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Abstract

Background: In DNA microarray experiments, discovering groups of genes that share similar
transcriptional characteristics is instrumental in functional annotation, tissue classification and motif
identification. However, in many situations a subset of genes only exhibits consistent pattern over
a subset of conditions. Conventional clustering algorithms that deal with the entire row or column
in an expression matrix would therefore fail to detect these useful patterns in the data. Recently,
biclustering has been proposed to detect a subset of genes exhibiting consistent pattern over a
subset of conditions. However, most existing biclustering algorithms are based on searching for
sub-matrices within a data matrix by optimizing certain heuristically defined merit functions.
Moreover, most of these algorithms can only detect a restricted set of bicluster patterns.

Results: In this paper, we present a novel geometric perspective for the biclustering problem. The
biclustering process is interpreted as the detection of linear geometries in a high dimensional data
space. Such a new perspective views biclusters with different patterns as hyperplanes in a high
dimensional space, and allows us to handle different types of linear patterns simultaneously by
matching a specific set of linear geometries. This geometric viewpoint also inspires us to propose
a generic bicluster pattern, i.e. the linear coherent model that unifies the seemingly incompatible
additive and multiplicative bicluster models. As a particular realization of our framework, we have
implemented a Hough transform-based hyperplane detection algorithm. The experimental results
on human lymphoma gene expression dataset show that our algorithm can find biologically
significant subsets of genes.

Conclusion: We have proposed a novel geometric interpretation of the biclustering problem. We
have shown that many common types of bicluster are just different spatial arrangements of
hyperplanes in a high dimensional data space. An implementation of the geometric framework using
the Fast Hough transform for hyperplane detection can be used to discover biologically significant
subsets of genes under subsets of conditions for microarray data analysis.
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Background

In DNA microarray experiments, discovering groups of
genes that share similar transcriptional characteristics is
instrumental in functional annotation, tissue classifica-
tion and motif identification [1,2]. In many situations, an
interesting cellular process is active only under a subset of
conditions, or a single gene may participate in multiple
pathways that may or may not be co-active under all con-
ditions [3,4]. In addition, the data to be analyzed often
include many heterogeneous conditions from many
experiments. In these instances, it is often unrealistic to
require that related genes behave similarly across all meas-
ured conditions and conventional clustering algorithms,
such as the k-means and hierarchical clustering algo-
rithms [5,6] and the self-organizing map [ 7], often cannot
produce a satisfactory solution.

When a subset of genes shares similar transcriptional
characteristics only across a subset of measures, the con-
ventional algorithm may fail to uncover useful informa-
tion between them. In Fig. 1a, we see a data matrix
clustered using the hierarchical clustering algorithm,
where no coherent pattern can be observed by naked eyes.
However, Fig. 1b indicates that an interesting pattern actu-
ally exists within the data if we rearrange the data appro-
priately.

(a)

Figure |
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The hidden pattern in Fig. 1b is called a bicluster. One of
the criteria to evaluate a biclustering algorithm is what
kind of bicluster patterns an algorithm is able to find. In
this paper, we address six major classes of numerical
biclusters. Fig. 2 shows different patterns that are of inter-
est to us: (a) constant values, (b) constant rows, (c) con-
stant columns, (d) additive coherent values, where each
row or column is obtained by adding a constant to
another row or column, (e) multiplicative coherent val-
ues, where each row or column is obtained by multiplying
another row or column by a constant value, and (f) linear
coherent values, where each column is obtained by multi-
plying another column by a constant value and then add-
ing a constant. Among these patterns, the first 5 patterns
have been introduced by Madeira and Oliveira [8]. Pat-
terns (a-c) are compatible to (d) or (e), in the sense that
an algorithm which can detect additive patterns can also
detect constant rows/column since the latter are two spe-
cial cases of the former, while (d) and (e) are mutually
independent. Most existing algorithms are based on either
the additive model (d) or the multiplicative model (e).
The linear coherent pattern of (f) is a generalization pro-
posed by us and subsumes all patterns in Fig. 2. These pat-
terns can be more easily understood based on our
geometric perspective introduced below.

In this work, we deal with numerical biclusters only. There
are also works [9,10] that focus on biclusters containing

10 20 30 40 50

(b)

An illustrative example where conventional clustering fails but biclustering works: (2) A data matrix, which appears
random visually even after hierarchical clustering. (b) A hidden pattern embedded in the data would be uncovered if we per-

mute the rows or columns appropriately.
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Figure 2

®

Examples of different bicluster patterns: (2) constant values, (b) constant rows, (c) constant columns, (d) additive coher-
ent values, (e) multiplicative coherent values, and (f) linear coherent values.

symbolic data or the so-called coherent evolution biclus-
ters, where the evolution (i.e., up, down, or no change) of
the elements in a numerical data matrix is considered
instead of the numerical values themselves. We choose to
focus on the numerical data based on the following con-
siderations. First, a numerical biclustering algorithm can
be used to analyze symbolic data by assigning appropriate
numerical values to the symbols. Second, many gene
expression data analysis tasks, such as gene regulation net-
work analysis, require numerical biclustering results.

Previous work on biclustering

Throughout the paper, we use F € RN *Mto denote a gene
expression data matrix with N genes and M arrays or
experiment conditions. In the matrix F, a row F; € R1 xM
represents the expression of the gene i in M arrays. For
simplicity, we only introduce biclustering algorithm for
constant/coherent rows below, the corresponding algo-
rithm for constant/coherent columns is similar and can be
easily deduced.

Bicluster of constant values is obviously the simplest type.
A bicluster of constant values can be modeled as

F(i, j) = uy + &(i, ), (1)

where u;; is the typical value of the bicluster and &(i)j) is a
small perturbation. Hartigan [11] split the original matrix
into a predetermined set of submatrices, and use the vari-
ance to evaluate each submatrix

VAR(L,]) = Z F(i,j)—uy to determine whether a
iel,jej
bicluster should be accepted.

If the noise is additive, a bicluster of constant rows can be
modeled as

F(ij) = uy+ f; + &(ij).

where f; is the i-th row offset. The straightforward method
to detect a bicluster of constant row is to normalize the
rows of the bicluster using the row mean. By doing so, a
bicluster of constant row can be transformed into a biclus-
ter of constant values and hence becomes detectable using
algorithms for biclusters of constant values. Getz et al.
[12] have developed a method based on this considera-
tion and even extended it to detect biclusters of coherent
values. However, methods based on data normalization
have a dilemma: for a good normalization, we need to
estimate the parameter f; for each row of a bicluster. How-
ever, for an accurate estimate of f;, we need to know the
location of a bicluster, which is exactly the problem we
need to solve. The noise &(i,j) in the data further compli-
cates the estimation of f,. Instead of relying on data nor-
malization, Califano et al. [13] have developed a method
to find some small biclusters first with each row satisfying

max(F(i,j)) - min(F(i,j)) <6, Vj € ]
and then add additional rows or columns into it to pro-

duce a bicluster that is as large as possible. Sheng et al. [14]
have assumed that the multinomial distributions for dif-
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ferent columns in a bicluster are mutually independent
and used the Gibbs sampling for parameter estimation.

A bicluster of additive coherent values with additive noise
can be modeled as

F(i, j) = uy + fi + g + (i, ). (2)

Cheng and Church [15] are the first who applied biclus-
tering to microarray data analysis. In their method, the
mean squared residue Hllﬁ z g(i,j)? in (2) is mini-
iel, je]
mized. Cho et al. [16] have improved this mean-squared-
residue based method by using the variance as the second
measure. Lazzeronic and Owen [17] have introduced a
plaid model and proposed the general additive model to
identify biclusters of constant rows, constant columns and
additive coherent values. Prelic et al. [18] have compared

many biclustering algorithms using the additive model.

A bicluster of multiplicative coherent values with additive
noise can be modeled as

F(i, j) = uy > f < g+ (i, j) (3)

Kluger et al. [19] have studied the checkerboard structure
of this type of biclusters using a normalization scheme
based on the above equation. Tang et al. [20] have devel-
oped a method to compute the cosine value of the angle
between each normalized row vector and a predefined sta-
ble pattern and then measure the similarity between two
rows or two columns. Getz et al. [12] have introduced the
Couple Two-Way Clustering by repeatedly performing
one-way clustering on the rows and columns of the data
matrix.

Madeira and Oliveira [8] are the first to classify many
existing numerical biclustering algorithms systematically
based on the additive and multiplicative bicluster models.
It should be pointed out that some symbolic, coherent
evolution or numerical biclusters, such as those produced
by cMonkey [9], SAMBA [10] and some statistical criteria,
cannot be classified as additive or multiplicative patterns
directly. For example, in cMonkey, additional informa-
tion besides the usual gene expression value, such as motif
co-occurrence and association network relationships, are
taken into account. Moreover, cMonkey attempts to
ensure that a greater percentage of genes that are observed
in the data set are included in at least one cluster, while
reducing redundancy between overlapping biclusters and
maximizing the number of conditions that are included in
each bicluster. These features cannot be modeled directly
using the additive and multiplicative coherent patterns.

http://www.biomedcentral.com/1471-2105/9/209

Although the classification into additive or multiplicative
patterns is not perfect, it is nevertheless applicable to
many existing biclustering algorithms, which can all be
formulated using the general linear model proposed in
this paper. In fact, in most biclustering algorithms that
deal with expression values only, the underlying theme is
the coherency in expression values within the biclusters.
Our general linear model of Fig. 2(f) therefore conven-
iently captures the zero and first order coherent relation-
ships within a bicluster.

A high-dimensional geometric method for biclustering

As pointed out in [8], existing approaches are often based
on searching for sub-matrices within a data matrix by
optimizing certain heuristically defined merit functions.
Obviously, the form of the merit function depends greatly
on the bicluster pattern to be uncovered. In these meth-
ods, when the data contain different types of biclusters,
multiple merit functions or different data normalizations
or transformations are needed. This often results in a high
computational complexity and the optimization proce-
dure is NP-hard in general can be easily trapped at a local
optimal point.

In this paper, we extend our previous work [21] and
present a novel perspective for biclustering problem
through a geometric interpretation. Such a new perspec-
tive allows us to regard biclusters with different coherent
patterns as hyperplanes in a high dimensional space, and
facilitates the use of any generic plane finding algorithm
for detecting them. The geometric viewpoint of our
approach provides a unified framework to handle differ-
ent types of linear patterns simultaneously by matching a
specific set of linear geometries. It also reveals the exist-
ence of the general linear model, which can unify the
additive and the multiplicative models. As a particular
realization of our framework, we implemented a Hough
Transform-based hyperplane detection algorithm. The
experimental results on human lymphoma gene expres-
sion dataset show that our algorithm is highly effective for
gene expression data biclustering.

Results

We tested our algorithm using synthetic dataset and
human lymphoma dataset. For synthetic dataset, we use a
test model proposed in [14], but deal with both additive
and multiplicative biclusters. In the Gibbs sampling
method [14], only additive biclusters are used. For human
lymphoma dataset, we detect biclusters based on additive,
multiplicative and general linear models, and investigate
whether the detected biclusters are biological meaningful.
Our experiments show that the proposed linear coherent
model can produce biologically significant groups
enriched by the genes in biclusters.
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Synthetic dataset

We generated a synthetic dataset containing four overlap-
ping biclusters of constant columns, constant rows, and
multiplicative coherent values, and tested the ability of
our approach to detect these patterns simultaneously. To
test noise resistance of our method, we embedded the
biclusters into a noisy background generated by a uniform
distribution U(-5, 5). Gaussian noise with variance of 0.3
was used to degrade the biclusters. The dataset has 200
rows by 40 columns, and the embedded biclusters have
the following sizes (rows x columns): 40 x 7 for Bicluster
1 of constant row, 25 x 10 for Bicluster 2 of constant col-
umn, and 35 x 8 for Bicluster 3 of constant column, 40 x
8 for Bicluster 4 of multiplicative coherent values with the
multiplicative coefficients for each row given in Fig. 3g. As
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shown in the main plot of Fig. 3a, Bicluster 1 overlaps
with Bicluster 2 in two columns, and Bicluster 3 overlaps
with Bicluster 2 in five rows and three columns. Random
row and column permutations are then performed in Fig.
3a to obtain the final test dataset.

In this experiment, the three biclusters contain additive
coherent values, and both the Gibbs sampling method
[14] and our algorithm can identify all of them, but with
different accuracies. The Gibbs sampling method misses 2
genes in bicluster 2 and 4 genes in bicluster 3, whereas our
algorithm detects all genes perfectly (Fig. 3). Interestingly,
a new bicluster with 3 conditions and 60 rows was also
reported by our method (Fig. 3f). This bicluster is located
in the overlap region of biclusters 2 and 3 and comprises
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3

A synthetic dataset with multiple overlapping biclusters of different patterns and the biclusters extracted
using the proposed method. (a) The data matrix before random row and column permutation, (b) bicluster | of constant
rows, (c) bicluster 2 of constant columns, (d) bicluster 3 of constant columns, (e) bicluster 4 of multiplicative coherent values,
(f) the extra bicluster extracted by the proposed method, and (g) the multiplicative coefficients of each row in bicluster 4.
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of last three columns of bicluster 2 and first three columns
of bicluster 3 and all rows of the two biclusters. Although
unexpected, this is a reasonable result since the extra
bicluster detected is a valid bicluster by itself. In contrast,
the Gibbs sampling method fails to detect this extra, but
valid bicluster. The detection of this new bicluster further
shows the efficacy of our algorithm in handling overlap-
ping biclusters.

Biological Data: Human Lymphoma Dataset

We apply our algorithm to the lymphoma dataset [22].
This dataset is characterized by well defined expression
patterns differentiating three types of lymphoma: diffuse
large B-cell lymphoma, chronic lymphocytic leukaemia
and follicular lymphoma. The dataset consists of expres-
sion data from 128 Lymphochip microarrays for 4026
genes in 96 normal and malignant lymphocyte samples.
Missing values in the dataset are imputed using POCSim-
pute [23].

We compare our algorithm with six existing algorithms,
i.e, OPSM [24], Bimax [18], Iterative Signature Algo-
rithm, ISA [25], SAMBA [10], Cheng and Church's algo-
rithm, CC [15] and xMotif [26], using the procedure
proposed by Prelic et al. [18]. Since most existing numer-
ical biclustering algorithms do not detect biclusters with
general linear coherent values, we only compare the per-
formance for the additive model. Similar to the validation
method proposed by Tanay et al. [10], we investigate
whether the gene groups produced by different algorithms
show significant enrichment with respect to a specific
Gene Ontology (GO) annotation. We know that bicluster-
ing algorithms aim to classify the genes involved in the
same Molecular Function or Biological Process into a
group, so a better biclustering algorithm can find more or
larger groups that show significant enrichment. Specifi-
cally, in our experiment, biclusters are evaluated by com-
puting the hyper-geometric functional enrichment score
[27] based on the GO Biological Process annotations, and
the resulting scores are adjusted for multiple testing using
the Westfall and Young procedure [27,28].

The histogram in Fig. 4 presents the proportion of biclus-
ters produced by each method for which one or more GO
categories are overrepresented at different levels of signif-
icance. Best results are obtained from OPSM and the pro-
posed algorithm. Our algorithm is very competitive even
when we only consider additive biclusters.

Our method is also capable of detecting biclusters with
general linear coherent values. Fig. 5a shows one of these
biclusters detected in the lymphoma dataset. The linearity
amongst the columns in this bicluster is verified using the
scatter plots in Fig. 5b and a good fit can be observed. By
defining the column of this bicluster as F,, Fy, ..., F,, the

http://www.biomedcentral.com/1471-2105/9/209

pattern of this bicluster can be expressed as F, = 0.57F, -
0.08 = 0.38F,- 0.24 = 0.27F,- 0.15 = 0.36F, - 0.26 = 0.36F,
- 0.27 = 0.30F; - 0.25 = 0.37F, - 0.22 = 0.28F3 - 0.27 =
0.27F,-0.28 = 0.22F,,- 0.29. The detailed results from the
GOTermFinder at significance level of 5% are provided in
Fig. 6. The result from the GO analysis shows that these
linear coherent biclusters are indeed biological meaning-
ful.

In Additional File 1, we provide the algorithmic parame-
ters used in the experiment for the lymphoma dataset. In
our experiment, more than 600 biclusters are detected. In
Additional File 2, we provide a list of all biclusters with 1
showing corresponding genes/arrays covered by the
bicluster while 0 is the contrary. In Additional File 3, we
selected 6 biclusters as an example for GO annotation. All
the biclusters with full data are given in Additional File 4.
The full-sized image of Fig. 5a is shown in Additional File
5.

Conclusion

We analyzed the different type of numerical biclusters and
proposed a general linear coherent bicluster model that
effectively captures the zero and first order coherent rela-
tionships within a bicluster. Then, we presented a novel
interpretation of the biclustering problem in terms of the
geometric distributions of data points in a high dimen-
sional data space. In this perspective, the biclustering
problem becomes that of detecting structures of known
linear geometries, i.e., hyperplanes, in the high dimen-
sional data space. We have shown that many common
types of bicluster are just different spatial arrangements of
the hyperplanes in the high dimensional data space. This
novel perspective allows us to perform biclustering geo-
metrically using a hyperplane detection algorithm. The
experiment results on both synthetic and real gene expres-
sion datasets have demonstrated that our algorithm is
very effective.

Method

Although the six patterns in Fig. 2 appear to be substan-
tially different from each other, if we treat each measure-
ment (column) as a variable in the 4D space [x, y, z, w]| and
each object (row) as a point in the 4D space, the six pat-
tern in Figs. 2(a) to 2(f) would correspond to the follow-
ing six geometric structures respectively: (a) a cluster at a
single point with coordinate [x, y, z, w] = [1.2, 1.2, 1.2,
1.2], (b) a cluster defined by the linesx =y =z = w, (c) a
cluster at a single point with coordinate [x, y, z, w| = [1.2,
2.0, 1.5, 3.0], (d) a cluster defined by the linesx =y -1 =
z+1=w-2, (e) a cluster defined by the lines x = 0.5y = 2z
= 2w/3, and (f) a cluster defined by the lines x = 0.5(y -
0.1)=2(z-0.1) =2(w- 0.2)/3. Each object (row) in a clus-
ter is a point lying on one of these points or lines.
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Proportion of biclusters significantly enriched by a
GO Biological Process category for the six selected
biclustering methods. The columns are grouped method-
wise, and different bars within a group represent the results
obtained for five different significance levels c.

When a pattern is embedded in a larger data matrix with
extra measurements, i.e., a bicluster that covers only part
of the measurements in the data, the points or lines
defined by the bicluster would sweep out a hyperplane in
a high dimensional data space. Assume that we have a
three-measurement experiment with the measurements
denoted by x, y, and z. If a bicluster covers measurements
x and z, then there exists a plane where all data points in
the bicluster would lie on. The plane is defined by:

Bo+ Bix+ pz=0 (4)

where g, (i =0, 1, 3) are constants and f,y is omitted since
B, =0.The coordinates that appeared in Eq. (4) denote the
measurements the bicluster covers, and the points on the
plane denote the objects or genes in that bicluster. In Fig.
7, an example of such a plane is shown. We select 3 col-
umns from the data matrix of Fig. 1a and form a new data
matrix with a 2-column bicluster embedded inside. The
new data matrix is then plotted in a 3D space. We can see
that there exists an obvious plane, which provides clues
about the hidden bicluster in the data. The linear model
has been used in the clustering method OSCAR developed
by Bondell and Reich [29]. A major difference between

http://www.biomedcentral.com/1471-2105/9/209

OSCAR and our algorithm is that OSCAR carries out clus-
tering or classification in one direction only, while our
algorithm performs biclustering or simultaneous cluster-
ing in both row and column directions of the data matrix.

In general, different bicluster patterns discussed above can
be uniquely defined by specific geometric structures
(lines, planes or hyperplanes) in a high dimensional data
space. In a 3D space, if we denote the three measurements
as x, y and z respectively, and assume a bicluster covers x
and z only, we can generate 3D geometric views for differ-
ent patterns as shown in Fig. 8. When the dimension of
the data space is more than three, it becomes difficult to
visualize the data points, but the geometric structures are
still similar. In addition, this geometric perspective pro-
vides valuable insight to the property of biclusters. For
example, current algorithms often deal with additive and
multiplicative models separately. When we analyze the
3D geometries of these two types of biclusters (Figs. 8d
and 8e), it is obvious that there are geometries (Fig. 8f)
covering both of them. These new kind of geometries
denote a new type of biclusters - the linear coherent
model, which our method can deal with easily.

Based on the geometric perspective discussed above, we
propose a geometric gene expression biclustering frame-
work that involves the following two steps. First, we detect
the hyperplanes that exist in the gene expression data.
Then we analyze whether a required pattern exists for the
genes that lie in these hyperplanes.

A powerful technique for line detection in noisy 2-D
images and for plane detection in noisy 3-D data called
the Hough transform (HT) [30] is widely used in pattern
recognition. The HT has been extensively studied in image
processing and is well known to be robust against noise
for line detection in poor quality images. This robustness
is especially useful in microarray data analysis since the
data are often heavily corrupted by noise. The method has
recently been applied successfully to two and three-color
microarray data analysis [31,32]. Interested readers are
referred to the survey paper [33] on the properties and
general applications of the HT.

However, it may be difficult to use the standard HT for
more than 3 dimensions because of the large computa-
tional complexity and storage requirement. In this work,
we use the Fast Hough transform (FHT) [34] as our plane
detection algorithm since it gives considerable speedup
and requires less storage than the conventional HT. The
FHT has a very simple and efficient high-dimensional
extension. Furthermore, the FHT uses a coarse-to-fine
mechanism and provides good noise resistibility. In the
following, we briefly discuss the basic principles of the
FHT.
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Figure 5
Biclusters detected in the lymphoma dataset. (a) A bicluster of linear coherent values detected by our algorithm (for
the full size image, please see Additional File 5), (b) scatter plots showing the linearity amongst the columns in this bicluster.
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The GO-based evaluation for the bicluster of Fig. 5a using the GOTermFinder. The upper table is from the biolog-
ical process ontology; the middle table is from the molecular function ontology; and the lower table is from the cellular compo-

nent ontology.

Plane detection using the fast Hough transform
We use {F,, F,... F,,,} to denote the coordinates of M
arrays. For each genej {j=1, 2... N}, the expression vector

is given as [Fy(j), F1(j), --.» Foi1(G)]-
In a 2-D space, a line can be described by

y=mx+c, (5)
where (m, ¢) are two parameters: the slope and the inter-
cept of the line with y axis. However, a problem with the
(m, c¢) parameterization of lines is its inability to describe
vertical lines, i.e., m — 0. Therefore, Eq. (5) is only used

for lines with |m| < 1. The second equation that swaps the
roles of the x and y axes,
x=my+c (6)
is used for lines with |m| > 1. With |m| <1 and |m'| < 1,
Eq. (2) and (3) describe all lines in a 2-D space without
overlap. A similar method can be used to describe hyper-
planes in a high dimensional space. In this paper, this

parameterization method is used for our hyperplane
detection algorithm.
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If we visualize the data in Fig. la in a high-dimen-
sional space, the hidden pattern stands out. Due to the
difficulties in visualizing data beyond 3D, we only select col-
umns 32, 41 and 45 in Fig. la to form a new data matrix with
a 2-column bicluster embedded inside. In this figure, there
exists an obvious plane, which provides clues about the hid-
den bicluster in the data.

Suppose that among all the observed data [F,(j), F;(j), --.,
Fy..(D) {j =1, 2, ..., N}, there exists a target hyperplane
described by the following equation

M-1
FOZZﬂiFi+ﬂMr (7)
i=1

where {F, F,,

observed data space and {f,, f3,, .... B} are M parameters.

... Fy1} are coordinates of points in

Define a set Q with all the indices of the genes that lies on

this hyperplane. For each j € €, we have

M=l
Fy(j) = Z BiFi(j) + By - The inversion of (7) indicates
i=1

that all these points on the target surface satisfy

M-1
N E(G)B: + By~ Fo(j)=0 forallje Q. (8)
i=1

We find that the parameters {£,, £, ..., Sy} are given by

the intersection of many hyperplanes given by Eq. (8).

http://www.biomedcentral.com/1471-2105/9/209

Suppose that we know the initial ranges of value {f,, £,,
..., By} are centered at {P,, P,, ..., P,,} and with half-length
{L,,L,, ..., L\,}. We can divide these ranges into very small
"array accumulators" so that each array accumulator can
determine a unique array of values {£,, £,, ..., B} within
the acceptable tolerance. According to Eq. (8), one feature
point in the observed signal space is mapped into many
points (e.g., hyperplanes) in the parameter space. An
accumulator in the parameter space containing many
mapped points (e.g., the intersection of many hyper-
planes) reveals the potential feature of interest.

According to above analysis, the FHT-based plane detec-
tion method includes three parts. First, we need a hyper-
plane formulation as in Eq. (8). Second, we divide the
parameter space into accumulators that is small enough
so that the desired resolution is satisfied. Third, for the
accumulators, let every point in the observed data vote for
them. If the votes that an accumulator receives is more
than a selected threshold, we detect a hyperplane in the
observed data space as given by Eq. (7), where the values
of {f,, B, ... By} are given by the accumulator. Now we
introduce each part of the algorithm in details.

Hyperplane formulation

The FHT does not use Eq. (8) directly. Suppose that we
know the initial ranges of values {£,, S, ..., By} are cen-
tered at {P,, P,, ..., Py,} and with half-length {L,, L,, ...,
Ly} According to Eq. (8), we have

Mi FG)Li i, Bm_ Fol)
WM Li - WM W(O)LMm

=0 forallje Q,
i=1
)

where W(j) is a weighting scale used to ensure that

. i s Fi(j)L; .
zglalz(]) =1.Let X; =’f—:_ (i=1,..M), Wl((J']))L& = a;(j)

(i=1,..,M1), ao(j):—wlz%i)M and ay(j) = s B

(9) can be rewritten as

M
Zai(j)Xi +ay(j)=0 forallje Q.
i=1

In fact, it is not necessary for the dimension of the param-

eter space X to be equal to the dimension of observed sig-

nal, M. We use k to replace M for a more general
expression

(10)

K
Zai(j)xi +ay(j)=0 forallje Q,
i=1
where X; is the i-th dimension of the parameter space.

(11)

Each a,(j) is a function of observed feature points and is
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¢

Different geometries (lines or planes) in the 3D data space for corresponding bicluster patterns. In each table,
the shaded columns are covered by a bicluster. (a) A bicluster with constant values: represented by one of the lines that are
parallel to the y-axis and lie in the plane x = z (the T-plane), (b) a bicluster with constant rows: represented by the T-plane, (c)
a bicluster with constant columns: represented by one of the lines parallel to the y-axis, (d) a bicluster with additive coherent
values: represented by one of the planes parallel to the T-plane, (e) a bicluster with multiplicative coherent values: represented
by one of the planes that include the y-axis, and (f) a bicluster with linear coherent values: represented by one of the planes

that are parallel to the y-axis.

normalized such that Zf: ) a}(j)=1. The initial range for

each X; is an interval of length 2, with center at P;/L;. All

these ranges comprise a hypercube in the parameter space
(X oo X3)-

Vote counting scheme

As mentioned before, every point in the observed data
votes for supporting accumulators. We know that each
accumulator corresponds to a group of range values of

(X, X5, ..., X\y). For each point j in the observed data, if

I
Zai(j)Xi + ay(j) = 0 can be satisfied when the values of

i=1

(X, X,, ..., X)) lie in this accumulator, and it will give a
vote to this accumulator. An accumulator receiving votes
more than a threshold reveals a corresponding hyper-
plane in the observed data space.
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So, to determine whether an accumulator received a vote
from a point j in observed signals, we only need to deter-
mine whether a hypercube (accumulator) intersect with a

k
particular hyperplane Zai(j)Xi +ay(j) =0.Wecanusea
i=1
simpler conservative test to check whether the hyperplane
intersects the hypercube's circumscribing hypersphere.
Assume the center of the accumulator is at [C, ..., C, ] and

r is the radius of the hypersphere. We check whether

k
ao(j)+ Y ai()C; <7
i=1
If Eq. (12) is satisfied, gene j will give a vote to the corre-
sponding accumulator.

(12)

K-tree representation

For simplicity, we have assumed above that the parameter
space was directly divided into very small accumulators.
Actually, this is not necessary. The FHT algorithm recur-
sively divides the parameter space into hypercubes from
low to high resolutions. It performs the subdivision and
the subsequent "vote counting" is done only in hyper-
cubes with votes exceeding a selected threshold. This hier-
archical approach leads to a significant reduction in both
computational time and storage space compared to the
conventional HT.

For the FHT, we represent the parameter space as a nested
hierarchy hypercube. We can associate a k-tree with the
representation. The root node of the tree corresponds to a
hypercube centered at vector C, with side-length S,,. Each
node of the tree has 2* children arising when that node's
hypercube is halved along each of its k dimensions. Each
child has a child index, a vector b = [by, ..., b,], where each
b;is - 1 or 1. The child index is interpreted as follows: if a
node at level [ of the tree has center C;, then the center of
its child node with index [b,, ..., b;] is

CI+SZT+1+b, (13)

where §;,; is the side length of the child at level I+1 and
Sl+1 = Sl/2

Since we use a coarse-to-fine mechanism, for each accu-
mulator at different levels we need to make a test using Eq.
(12). For an accumulator of level I, the radius of its cir-

cumscribing hypersphere r is equal to +/kS; /2 . Based on

the K-tree structure, an incremental formula can be used
to calculate the left part of Eq. (12). If we divide the left
partof Eq. (12) by S;, the normalized distance can be com-

http://www.biomedcentral.com/1471-2105/9/209

puted incrementally for a child node at level [ with child
index [by, ..., b,] as follows,

k
1 a0) . N, (. Coli,
Ro() =3 +;alu) ol e
1 k
Ri(j) = 2R, () + ) . ai(idbr (15)

i=1
Test of Eq. (12) can now be expressed as: for the gene j and
a child node with child index [by, ..., b,] at level ], if

|Ri(j) < VE /2, (16)

gene j will generate a vote for this child node.

According to the above analysis, the FHT is a mapping
from an observed data space into a parameter space. Each
feature point in the data space generates "votes" for a set
of sub-areas (hypercubes) in the parameter space. A sub-
area in the parameter space that receives many votes
reveals the feature of interest. The FHT algorithm recur-
sively divides the parameter space into hypercubes from
low to high resolutions. It performs the subdivision and
the subsequent "vote counting" is done only in hyper-
cubes with the number of votes exceeding a selected
threshold. A hypercube with acceptable resolution and
with votes exceeding a selected threshold indicate a
detected hyperplane in the observed data.

The proposed geometric biclustering algorithm and
parameter selection

To summarize, when given a set of genes expression data
[Fo(j), F1()s -r Esii(D],j = 1, 2,..., N under diverse exper-
imental conditions, our geometric biclustering algorithm
can be summarized as follows:

Parameters that need to be predetermined:

(1) The minimum votes count "T" as threshold and the
desired finest resolution "q".

(2) A transformation that maps gene expression data
[Fo(G), F1(j), - Fy1(j)] into @ hyperplane in the parameter

space represented by iai(j)Xi +ay(j)=0 for j =
i=1

1,2,U,N. Based on the tratnsformation, determine the ini-

tial bound of each X; and the root hypercube.

Biclustering procedure:

(1) Map gene expression data onto the parameter space.
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(2) Compute the initial normalized distance from the
hyperplane to the root node and perform the voting pro-
cedure for the root node. For each gene, if Eq. (16) is sat-
isfied, add one to the vote count of the root node. If the
vote count for root node is larger than the threshold T and
the resolution is coarser than ¢, subdivide the root node
into the K-tree child nodes.

(3) Vote for each child node and subdivide them if
needed. A similar vote-and-subdivide mechanism is per-
formed for each new node until no new node appears.

(4) When there is no node with resolution equal to g and
the vote count larger than T, record the node with the fin-
est resolution. This is the most probable solution. When
there are several nodes with resolution equal to g and vote
counts larger than T, collect the planes associated with
these nodes that have the same genes into a bundle.

(5) For each bundle of hyperplanes, check the common
conditions (variables) and compare the hyperplanes with
the models corresponding to different types of biclusters.
A bundle of hyperplanes that are not consistent with any
patterns in Fig. 2 or the corresponding bicluster covers too
few samples will be discarded. If the bundle survives this
process, it will be output as a bicluster. Repeat this step
until all bundles are processed.

In the procedure above, there are two parameters: mini-
mum vote count "T" and the desired finest resolution "q".
The minimum vote count "T" denotes the minimum
number of genes in a bicluster. T depends on the experi-
ment objective and may be selected by the user. For exam-
ple, the minimum may be 4, that is, a bicluster must
contain at least 4 genes. The desired finest resolution "g"
depends on the variance of noise in the data. For a perfect
bicluster (for example, a perfect constant bicluster where
all values are equal), "g" can be arbitrarily large, that is,
one can use an arbitrarily fine resolution. However, in
practical applications, perfect biclusters are rarely found
and "gq" reflects how much noise (or inconsistency) is per-
mitted in the detected biclusters. If we wish to detect
strongly coherent biclusters (i.e., near perfect bicluster
with very little noise), g should be set to a large number.
Smaller ¢ can be used to detect biclusters that exhibit
more inconsistency due to noise. In general, larger ¢
results in biclusters of smaller size.

In many situations, one has no knowledge about the
noise in the data. An appropriate range of ¢ can be deter-
mined experimentally to return meaningful biclusters.
Recall that the FHT uses a coarse-to-fine mechanism. At
coarse resolution, there are fewer accumulator cells and
the number of hyperplanes detected is small. At finer res-
olution, there are more accumulator cells. However, in

http://www.biomedcentral.com/1471-2105/9/209

this case the accumulator cells are also smaller and it is
more difficult for a feature point to generate a hit. Many
accumulators therefore cannot gain enough votes (exceed-
ing the threshold) to ensure the existence of the corre-
sponding hyperplane. So, if g is set too large or too small,
fewer hyperplanes will be detected. Hence, the range of g
can be chosen to be one that returns a reasonably large
number of hyperplanes.

Computational complexity

For FHT, the following theorem from [34] limits the com-
putational complexity. The "thin tree" property resulting
from the theorem guarantees that the complexity of the
FHT does not go beyond the bound due to the chosen 4.

Theorem [34]:

Assume that all M hyperplanes in the parameter space intersect
at a single point C and that they are uniformly distributed in
orientation. Given a minimum vote threshold T, the number of
hypercubes of size q that can receive T or more votes is less than
some number K that does not depend on q", where

K =4K{ with K, = ceil ﬂ tan T +1
2 2M

The FHT algorithm is highly parallel. As shown, the
processing for the hypercubes or accumulators is inde-
pendent of each other. Furthermore, the intersection test
for a hyperplane does not depend on that of other hyper-
planes. Actually, in our implementation, some simple
multi-processing optimization, such as OpenMP or
OpenMPI library, can achieve a high level of speedup.

In the above discussion, we assume that all the possible
linear hyperlanes are to be detected using the FHT. In
practice, detecting a small portion of hyperplanes is
already enough for our biclustering algorithm. For exam-
ple, in a dataset [F,y(j), F1(j), ..., Fye (D] {i=1,2, ... N,

M=l
using Equation F, = z BiF; + By, we can find all the
i=1

biclusters covering F,. However, using Equation

F, = MZ‘I B;F; + By, with fi=0o0rtandtisascale i.e., a
i=1
constraint that requires all the non-zero gradients to be
equal, we can also find all the bicusters covering F,,. The
second equation can significantly lower the comptational
burden!. Another optimization direction is to take advan-
tage of the property of the gene expression data. Since the
gene expression data values are distributed in the range of
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M
[[5 5], the hyperplanes ZO.SX,-+20=O or
i=1

M
60X, + 20.3X1- +0.2 =0 do not have any practical sig-
i=2

1
nificance and can be disregarded. So scanning the dataset
to determine the range of hyperplane parameters before
biclustering can significantly lower the computational
burden.

In certain special cases, we can simplify the problem
according to the bicluster model. For example, if we

extract biclusters of constant row, we only need to detect

M
all the hyperplanes with ZaiX,- =0,4;=0,10r-1,and if

i=1
we extract multiplicative biclusters, we only need to detect
those hyperplanes without intercept.

In term of CPU time, our algorithm is computationally
intensive in its un-optimized general form. Based on the
complexity of the FHT, the computational demands of the
proposed biclustering algorithm depends on how many
biclusters exist in the dataset. To give an indication of the
computational cost, we run the un-optimized algorithm
on a small test dataset on a personal computer (Linux OS
with 2.0 G Intel Core 2 Duo processor and 1 GB memory)
and record the CPU time.

We randomly select 16 conditions in Human Lymphoma
Dataset to produce a 4026 x 16 matrix. The CPU time for
over 800 biclusters is 1953 seconds (32.55 minutes). We
can adjust the parameters to exclude small and noisy
biclusters and reduce the computing time. For example,
the CPU time reduces to 397 seconds (6.62 minutes) if we
discard biclusters with less than 8 conditions.

For larger dataset, we need to run our algorithm on a com-
puter cluster. For the entire 4026 x 96 Human Lymphoma
Dataset, we run our algorithm on a computer cluster of 8
nodes with 2 processors each and it takes about 22 hours.
Hence, the proposed algorithm is very time-consuming
for large datasets if we search through the entire high-
dimensional Hough space to obtain the optimal solution
and detect all possible additive and multiplicative coher-
ent patterns in the data.

The computing time can be substantially reduced if we
allow the solution to the sub-optimal. For example, we
can divide 96 conditions into 6 sets with 16 conditions in
each set. Then, only 39.7 (6 x 6.62) minutes are needed
on Linux computer described above for the biclustering
process. The biclusters from the 6 sets can then be com-
bined. Such a strategy has already been used in [18]. We

http://www.biomedcentral.com/1471-2105/9/209

can also consider two conditions at a time and then com-
bine sub-biclusters gradually to form large ones [32].
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GO: Gene Ontology, 2D: Two dimensional, 3D: Three
dimensional, NP: Non-deterministic polynomial time,
HT: Hough transform.
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Note

1 This method is easy to implement by only testing the
hyperplane/accumulator with equal non-zero gradients.
Assume there are t subranges for each £;. If we do not con-
sider the coarse-to-fine optimization of FHT, the first
equation need to process t M accumulator while the sec-
ond equation only need to process about 2*2M-1, In the
case of t = 5, M = 40, the computational burden of the sec-
ond scheme is 1.5*10-15 times that of the first scheme.
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Information for additive biclusters detection on the Human Lymphoma
Dataset. The parameters used in the proposed biclustering algorithm for
the Human Lymphoma Dataset are given.

Click here for file
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Additional file 2

All detected biclusters. A list of all biclusters with 1 showing corresponding
genes/arrays covered by the bicluster while 0 is the contrary.

Click here for file
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Additional file 3

GO annotation of six selected biclusters. The expression heat map and GO
annotation table of six biclusters are given here.
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Page 14 of 15

(page number not for citation purposes)



BMC Bioinformatics 2008, 9:209

Additional file 4

All detected biclusters with full data. All the detected biclusters with full
data are given here.
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Additional file 5

A bicluster of linear coherent values in the lymphoma dataset. A full size
image showing the linear coherent bicluster detected.

Click here for file
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2105-9-209-85.pdf]
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