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Abstract

Background: In metagenomic studies, a process called binning is necessary to assign contigs that belong
to multiple species to their respective phylogenetic groups. Most of the current methods of binning, such
as BLAST, k-mer and PhyloPythia, involve assigning sequence fragments by comparing sequence similarity
or sequence composition with already-sequenced genomes that are still far from comprehensive. We
propose a semi-supervised seeding method for binning that does not depend on knowledge of completed
genomes. Instead, it extracts the flanking sequences of highly conserved 16S rRNA from the metagenome
and uses them as seeds (labels) to assign other reads based on their compositional similarity.

Results: The proposed seeding method is implemented on an unsupervised Growing Self-Organising Map
(GSOM), and called Seeded GSOM (S-GSOM). We compared it with four well-known semi-supervised
learning methods in a preliminary test, separating random-length prokaryotic sequence fragments sampled
from the NCBI genome database. We identified the flanking sequences of the highly conserved 16S rRNA
as suitable seeds that could be used to group the sequence fragments according to their species. S-GSOM
showed superior performance compared to the semi-supervised methods tested. Additionally, S-GSOM
may also be used to visually identify some species that do not have seeds.

The proposed method was then applied to simulated metagenomic datasets using two different confidence
threshold settings and compared with PhyloPythia, k-mer and BLAST. At the reference taxonomic level
Order, S-GSOM outperformed all k-mer and BLAST results and showed comparable results with
PhyloPythia for each of the corresponding confidence settings, where S-GSOM performed better than
PhyloPythia in the > 10 reads datasets and comparable in the > 8 kb benchmark tests.

Conclusion: In the task of binning using semi-supervised learning methods, results indicate S-GSOM to
be the best of the methods tested. Most importantly, the proposed method does not require knowledge
from known genomes and uses only very few labels (one per species is sufficient in most cases), which are
extracted from the metagenome itself. These advantages make it a very attractive binning method. S-
GSOM outperformed the binning methods that depend on already-sequenced genomes, and compares
well to the current most advanced binning method, PhyloPythia.
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Background

With the advancement of technology, genome sequencing
projects are moving from the study of single genomes to
the examination of genomes in a community. This new
study, metagenomics, allows culture-independent and
sequence-based studies of microbial communities. A
metagenomic project generally starts by using Whole
Genome Shotgun (WGS) sequencing [1-6] on environ-
mental samples to acquire sequence reads, followed by
assembling sequence reads, gene prediction, functional
annotation and metabolic pathway construction. A neces-
sary step in metagenomics, which is not required in single
genome sequencing, is called binning. The binning proc-
ess sorts contigs and scaffolds of multiple species,
obtained from WGS sequencing, into phylogenetically
related groups (bins). The resolution of phylogenetic
grouping can vary from high levels such as domain, down
to low levels such as strain of a given microorganism,
depending on a number of factors such as the binning
method used, community structure and sequencing qual-
ity and depth [7]. As the community structure is inherent
in the nature of the environmental sample collected, and
sequencing quality and depth rely heavily on the sequenc-
ing technology and sample size, the major focus of com-
putational techniques is on the method of binning.

A number of binning methods are currently available that
fall into two broad categories: sequence similarity-based
and sequence composition-based. Sequence similarity-
based binning methods, for example BLAST, classify
sequences based on the distribution of BLAST hits of pre-
dicted genes to taxonomic classes. Composition-based
methods discriminate genomes by analysing the intrinsic
features of sequence encoding preferences, such as GC
content [8], codon usage [9] or oligonucleotide frequen-
cies [10-12], for different genomes. Different approaches
to extracting sequence features have been proposed. Some
composition-based binning methods include k-mer [11],
oligonucleotide-frequency-based clustering with Self-
Organising Maps (SOM) [13,14], PhyloPythia [15] and
TETRA [16,17], all of which have yielded promising
results. The k-mer method calculates the oligonucleotide
frequencies of all sequence fragments and compares them
to a reference set of completed genomes. Clustering of oli-
gonucleotide frequencies with SOM can be used in two
different ways: directly clustering the metagenomic sam-
ple sequences using different oligonucleotide frequencies
as features [13], or building an SOM classifier using
sequences in existing databases and then assigning
metagenomic samples to the closest matching node in the
classifier [14]. PhyloPythia follows a similar approach to
the SOM classifier method, building a classification
model from the sequenced genomes and assigning sam-
ple sequences to phylogenetic clades according to the sim-
ilarity of metagenomic sequence patterns. Two types of
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PhyloPythia models can be built, a generic model and a
sample-specific model. The generic model is constructed
using the sequence patterns of a reference set of isolated
genomes and the sample-specific model includes addi-
tional marker-gene labelled sequence fragments (around
100 kb length) from each of the dominant population of
the sample. In contrast, TETRA follows the SOM clustering
approach that does not require reference genomes. It bins
the species-specific sequences by comparing the pairwise
tetranucleotide-derived z-score correlations of every
sequence.

The above named binning methods can be divided, from
a machine learning perspective, into supervised and unsu-
pervised learning methods. Methods that build a classifier
using the knowledge of completed genomes belong to the
class of supervised learning methods, such as BLAST, k-
mer and the SOM classifier approach. However, consider-
ing the current amount of known genomes, which is
insufficient to represent the almost limitless microbial
genomes [18], the resultant under-representation of train-
ing samples can be detrimental to these supervised-learn-
ing methods. PhyloPythia, being the latest of the binning
methods addressed here, has been shown to be able to
classify sequence reads with great accuracy when training
data is highly relevant to the species being assigned, which
can either be from a set of reference genomes or using 100
kb length marker-gene labelled sequences, which may not
always exist to build a sample-specific model. Unsuper-
vised-learning methods do not have this dependence on
training data. TETRA falls into this category, but it focuses
on the long fosmid-sized 40 kb fragments and its all-verse-
all pairwise comparison matrix can quickly become
intractable for a large number of sequences. The direct
clustering approach with SOM was tested to separate 1 kb
and 10 kb sequence fragments derived from 65 bacteria
and 6 eukaryotes, but only the 10 kb tests showed clear
species-specific separations [13]. Nevertheless, without
the reference sequences, the results lack identifiable labels
to resolve for the clusters of sequence reads produced.

To circumvent dependence on the knowledge of com-
pleted genomes and provide meaningful clustering
results, we propose a semi-supervised seeding algorithm
that uses very small amounts of labelled samples,
extracted from metagenomes, for binning metagenomic
sequences. The seeding method is a post-processing
method that can be applied to an unsupervised clustering
algorithm of choice, for example, SOM, Growing Self-
Organising Maps (GSOM) [19], or the Incremental Grid
Growing Neural Network [20], which also provide dimen-
sionality reduction for data visualisation. Comparing the
clustering qualities of SOM and GSOM indicated that
GSOM has a better clustering quality and faster computa-
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tional speed, as confirmed by experiments conducted on
other datasets [21,22].

Therefore, in this paper, we implemented the proposed
seeding method on GSOM, henceforth abbreviated as S-
GSOM. The performance of S-GSOM for binning metage-
nomic sequences is demonstrated by applying it to simu-
lated metagenomic datasets. Preliminary tests were first
conducted to compare S-GSOM with the following well-
known semi-supervised learning methods: Constraint-
Partitioning K-Means (COP K-Means), Constrained K-
Means, Seeded K-Means and the Transductive Support
Vector Machine (TSVM) on the task of separating
sequence fragments created from 10, 20 and 40 prokaryo-
tic species randomly sampled from the NCBI genome
database. For a comparison with current binning meth-
ods, further tests of S-GSOM were performed using the
recently published simulated metagenomic datasets that
were created to evaluate the fidelity of metagenomic
processing methods [7].

Methods

Datasets preparation and data pre-processing for
separation of prokaryotic DNA sequences

Generation of independent simulated metagenomic data

The most updated NCBI database contains 488 completed
Archaea/Bacteria genomes [23]. Genome sequences of 10,
20 and 40 species were randomly selected from the NCBI
database. In total, seven random sets were independently
drawn from the database, replacing them each time. Three
sets were drawn for each of the 10 and 20 species datasets
and only one set for the 40 species dataset, considering the
limitations imposed by the available computing
resources. (For computational time estimation without
the seeding procedure, please refer to our previous publi-
cation [22]). For convenience, we abbreviated the datasets
created in the form of 'XSp-SetY" where 'X' denotes
number of species and 'Y" represents the number in the
draw. For example, the first dataset containing 10 random
species is denoted by the abbreviation '10Sp-Set1' and the

Discarded Sequence
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other datasets are named in the same manner. The lists of
species in all datasets can be found in supplementary
material [see Additional file 1].

The first step in pre-processing involves the extraction of
fragments from the collected datasets. Since rRNA and
tRNA sequences are very similar among different species
[24], they are likely to interfere with the clustering process
when nucleotide frequencies are used as training features.
Therefore, we take the precaution to reduce noise by
avoiding the inclusion of these RNA sequences. This noise
reduction is also valid in practical situations because all
these RNA sequences can be easily identified based on
sequence similarity against public databases, e.g. RDP
[25] or GenBank [23], and are excluded from the cluster-
ing process. Figure 1 contains an example for preparing
unlabelled input vectors and seeds for clustering algo-
rithms, and a typical extraction process is as follows:

1. Identify all rRNA and tRNA sequences in the genome.

2. Obtain 8-13 kb length seeding sequences that flank the
16S rRNA sequence (see later for more details on seeding
sequences). Ensure that a seeding sequence does not over-
lap other rRNA and tRNA sequences.

3. Remove all rRNA, tRNA and seeding sequences from
the genome to obtain initial sequence fragments.

4. Divide initial sequence fragments into non-overlapping
8-13 kb (determined randomly) length fragments. Frag-
ments shorter than 8 kb are discarded.

5. Nucleotide frequencies of each sequence fragments are
computed using a sliding window of the size of 4 bases
(tetranucleotide frequencies). A total of 256 (44) combi-
nations of nucleotide usages are represented in the vector
form of 256 dimensions.

Discarded Seed

Unlabelled Unlabelled G b s
Input Vector 1 Input Vector 2 Sefd
e 11kb 13 kb __‘ | L ‘
Groups of 16S Groups of tRNA _
tRNA rRNA or 23S rRNA
Figure |

An example for preparing unlabelled input vectors and seeds. Unlabelled input vectors and seeds are prepared by

avoiding the RNA sequences.
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6. Since the sequences were cut into random lengths
between 8 kb and 13 kb fragments, the tetranucleotide fre-
quencies also need to be normalised relative to the length
of the fragments (i.e. frequency per base).

The choice to use 8 kb as the minimum sequence length is
because the number of chimeric sequences becomes sig-
nificant for sequence length < 8 kb using the currently
available assemblers [7], and the chimeric sequences will
reduce the binning accuracy leading to meaningless
results. The same reason explains the use of > 8 kb
sequence length for the simulated metagenomic datasets
created in Mavromatis et al. [7]. The restriction of having
seed length between 8 kb and 13 kb is applied to provide
a standardised rule for all sequences, whether seed
sequence or not, in the generation of the artificial datasets.
The choice to use tetranucleotide frequency follows that
of the work of Abe et al. [13,14], who tested di-, tri- and
tetranucleotide frequencies as training features and found
that tetranucleotide frequencies have a better species sep-
aration among the three oligonucleotide frequencies. In
addition, Sandberg et al. [11] showed that a longer nucle-
otide sequence represents the genome more specifically
and Teeling et al. [16] mentioned that the correlations of
tetranucleotide usage patterns is high between intragen-
omic fragments and low between intergenomic frag-
ments. Therefore, the tetranucleotide frequency was used
as the training feature for the clustering algorithms.

Justification and identification of seeds

Prior to applying the semi-supervised learning methods
for binning of metagenomic sequences, small amounts of
labelled data or seeds are to be identified from the data-
sets of sequence fragments for training the classifiers.
However, exact taxons are only known for experimentally
identified species, which are still few in number, making
them impractical for metagenomic applications. Addi-
tionally, the labelled data should not depend on the exist-
ing completed genomes and should be informative
enough to describe the species. In this work, we employed
the flanking sequences of conserved 16S rRNA as seeds for
the semi-supervised clustering algorithm. The flanking
sequences of highly conserved 16S rRNA sequences can be
easily obtained from sequencing results or by Southern
blot hybridisation in the WGS genomic DNA library and
sequencing the positive clones. These flanking sequences
are often similar within, and only within, the closely
related species in terms of nucleotide frequency. This
property allows the discrimination of species at a medium
resolution level, although it is insufficient for binning
strains of the same species.

It is well known that 16S rRNA sequences are highly con-
served over the evolution of organisms, such that the dif-
ference between various species can be identified from the
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small number of base changes in the 16S rRNA sequences.
Some papers have exploited these small base changes to
estimate the number of species in their environmental
sequencing samples [2,26,27]. Due to the highly con-
served nature of 16S rRNA sequences, that have highly
similar nucleotide frequencies even across different spe-
cies, they cannot be directly used to distinguish species by
clustering that uses nucleotide frequency as the training
feature. We verified this by clustering sequence fragments
with the inclusion of 16S rRNA fragments, and all 16S
rRNA sequences tended to group together to form a sepa-
rate cluster (data not shown). However, the flanking
sequences of the 16S rRNA sequences, which can be gen-
erated by sequencing with universal primers, do possess
enough variations in nucleotide frequency to be used to
identify different species, even for new species. Hence, the
flanking sequences of the 16S rRNA sequences are excel-
lent candidates for seeds. Nevertheless, due to the nature
of pre-processing for obtaining sequence fragments, if
there are other rRNA and tRNA sequences in a genome
within the length of the sequence fragment on either end
of a 16S rRNA sequence, the seeding sequences will be dis-
carded and the genome becomes unseeded. Figure 1
shows one case where the right hand-side seed is dis-
carded because the length of that flanking sequence is
shorter than the pre-determined length (randomly chosen
between 8 and 13 kb). The 9 kb length of the left-hand-
side seed was also determined by a random generator. On
the other hand, all seeds in the benchmark datasets were
generated using a length of 10 kb.

Self-organising maps and growing self-organising maps

The Self-Organising Map (SOM) [28,29] was originally
developed to model the cortexes of more developed ani-
mal brains. Subsequently, it became a very popular tech-
nique in the field of data mining. It is an unsupervised
clustering algorithm which can visualise unlabelled high
dimensional feature vectors into groups on a lattice grid
map. This is achieved by projecting high dimensional data
onto a one-, two- or three-dimensional feature map that
has a pre-defined regular lattice structure. In the map,
every lattice point represents a node whose weight vector
has the same dimension as the input vectors. The map-
ping preserves the data topology, so that similar samples
can be found close to each other in the grid map. The
grouping of samples can be visualised by comparing the
distance between nodes or simply the inputs that have
been projected onto the same node. SOM uses a static lat-
tice structure where the size and shape of the lattice is
defined before training and remains unchanged through-
out training. The SOM algorithm separates training into
three phases: initialisation of the map, ordering and fine
tuning. The initialisation method of node weight vectors
and choice of number of nodes in the map can be crucial
to achieve a good quality clustering result for SOM. Gen-
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erally, the principle components analysis (PCA) is used
for initialising the SOM [30] by positioning a fully
unfolded map on the plane formed by the first two prin-
ciple vectors in the input space. The number of nodes,
which represents the resolution of the map, needs to be
determined by the user. In the ordering and fine tuning
phases, each input is presented to the map and a 'winning'
node, which has the smallest Euclidean distance to the
presented input, is identified. The weight vector of the
winning node and its neighbouring nodes are updated by

w(t +1) = w(t) + a x h x [x(k) - w(t)]. (1)

where w is the weight vector of the node, x is the input vec-
tor (w, x € RP where D is the dimension), k is the index of
the current input vector, ¢ is the learning rate and h is the
neighbourhood kernel function.

The Growing Self-Organising Map (GSOM) [19,31] is an
extension of SOM. It is a dynamic SOM, which overcomes
SOM's weakness of a static map structure. As with SOM,
GSOM is used for clustering high dimensional data and
employs the same weight adaptation and neighbourhood
kernel learning as SOM, but has a global parameter of
growth named Growth Threshold (GT) that controls the
size of the map.

The Growth Threshold is defined as
GT = - D x In(SF). (2)

where D is the dimensionality of data and SF is the user-
defined Spread Factor that takes values [0,1], with O repre-
senting minimum and 1 representing maximum growth.

There are four phases of GSOM training: initialisation of
the map, a growing phase and two smoothing phases. In
the initialisation phase, the GSOM is initialised with a
minimum single 'lattice grid', depending on whether the
rectangular or hexagonal network topology is used. For
GSOM that uses a rectangular topology, the minimum
single lattice grid consists of four nodes that are connected
as a rectangle; when using the hexagonal topology initial-
isation, there are seven nodes that form a hexagon with an
additional node in the centre that is linked to all six other
nodes. More details of initial lattice are described in
[19,30]. During the growing phase, every node keeps an
accumulated error counter and the counter of the winning
node (E,;,..;) is updated by

Eovinner (t +1) = Einner (t) + | |x(k) - Wyinner (t) | | (3)
If the winning node is at the boundary of the current map

and E,;,,,,., exceeds GT, new nodes will be added to the sur-
rounding vacant slots of the winning node. Weight vectors
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of the new nodes are created by interpolating or extrapo-
lating the weight vectors of existing nodes around the win-
ning node. In the case when E, . exceeds GT and the
winning node is not a boundary node, E,,,,,, is evenly dis-
tributed outwards to its neighbouring nodes. The two
smoothing phases are for finetuning the weights of nodes
and no new node will be added to the map. In this paper,
the 2-D hexagonal lattice was used for GSOM, since the
hexagonal lattice yields better data topology preservation
[32].

Seeded growing self-organising map algorithm

It is sometimes difficult to visually identify clusters in a
trained GSOM. Previously, we developed a region identi-
fication algorithm to automatically identify the clusters
based on the distance map which visualises the distance of
the weight of node to each of its neighbour nodes [33].
However, in binning, sequence fragments of closely
related species will most likely have homologous
sequences present in between the clusters that occlude the
cluster boundaries in the distance map and cause the
region identification algorithm to fail to identify the cor-
rect clusters. Therefore, a method is needed to identify
clusters in GSOM to make the clustering approach of
GSOM practical for binning.

The core concept of Seeded GSOM (S-GSOM) is to auto-
matically identify clusters in the feature map using the
already-available labelled samples (seeds). The algorithm
consists of three core procedures. Firstly, the very small
amounts of available or selected seeds (labelled input vec-
tors) are combined with other unlabelled samples (unla-
belled input vectors). Secondly, the combined samples
(input vectors) are presented to GSOM for training in
which the seeds are treated the same as the unlabelled
data. Finally, after the normal phases of GSOM training,
S-GSOM performs an extra phase, the cluster identifica-
tion phase, as post-processing. This phase identifies clus-
ters based on the locations of seeds in the trained GSOM
and the specified amount of nodes to be clustered. The
flowchart of the overall S-GSOM algorithm is given in Fig-
ure 2a.

In the cluster identification phase, the seeded nodes,
which are nodes that contain the seeds, are identified in
the GSOM. An assigning process will then assign the un-
clustered nodes (nodes that have not been assigned to a
cluster) to clusters. Figure 2b provides the pseudo-code of
this assigning process. The number of nodes that will be
assigned to a cluster is specified by the Clustering Percent-
age (CP), which is the percentage of the number of clustered
nodes to the total number of nodes. The assigning process first
creates the initial set of clusters with only the seeded
nodes (steps 1 and 2 of pseudo code). The process then
iteratively assigns the un-clustered nodes, one by one, to
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Unlabelled /
Data 1 Mark all seeded nodes as clustered nodes
* 2 Put the clustered nodes into clusters according to
Labelled . the labels of seeds
Data | —# Combined data set 3 While the current CP is less than the user-defined CP {
(Seeds) ‘ 4 Dy = +infinity
5 Foreachiin all current clustered nodes {
GSOM clustering 6  For each jin all un-clustered neighbour nodes of i {
7 Calculate D;;
o 8 if j has no samples
Cluster Identification Phase 9 D;, = PenaltyFactor * D;;
= = ¢~ 1 10 if Dij< Dpin {
| ————1 || |11 Dme-Dy
Seed identification in 12 nextAssignNeuron = N;;
| the feature map | }
| i | }}
User | | 13 Assign nextAssignNeuron to the cluster of the closest
((j:elfmed _L Bssin -ciislersd clustered node and mark it as clustered node
uster }
nodes to clusters
Percentage | |
(CP) | | Where
Dmin: is the minimum distance
Ry i« —#— - —d Dij: is the distance between node i and its
neighbour node j
Clustered GSOM Nij: is the un-clustered neighbour node j of node i
Results
(a) (b)
Figure 2

The S-GSOM algorithm. (a) Schematic diagram of the clustering process of S-GSOM; (b) The pseudo code for node assign-

ing process in S-GSOM.

clusters. In each iteration, a set of un-clustered nodes that
is adjacent to the clustered nodes is identified. The node
within the set that is the shortest Euclidean distance from
its neighbouring clustered node will be assigned to the
cluster of that clustered node (steps 3 to 13 of pseudo
code). However, nodes that do not contain any sample
can exist, and these empty nodes most likely represent the
boundary of clusters. Therefore, a penalty factor greater
than one is multiplied to the actual distance when calcu-
lating the distance from an empty node to clustered nodes
(step 9 of pseudo code). This will force the algorithm to
avoid clustering empty nodes, thus favourably completing
the assignment of its own cluster before jumping into
other clusters. It is empirically observed that clustering
results are not very sensitive to the penalty factor between
values of 2 and 5, and a penalty factor value of 2 was used
in all our experiments.

To illustrate the role of S-GSOM in binning, Figure 3
shows the schematic diagram that explains how S-GSOM

fits into the whole binning process. In the binning proc-
ess, a bin is created for all seeds that are obtained from
one 16S rRNA that is the phylogenetic marker of a taxon.
A bin may contain multiple seeded nodes that contain the
seed sequences. In the process of assigning labels to unla-
belled nodes, the taxon label of the seeded node needs to
be determined. It is straightforward when there are only
seeds that come from the same taxon. However, when
seeds in a node come from different taxa, the node will
have the label of the taxa which the majority of seeds
belong. And if the numbers of seeds for all taxa are the
same, e.g. 2 seeds are in the same node, one belongs to
taxon A but the other one belongs to taxon B, all seeds are
discarded.

Another semi-supervised version of GSOM was also devel-
oped by two of the co-authors, focusing on the creation of
a GSOM dlassifier from data with up to 40% of missing
labels and 25% of missing attribute values [34]. Two other
methods are also conceptually related to S-GSOM. Seeded
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16S rRNAs
Bins at
specific taxon
Figure 3

An overview of binning process using S-GSOM.

Region Growing (SRG) is a concept known in Computer
Vision in which an image was grown from the known
seeds (pixels or regions). For example, in Adams and
Bischof [35], segmentation of images was achieved by
incrementally assigning pixels to the seeds. Although the
fundamental concept in SRG is similar to S-GSOM, there
are the following major differences:

¢ The locations of the seeds in nodes are determined by
the base clustering algorithm in S-GSOM, in contrast to
SRG where the pixels are selected on the image as seeds.
Therefore, seeds with the same label will all be connected
in SRG whereas in S-GSOM they, and the resulting clus-
ters, may scatter.

¢ S-GSOM compares the Euclidean distance between the
border nodes of the clustered sets with its adjacent nodes
of the un-clustered sets. SRG compares the mean grey
value of the clustered sets with the surrounding pixels in
the un-clustered sets.

e S-GSOM provides CP as the stop condition but SRG
stops when all pixels have been allocated to clustered sets
(equivalent to CP = 100% only).

The other related method is a semi-supervised SOM algo-
rithm based on label propagation in a trained high reso-

lution SOM [36]. It assigns a label vector, which contains
the probabilistic memberships of the node in the availa-
ble clusters, to each node. Batch training is performed by
updating label vectors of all nodes through a probabilistic
transition matrix, derived from distances between nodes.
The algorithm stops when there is no change to any labels
of unclassified nodes and all unlabelled nodes are classi-
fied to one of the clusters. This algorithm is similar to S-
GSOM in that it also determines the unlabelled samples
by propagating the label information from small amounts
of labelled samples. However, the objectives of the two
algorithms are different, leading to the following addi-
tional differences between the algorithms:

¢ The intention of S-GSOM is to stop the assignment
before reaching the cluster boundaries, which is poten-
tially the mixing region of classes in the application of
binning. Alternatively, S-GSOM can be considered as a fil-
tering algorithm to filter out the noisy sequences which
were clustered by the normal GSOM. The label propaga-
tion of SOM stops when all nodes are clustered and the
algorithm converges.

¢ The partial assignment feature of S-GSOM assists users
to identify clusters without seeds (this will be discussed in
the Results section), whereas the label propagation of
SOM will form the clusters only with the given labelled
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samples, and thus cannot be used to identify sequences of
unknown organisms.

e S-GSOM requires less computational power because it
only operates on the surrounding nodes of clustered
nodes in each step, whereas the label propagation of SOM
updates all nodes in each iteration.

Results

Semi-supervised learning methods for binning

In order to provide an independent evaluation from the
datasets used in Mavromatis et al. [7], we generated data-
sets that have different sizes, species and equal abundance
to mimic multi-class datasets for testing other semi-super-
vised clustering algorithms on species separation.
Genomic sequences were randomly sampled from the
488 completed microbial genomes available in the NCBI
genome database (as of May 2007), which include both
Archaea/Bacteria genomes [23]. The sampled prokaryotic
sequences were cut into random fragments between 8 kb
and 13 kb in length, and the tetranucleotide frequency of
each fragment was computed (as outlined in the Methods
section). A total of 7 datasets were created, three of which
contain 10 species, another three contain 20 species and
one contains 40 species [see Additional file 1].

Four other well-known semi-supervised clustering algo-
rithms, COP K-means [37], constrained K-means [38],
seeded K-means [38] and the Transductive Support Vector
Machine (TSVM) [39,40] [see Additional file 1], were used
here alongside S-GSOM as a feasibility study of semi-
supervised methods for binning metagenomic sequences.
Some features of the proposed S-GSOM are explained
here. Other semi-supervised algorithms are described in
the literature. The choice of the user-defined parameter
called Clustering Percentage (CP), used to specify the per-
centage of nodes that will be assigned to the seeded clus-
ters relative to the total number of nodes in the feature
map, was determined through experimental studies. As in
our previous investigation [22] and in Abe et al. [13], it
was identified that ambiguity of sequence fragments for
closely related species occurred mostly at the cluster bor-
ders. An appropriate level of CP is necessary in order to
avoid assigning too many sequence fragments and conse-
quently incorrectly assigning fragments that are highly
ambiguous. Preventing the algorithm from assigning
ambiguous fragments is desirable, since it is very unlikely,
even in a highly sophisticated procedure, to gather
enough information to confidently distinguish the species
of these highly ambiguous fragments. It was noted in our
binning experiments that the clustering performance of S-
GSOM declined when the CP was higher than 55% (Fig-
ure 4). While more than 80% of sequence fragments were
assigned in most cases at CP = 55%, there was little reason
for increasing the CP further to assign the remaining small
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amounts of fragments and taking the high risk of frag-
ments being assigned inaccurately. Therefore, CP = 55%
was used throughout the experiments in this paper. It
should be noted that it is the intrinsic nature of GSOM
that not all nodes have the same number of clustered
sequence fragments. Furthermore, in the node assignment
process of S-GSOM, nodes that clustered the highest den-
sity of sequence fragments tend to be assigned first. There-
fore the amount of clustered sequences is not linearly
proportional to the clustering percentage CP. A graph in
Section 8 of the supplementary materials is provided to
illustrate this [see Additional file 1]. One can also consider
CP as a confidence threshold, analogous to the p-value in
PhyloPythia, and opt to use a higher CP value to assign
more contigs to bins with lower confidence, where a high
CP value is equivalent to a low p-value in PhyloPythia.

The clustering performance of the semi-supervised algo-
rithms were measured by two popular methods of evalu-
ating multi-class clustering quality to ensure the validity
of the results: Adjusted Rand Index [41] and Weighted F-
measure [42] [see Additional file 1]. These methods com-
pare the clustering performance of algorithms by the cal-
culated indices. A higher index indicates a better
clustering accuracy, and a larger difference between
indexes means more significant results. The implementa-
tion and settings for semi-supervised algorithms were as
below (source codes and programs for all in-house imple-
mented algorithms are available by contacting the corre-
sponding author):

1. COP K-means, Constrained K-means and Seeded K-
means, which were implemented as described in litera-
ture, were trained with k-centres where k equals to the
number of species in the dataset.

2. TSVM used the processing methods laid out for multi-
class problems [40] and SVM-Light package [39,43].

3. S-GSOM was implemented as described in this paper.
All results in this paper were obtained using the GSOM
settings as specified in Section 7 of the supplementary
materials [see Additional file 1].

In the above methods, different runs of random initialisa-
tion of the COP K-means and S-GSOM can lead to varied
results. As Constrained K-means and Seeded K-means use
the labelled sample for initialisation, there is no such
issue with these methods. The results for COP K-means
are the best results in 100 runs, with different random ini-
tialisation of the k cluster centres. Different initialisations
for GSOM can result in different maps. However, the ini-
tialisation effect on GSOM is much less than on SOM, as
GSOM starts with a minimum node structure in the begin-
ning of training to allow for fast unfolding of the map;
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Identification of an appropriate Clustering Percentage (CP). Five datasets for each of 5, 10 and 20 species are ran-
domly sampled. The averages of S-GSOM's clustering performance for the datasets are plotted against Clustering Percentage
(CP) values. A trend of decreasing in clustering performance with increasing CP can be noted. A compromised value of CP =
55% is marked where both the number of assigned nodes and clustering performance are high.

twisted maps are less common in GSOM [21]. Further-
more, different initialisation in GSOM will only have a
minor effect on the final cluster formation for a well-
ordered map. In all experiments reported in this paper,
initialisation for all normalised dimensions was fixed at
the mid value 0.5 to ensure repeatability.

The results of binning artificially generated fragments
using different semi-supervised learning methods are tab-
ulated in Table 1; the algorithm with the highest values of
the two measures is shown in bold. The S-GSOM visuali-
sation of binning sequences of 10Sp_Set1, 20Sp_Set1 and
40Sp_Set1 are provided in Figure 5.

S-GSOM showed consistently superior performance on
both measures of clustering quality in all datasets tested,
with the exception of Constrained K-means on the ARI
measure for the 10Sp_Set3 dataset. TSVM has shown con-
siderably worse performance among the algorithms.
Although proposed as a semi-supervised method, TSVM is
derived from the fully supervised algorithm SVM. There-
fore, we suspect that insufficient labelled data signifi-

cantly reduces its capability to classify correctly. The
superior performance of S-GSOM is also attributed to the
use of the variable CP, offering the flexibility of not assign-
ing highly ambiguous fragments that are likely to overlap
with other species. At CP = 55% between 75% and 90% of
sequence fragments were assigned, whereas when all frag-
ments were assigned (CP = 100%) the performance was
similar to other algorithms. This shows S-GSOM's ability
to filter out the noisy fragments to achieve better cluster-
ing performance.

We have also considered the 20-species datasets as an
example to analyse the resolution of binning with S-
GSOM. In the 20-species results, an average of 82% of
fragments were assigned at CP = 55% and of these an aver-
age of 92% were correctly assigned to their seeds (species).
The distribution of sequence fragments according to spe-
cies is shown in Figure 5b. Nodes that contain fragments
from more than one species are coloured grey and num-
bered with the number of species it represents. The fact
that fragments that belong to different species were being
clustered to the same node is attributed to the high simi-
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Figure 5

Resulted GSOM maps of randomly sampled species. The figure illustrates the GSOM results of clustering sequence
fragments according to species: (a) 10Sp_Setl, (b) 20Sp_Set| and (c) 40Sp_Set|. Each hexagon represents a single node. If it
only contains a single species, it is displayed in a colour that uniquely identifies the species. A node without a letter means that
there is no sample located in it. The grey node represents two or more species in the node and the number of species is dis-
played on the node.
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Table I: Clustering performance of semi-supervised algorithms. Performance is measured by the Adjusted Rand Index (ARI) and
Weighted F-measure (WF). Results for COP K-means are the best results in 100 runs with different initial k cluster centres.

COP K Constrained K Seeded K TSVM S-GSOM-55

ARI WEF ARI WF ARI WF ARI WEF ARI WF
10Sp Set | 0.84 0.94 0.84 0.94 0.84 0.93 0.25 0.59 0.85 0.95
10Sp Set 2 0.89 0.96 0.79 0.90 0.78 0.90 0.41 0.69 0.93 0.97
10Sp Set 3 0.58 0.83 0.85 0.93 0.84 0.93 0.27 0.62 0.83 0.93
20Sp Set | 091 0.90 0.77 0.82 0.76 0.82 0.45 0.65 0.97 0.96
20Sp Set 2 0.76 0.82 0.70 0.79 0.67 0.79 0.43 0.62 0.83 0.89
20Sp Set 3 0.8l 0.89 0.75 0.86 0.75 0.86 0.46 0.67 0.97 0.98
40Sp 0.58 0.76 0.71 0.85 0.68 0.84 0.24 0.56 0.83 0.91

larity of nucleotide frequencies between very closely
related species. For example, species NC_007146 (Haemo-
philus influenzae 86-028NP) and NC_008309 (Haemo-
philus somnus 129PT) are represented by nodes with labels
'C6' and 'C7' respectively. There was a significantly higher
number of grey nodes at the boundary of these two spe-
cies than of others. Further taxonomical examination of
these two species revealed that they are phylogenetically
close and are in the same family, Pasteurellaceae. 1t is also
identified that all seeds of these species are located near
the boundaries of clusters. This further highlights the
importance of obtaining seeds in non-boundary regions.

Figure 6

A prominent advantage of the proposed seeding method
compared with other semi-supervised clustering algo-
rithms is the ability to identify a small number of species
that do not have any fragment that qualifies as a seed. In
order to demonstrate this advantage, an iso-CP (constant
CP contours) plot is shown in Figure 6a, generated with
sequence fragments from 5 species (for clarity of presenta-
tion) in which there is one unseeded species and the seeds
of other species are represented by unique colours. Nodes
in charcoal colour represent nodes that will be assigned
when CP = 27% and dark grey nodes at the recommended
value of CP = 55%, light grey at CP = 77%, and white at
CP = 100%, respectively. Figure 6b shows the allocation of
nodes to seeds at CP = 55%, where it can be seen together
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lllustration of exploring an unseeded cluster. (a) The 5-species S-GSOM map. The seeded nodes are shown with unique
colours and labels. Nodes in charcoal colour represent nodes that will be assigned when CP = 27% and dark grey nodes at CP
= 55%, light grey at CP = 77%, and white at CP = 100%. (b) Inter-node distance map with nodes assigned at CP = 55%.
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with Figure 6a that there is a largely unassigned region at
this point, and increasing the CP to 77% will result in a
rapid assignment of many nodes. This situation is most
likely when a species is relatively abundant, but does not
have a seed to allocate nodes to. However, incorrect
assignment of nodes can sometimes occur at a low CP. For
instance, Figure 6b shows a protrusion of species '1' into
the unassigned region, which actually belongs to species
'5' that does not have any seed.

Binning of sequence fragments in simulated metagenomic
datasets

Three simulated metagenomic datasets, which vary in rel-
ative abundance and number of species, were created by
Mavromatis et al. [7] and placed in the FAMeS database
[44] to facilitate benchmarking of metagenomic data
processing methods, which include, but are not limited
to, binning methods. The sequence fragments in the sim-
ulated datasets were assembled using three commonly
used sequence assembling programs, Arachne [45], Phrap
[46] and JAZZ [47] at the U.S. Department of Energy, Joint
Genome Institute. In this section of the experiment, we
test the performance of S-GSOM in binning against three
binning methods: BLAST, k-mer and PhyloPythia,
reported on the datasets [see Additional file 1].

The three simulated datasets can be designated as being
Low Complexity, Medium Complexity or High Complex-
ity. The Low Complexity (simLC) dataset is dominated by
one near-clonal species together with a few low-abun-
dance ones, which simulates a microbial community in
an environment such as a bioreactor [48,49]. The Medium
Complexity (simMC) dataset mimics a community struc-
ture similar to an acid mine drainage biofilm [1], which
consists of more than one dominant species flanked by
low-abundance ones. The High Complexity (simHC)
dataset, on the other hand, does not include any domi-
nant populations.

Two considerations were taken into account when com-
paring the reported binning results with S-GSOM. Firstly,
the results in [7] showed that sequence reads assembled
by JAZZ produce a very small number of binned contigs
compared to the other two assemblers Arachne and
Phrap, which greatly diminishes the purpose of binning.
Therefore, fragments assembled by JAZZ are excluded
from our analysis. Secondly, the simHC dataset resembles
a complex community structure that can be common in
reality and a well-performing binning method is therefore
highly desirable. However, a complex community that has
no dominant populations has insufficient DNA sequences
of the same species to form longer contigs. As reported in
literature [7,16], composition-based analysis requires a
sufficiently long sequence length to ensure the accuracy of
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binning. Therefore, the simHC dataset is also excluded
from our analysis.

Like other binning methods, S-GSOM can form bins at
different taxonomic levels. Bins that have different labels
in a lower taxonomic level may belong to the same higher
taxonomic level and can be combined to form higher tax-
onomic bins, thus accuracy is higher but at the cost of
lower taxonomic resolution. For the purpose of fair com-
parison, all methods need to be compared at the same tax-
onomic level of binning. Binning at a very high level
clearly has no significance, therefore the results are com-
pared at the order level here and results for comparing at
other taxonomic levels are included in the supplementary
materials [see Additional file 1].

Two confidence settings of S-GSOM (high confidence -
CP = 55% and low confidence - CP = 75%) were tested on
the simulated metagenomic data, which correspond to
two different settings of PhyloPythia. The S-GSOMs were
trained using parameters specified in Section 7 of the sup-
plementary materials and the final feature maps are also
provided there. The binning results of S-GSOM, PhyloPy-
thia, k-mer and BLAST on the simLC (Tables 2 and 4) and
the simMC (Tables 3 and 5) datasets are reported here. At
the order level, the results for a different complexity data-
set are shown in two separate tables, one for binning con-
tigs greater and equal to 8 kb length and one for binning
contigs with at least 10 reads. Details of the datasets at dif-
ferent taxonomic levels are also provided in Section 1 of
the supplementary materials. Performance evaluation
results at class level and family level are included in Sec-
tion 6 of the supplementary materials and all contig
assignments can be downloaded from S-GSOM
homepage [50]. Note that the published results in Mavro-
matis et al. used simple averages of all bins regardless of
their sizes (number of contigs in a bin). Here we use a
weighted average that gives higher weighting to larger bins
to better reflect the amount of correctly binned contigs.
The exact step of performance evaluation is provided in
Section 5 of the supplementary materials.

The results in Table 2 and 3 showed that S-GSOM per-
formed reasonably for binning contigs longer than 8 kb,
where it is more accurate than all settings of k-mer and
BLAST binning methods, but was outperformed by Phy-
loPythia in both confidence settings (CP = 75% vs p = 0.5
and CP = 55% vs p = 0.85) regardless of data complexity
and the assembler used. Nevertheless, S-GSOM still per-
formed better than PhyloPythia for the simMC, particu-
larly in terms of sensitivity, i.e. having a higher true
positive rate, when the reference taxonomic level was at
the family level (see Section 6(ii) of the supplementary
materials). While PhyloPythia performed best for all > 8
kb tests, the S-GSOM binning method was the best-per-
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Table 2: Binning summary for Low Complexity datasets for contigs larger than 8 kb.

Assembler  Method Bins  Binned Contigs  Total #Contigs  %of BinContigs ~ #ofPred NotlnAct wSp wSn

Arachne kmer (7 mer) 0 0 202 0 85 - 0.000
Arachne kmer (8 mer) 0 0 202 0 149 - 0.000
Arachne BLAST distr | 0 0 202 0 0 - 0.000
Arachne BLAST distr 2 0 0 202 0 0 - 0.000
Arachne S-GSOM (CP = 55%) | 141 202 69.8 0 1.000 0.698
Arachne gen PhyloPythia (p:0.85) | 168 202 83.17 0 1.000 0.832
Arachne ssp PhyloPythia (p:0.85) | 186 202 92.08 0 1.000 0.921
Arachne S-GSOM (CP = 75%) | 180 202 89.11 0 1.000 0.891
Arachne  gen PhyloPythia (p:0.5) | 201 202 99.5 0 1.000 0.995
Arachne  ssp PhyloPythia (p:0.5) I 201 202 99.5 0 1.000 0.995
Phrap kmer (7 mer) 0 0 229 0 129 - 0.000
Phrap kmer (8 mer) 0 0 229 0 154 - 0.000
Phrap BLAST distr | 0 0 229 0 0 - 0.000
Phrap BLAST distr 2 0 0 229 0 0 - 0.000
Phrap S-GSOM (CP = 55%) | 157 229 68.56 0 1.000 0.686
Phrap gen PhyloPythia (p:0.85) I 185 229 80.79 0 1.000 0.808
Phrap ssp PhyloPythia (p:0.85) I 205 229 89.52 0 1.000 0.895
Phrap S-GSOM (CP = 75%) | 204 229 89.08 0 1.000 0.891
Phrap gen PhyloPythia (p:0.5) | 227 229 99.13 0 1.000 0.991
Phrap ssp PhyloPythia (p:0.5) 1 227 229 99.13 0 1.000 0.991

Total#Contigs: Total number of contigs in the dataset; %ofBinContigs: The percentage of contigs binned; #ofPredNotInAct: The number of contigs
predicted as a taxon that is not present in the dataset, which are treated as the un-binned contigs; wSp: Weighted specificity; wSn: Weighted

sensitivity.

forming method when used to bin contigs that have at
least 10 reads (Tables 4 and 5).

Considering the fact that S-GSOM is the only one
amongst the tested binning methods that does not use
any knowledge of completed genomes, this performance
has demonstrated its feasibility, particularly for analysing

metagenomic communities that contain a number of
unknown organisms that lack similarity to known
genomes. S-GSOM has proved itself competitive with the
most sophisticated binning algorithm, PhyloPythia, over
which S-GSOM has an advantage in being easier and faster
to build because it does not require the use of reference
genomes for training.

Table 3: Binning summary for Medium Complexity datasets for contigs larger than 8 kb.

Assembler  Method Bins  Binned Contigs  Total #Contigs  %of BinContigs ~ #ofPred NotlnAct wSp wSn
Arachne kmer (7 mer) 0 0 301 0 47 - 0.000
Arachne kmer (8 mer) 0 0 301 0 191 - 0.000
Arachne BLAST distr | 0 0 301 0 0 - 0.000
Arachne BLAST distr 2 0 0 301 0 0 - 0.000
Arachne S-GSOM (CP = 55%) 2 220 301 73.09 0 1.000 0.731
Arachne gen PhyloPythia (p:0.85) 2 242 301 80.4 0 1.000 0.804
Arachne ssp PhyloPythia (p:0.85) 2 242 301 80.4 0 1.000 0.804
Arachne S-GSOM (CP = 75%) 2 279 301 92.69 0 1.000 0.927
Arachne gen PhyloPythia (p:0.5) 2 301 301 100 0 1.000 1.000
Arachne  ssp PhyloPythia (p:0.5) 2 301 301 100 0 1.000 1.000
Phrap kmer (7 mer) 0 0 401 0 84 - 0.000
Phrap kmer (8 mer) 0 0 401 0 271 - 0.000
Phrap BLAST distr | 0 0 401 0 0 - 0.000
Phrap BLAST distr 2 0 0 401 0 0 - 0.000
Phrap S-GSOM (CP = 55%) 2 318 401 793 0 1.000 0.793
Phrap gen PhyloPythia (p:0.85) 2 301 401 75.06 0 1.000 0.751
Phrap ssp PhyloPythia (p:0.85) 2 295 401 73.57 0 1.000 0.736
Phrap S-GSOM (CP = 75%) 2 367 401 91.52 0 1.000 0915
Phrap gen PhyloPythia (p:0.5) 2 399 401 99.5 I 1.000 0.995
Phrap ssp PhyloPythia (p:0.5) 2 399 401 99.5 1 1.000 0.995

Page 13 of 17

(page number not for citation purposes)



BMC Bioinformatics 2008, 9:215

http://www.biomedcentral.com/1471-2105/9/215

Table 4: Binning summary for Low Complexity datasets for contigs with at least 10 reads.

Assembler  Method Bins  Binned Contigs  Total #Contigs  %of BinContigs  #ofPred NotInAct wSp wSn

Arachne kmer (7 mer) 0 0 367 0 168 - 0.000
Arachne kmer (8 mer) 0 0 367 0 312 - 0.000
Arachne BLAST distr | 0 0 367 0 0 - 0.000
Arachne BLAST distr 2 0 0 367 0 0 - 0.000
Arachne S-GSOM (CP = 55%) 3 295 367 80.38 0 1.000 0.798
Arachne gen PhyloPythia (p:0.85) 2 214 367 5831 0 1.000 0583
Arachne ssp PhyloPythia (p:0.85) 2 236 367 64.31 0 1.000 0.638
Arachne S-GSOM (CP =75%) 3 343 367 93.46 0 0.950 0.926
Arachne gen PhyloPythia (p:0.5) 2 292 367 79.56 0 1.000 0.796
Arachne ssp PhyloPythia (p:0.5) 2 296 367 80.65 0 1.000 0.798
Phrap kmer (7 mer) 2 3 482 0.62 159 1.000 0.000
Phrap kmer (8 mer) 3 17 482 3.53 281 1.000 0.000
Phrap BLAST distr | 0 0 482 0 0 - 0.000
Phrap BLAST distr 2 0 0 482 0 I - 0.000
Phrap S-GSOM (CP = 55%) 8 381 482 79.05 9 1.000 0.728
Phrap gen PhyloPythia (p:0.85) 3 236 482 48.96 0 1.000 0.488
Phrap ssp PhyloPythia (p:0.85) 3 272 482 56.43 0 1.000 0.560
Phrap S-GSOM (CP =75%) 8 443 482 91.91 9 1.000 0.840
Phrap gen PhyloPythia (p:0.5) 4 368 482 76.35 I 1.000 0.759
Phrap ssp PhyloPythia (p:0.5) 5 387 482 80.29 I 1.000 0797

Discussion and conclusion

Recently, the importance of environmental genomics has
been recognised [51,52] and more environmental
sequencing projects are being undertaken [1-3,18]. Most
of the current methods of binning compare a sequence
fragment to a reference set of genomes. Such methods
tend to have high assignment accuracy particularly when
a strong similarity exists between the reference and envi-
ronmental genomes, either at the compositional or

sequence level. However, the performance declines drasti-
cally if the best match found is still quite different from
the one being queried. On the contrary, extracting refer-
ence sequences from within the metagenome, as in S-
GSOM, will ensure better matching. It also facilitates a
means of exploring species that have not yet been identi-
fied. In fact, such reference information from longer
assembled contigs was used in the binning process of two

Table 5: Binning summary for Medium Complexity datasets for contigs with at least 10 reads.

Assembler  Method Bins  Binned Contigs  Total #Contigs  %of BinContigs  #ofPred NotlnAct wSp wSn

Arachne kmer (7 mer) | 2 1372 0.15 133 1.000 0.000
Arachne kmer (8 mer) 0 0 1372 0 1241 - 0.000
Arachne BLAST distr | 0 0 1372 0 0 - 0.000
Arachne BLAST distr 2 0 0 1372 0 I - 0.000
Arachne S-GSOM (CP = 55%) 5 1061 1372 7733 0 0998 0.768
Arachne gen PhyloPythia (p:0.85) 3 562 1372 40.96 0 1.000 0.409
Arachne ssp PhyloPythia (p:0.85) 3 657 1372 47.89 0 1.000 0478
Arachne S-GSOM (CP = 75%) 5 1253 1372 91.33 0 0.983 0.897
Arachne gen PhyloPythia (p:0.5) 4 1036 1372 7551 6 1.000 0753
Arachne ssp PhyloPythia (p:0.5) 4 1102 1372 80.32 4 1.000 0.802
Phrap kmer (7 mer) | | 1980 0.05 163 1.000 0.000
Phrap kmer (8 mer) 2 391 1980 19.75 1457 1.000  0.000
Phrap BLAST distr | 0 0 1980 0 2 - 0.000
Phrap BLAST distr 2 0 0 1980 0 3 - 0.000
Phrap S-GSOM (CP = 55%) 8 1409 1980 71.16 9 0995 0.686
Phrap gen PhyloPythia (p:0.85) 3 799 1980 40.35 I 1.000 0.404
Phrap ssp PhyloPythia (p:0.85) 3 844 1980 42.63 I 1.000 0426
Phrap S-GSOM (CP = 75%) 8 1708 1980 86.26 9 0.991 0.816
Phrap gen PhyloPythia (p:0.5) 5 1484 1980 74.95 6 1.000 0.745
Phrap ssp PhyloPythia (p:0.5) 5 1524 1980 76.97 4 1.000 0.767
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prominent metagenomic projects for low-diversity micro-
bial communities [1,4].

S-GSOM enables the clustering of sequence fragments,
with phylogenetical meaning, by using very small
amounts of sequence fragments around the highly con-
served genes as seeds. It has several advantages over other
unsupervised and semi-supervised clustering algorithms.
First and most importantly, due to its visualisation prop-
erty, S-GSOM allows the user to visually identify one or
two relatively abundant species that do not have any seed,
as demonstrated earlier, by using CP contour display
together with inter-node distances. However, to identify
unseeded clusters, it is necessary to have a larger number
of fragments in the unseeded cluster, at least as many as
the seeded clusters, i.e. the species is relatively abundant.
If the unseeded clusters have far less samples than the
seeded clusters, the unseeded cluster may be assigned to
the other clusters at low CP values, or be considered as
part of the border of neighbouring clusters and thus
become hardly detectable. On the other hand, if the
unseeded clusters have far more samples than the seeded
clusters, the clustering percentage needs to be set to a
lower value, as otherwise there will be more incorrectly
assigned samples.

The other advantages of S-GSOM include: 1) sequences
can easily be reassigned without retraining by varying the
CP that is directly related to confident assignation, 2) the
ability to function as a fully automated clustering process,
3) the potential use as a visualisation aid for identifying
unseeded clusters with iso-CP contours and inter-node
distances, and 4) this technique can easily be applied to
other applications when the labelled data is very limited
but a lot of unlabelled data is available.

For the discovery of sequences of unknown microorgan-
isms using S-GSOM, it should be expected that seeds may
or may not be available. When seeds are available, S-
GSOM allows the identification of relationships between
the seed-associated clusters based on phylogenetic analy-
sis of 16S rRNA sequences. If the phylogenetic analysis
detects any unknown microorganism, we will be able to
discover the sequences associated with this organism from
its 16S rRNA sequences using S-GSOM. This function will
be of great assistance in sorting sequences in metagen-
omic datasets according to phylogenetic relationships.
However, if no seed is available, it means that there is no
16S rRNA sequence in the datasets for assessing the phyl-
ogenetic relationships of this cluster. In such circum-
stances, we can still obtain the sequences in the possible
bins, which were identified by using the iso-CP contour
map, then compare the sequences with existing databases
by BLAST searching. If any marker gene is detected, such
as elongation factors and/or cytochrome oxidase, then we
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may assess whether these sequences are from unknown or
known microorganisms by phylogenetic analysis.

In the results section, we noted a major requirement for
the optimal performance of S-GSOM. As the proposed
algorithm uses seeds to assign more unknown fragments,
poor seeds that are at the boundary of clusters, which are
ambiguous in themselves, can greatly affect the resulting
assignment. This problem can possibly be solved by
observing the data distribution density around the seeds.
For instance, if a seed occupies a single node and its sur-
rounding nodes also contain fewer samples, the seed has
a high chance of being a poor seed. While a choice of CP
= 55% yielded accurate sequence assignment in the two
separate tests, a user can opt to use a lower clustering per-
centage (e.g. CP = 35%) for more confident assignment at
the cost of fewer sequences being assigned. Conversely,
using a higher CP value (e.g. CP = 75%) will assign more
fragments but risk incorrect assignments. This feature is
also evident in the tests that use simulated metagenomic
data, where S-GSOM traded specificity for an increase in
sensitivity.

Although these composition-based binning methods
have shown good results, currently they are hindered by
the requirement of long sequence length. This limitation
of length is partially due to the occurrence of chimeric
sequences from cloning procedures of experiments and
from the incorrect assembly of sequences. The former
source of chimeric sequences can be reduced by improv-
ing the sequence strategy, such as using a Roche 454
genome sequencer FLX, which excludes sequence cloning
and hence generates less chimeric sequences. The latter
source of chimeric sequences is caused by the incompati-
ble design of the currently available assemblers. These
assemblers are commonly designed to assemble all reads
into one single genome. However, this application does
not satisfy the requirement of metagenomic datasets
which are of poor coverage depth and contain multiple
genomes. As a result, it leads to the occurrence of chimeric
sequences when highly conserved stretches of sequences,
e.g. transposases, are shared by multiple species or strains.
Mavromatis et al. [7] tested the simulated metagenomic
datasets and showed that the numbers of chimeric
sequence became significant for the assembled short
sequences, e.g. < 8 kb, and led to the low quality of bin-
ning. Therefore, if the number of chimeric sequences is
reduced, the required sequence length can also be
reduced. To help the reduction of chimeric sequences, we
suggest including the compositional information in the
assembling level.
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