).

The prerequisites for a consistency check by NET analysis
is that (i) quantitative metabolomics data is available
(although relative amounts in form of concentration
ratios can also be integrated by anNET); and (ii) flux
directions can be defined. Hence, this precludes the appli-
cation of NET analysis to the consistency check of for
example serum metabolome, or to cells grown in rich
media were flux directions are uncertain. We hope that
anNET will soon be used for quality check of quantitative
metabolome data and thus, in consequence, the quality of
published quantitative metabolite data sets will rise.

Availability and requirements
Project name: anNET

Operating system: tested on Microsoft Windows XP and
Linux Red Hat.

Programming language: tested with Matlab 7.0 and later
(The Mathworks).

Other requirements: Matlab Optimization Toolbox (The
Mathworks) or LINDO API, versions 2.0 – 5.0 (LINDO
Systems Inc.)

License: freely available from the authors for academic
purposes.

Any restriction to use by non-academics: license required.
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