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Abstract

Background: It is useful to develop a tool that would effectively describe protein mutation
matrices specifically geared towards the identification of mutations that produce either wanted or
unwanted effects, such as an increase or decrease in affinity, or a predisposition towards misfolding.
Here, we describe a tool where such mutations are efficiently identified, categorized and visualized.
To categorize the mutations, amino acids in a mutation matrix are arrang according to one of three
sets of physicochemical characteristics, namely hydrophilicity, size and polarizability, and charge and
polarity. The magnitude and frequences of mutations for an alignment are subsequently described
using color information and scaling factors.

Results: To illustrate the capabilities of our approach, the technique is used to visualize and to
compare mutation patterns in evolving sequences with diametrically opposite characteristics.
Results show the emergence of distinct patterns not immediately discernible from the raw
matrices.

Conclusion: Our technique enables effective categorization and visualization of mutations by using
specifically-arranged mutation matrices. This tool has a number of possible applications in protein
engineering, notably in simplifying the identification of mutations and/or mutation trends that are
associated with specific engineered protein characteristics and behavior.

Background

Mutation matrices have been frequently used to describe
measures of physicochemical similarities among amino
acids. Dayhoff et al. initially introduced the use of the
mutation matrix, which was constructed from the phylo-
genetic analysis of 71 proteins with at least 85% pairwise
sequence identity [1]. They observed point mutations in
the matrices resulting from both the mutation of the gene
itself, and the subsequent acceptance of the mutation,

possibly as a predominant form. Not all possible replace-
ments for an amino acid are acceptable, and the group of
acceptable mutations vary from one protein family to
another [1]. The Dayhoff matrix still ranks among the
widely-used scoring schemes for generating multiple
alignments, although there have been several modifica-
tions, such as the use of a larger number of more divergent
protein sequences, as well as the generation of separate

Page 1 of 14

(page number not for citation purposes)


http://www.biomedcentral.com/1471-2105/9/218
http://creativecommons.org/licenses/by/2.0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18442400
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

BMC Bioinformatics 2008, 9:218

log-odds matrices for soluble and non-soluble proteins

[2].

It remains difficult, however, to evaluate the effects of
mutations in a set of related, constantly evolving proteins.
It is possible to use criteria derived from phylogenetic data
to analyze the implications of changes in a given environ-
ment using a combination of data [3-6]. Alternately, it
would also be possible to extend the concept of mutation
matrices by directing its generation towards the identifica-
tion of naturally-occurring mutations that enhance the
function of a protein by imbuing it with a structure that is
more suited to its function and/or by increasing its poten-
tial for forming necessary chemical interactions [7-10].
We have previously designed an algorithm that identifies
naturally-occurring mutations that enhance the function
of a group of proteins by imbuing it with a structure that
is more suited to its function and/or by increasing its
potential for forming necessary chemical interactions; it
would be useful to generate such matrices with reference
to specific characteristics such as hydrophilicity, size and
polarizability, and charge and polarity, and/or with refer-
ence to structural characteristics, such as residue exposure
to solvent. Nevertheless, it is difficult to identify trends
from raw mutation data, especially if the matrix was gen-
erated from a large number of sequences, and may conse-
quently be more prone to noise.

Here, we present a visualization technique that specifi-
cally addresses the problem of gathering useful data from
mutation matrices through the use of color and scaling.
Visualization techniques for a very wide range of scientific
disciplines have evolved in order to address the need for
efficiently extracting data from datasets that are constantly
growing in size and complexity. In the specific domain of
protein analysis, these include Protein Data Bank (PDB)
Sum, which gives an overview of all structures deposited
in PDB; Protein explorer, which allows users to view 3D
structure models, and Sequence to and within graphics
(STING), which is actually a suite of programs useful for
the comprehensive analysis of interrelationships between
protein sequence, structure, function and stability. Our
proposed scheme allows for effective categorization of
mutations through the arrangement of amino acids in the
matrix according to one of three sets of physicochemical
characteristics. We also demonstrate an extension of the
technique for comparing mutation patterns in evolving
sequences with diametrically opposite characteristics. Our
results show the emergence of distinct patterns not imme-
diately discernible from the raw matrices. Finally, we
demonstrate several applications of this scheme in protein
engineering.

http://www.biomedcentral.com/1471-2105/9/218

Methods

Matrix generation

Mutation matrices for four different protein datasets
whose behaviors are influenced by amino acid variability,
namely high affinity antibodies (anti-thyroid peroxidase
antibodies, K, = 10-?), amyloidogenic light chain anti-
bodies, hemagglutinin H5, and olfactory receptors (OR),
were generated using a PERL script as described in David
et al. [7]. Briefly, an alignment is constructed using related
sequences and an appropriate reference sequence. The
characteristics of the alignments used in this paper are
summarized in Table 1. Currently, alignments can be con-
structed from sequences obtained from the NCBI using
third-party software like ClustalW. Alternately, candidate
sequences for an alignment are obtained directly from lit-
erature, then aligned using third-party software!. All
mutations from the reference sequence are subsequently
quantified with respect to some functional and/or struc-
tural characteristic (i.e. mutations that occur in buried res-
idues are separated from those that occur in solvent-
exposed residues). Slight modifications are made for the
non-antibody sequences. In such cases, the reference
sequence is either chosen based on the likelihood that it
is the least divergent from the parent sequence, or if it pos-
sesses a property exclusive to it. For instance, in the case of
the OR set, these include sequences that bind exclusively
to long chain alcohols, paired against all sequences that
exclusively bind short chain alcohols, or vice versa. All
subsequences that may have been primer-derived (i.e. first
five amino acids) are disregarded in the analysis. For the
succeeding discussion, all matrix diagonals (which con-
tain amino acid retention data) are disregarded. Matrices
are arranged with respect to a physicochemical property
(Table 2), and are normalized by dividing all values with
the highest raw value in the matrix. A diagrammatic repre-
sentation of the matrix generation process is shown in Fig.
1. For a single alignment, it is possible to generate either
one or multiple matrices, depending on the level of anal-
ysis that one wishes to subject it to. For instance, if one
simply wishes to distinguish between the mutation pat-
terns in buried and exposed residues, one only needs to
generate separate matrices for these. If there is a need to
distinguish the mutation patterns found in buried resi-
dues in a total number of n, regions from those found in
buried residues in a total number of n, regions, as well as
from exposed residues in a total number of n, regions and
exposed residues in a total number of n, regions, one
would generate a total of n, + n, + ny + n, matrices. A good
example to illustrate this case is antibody sequence analy-
sis, where one has to distinguish between mutation pat-
terns in the complementarity determining regions (CDRs)
and framework regions (FRs), and among its subsets (e.g.
buried vs. exposed residues in the CDRs). A possible
extreme case would be that mutation matrices will be gen-
erated for each position in an alignment.
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Table I: Characteristics of sample alighments.
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Sequence Set

Reference sequence
Characteristics

Derived sequences

Sample set (NCBI access code
numbers)

Antibody (anti-TPO)

Antibody (amyloidogenic

vs. non-amyloidogenic)

Hemagglutinin H5

Olfactory receptors

Low affinity antibody, usually a
germline sequence

Germline sequence

Random hemagglutinin H5
sequence

Sequence that recognizes some

functional group X

High-affinity germline derivatives
directed against a single epitope

Set |: Amyloid-forming derivatives of
the germline sequence

Set 2: Non-amyloid-forming, high-
affinity derivatives of the germline
sequence

All other available hemagglutinin H5
sequences

Sequences that recognize some
functional group Y whose
characteristics are diametrically
opposed to the characteristics of X, or
which are not related to the
characteristics of X

Reference sequence:

722191

Derivatives: AAD09370, AAD29291,
AAD29292, AAD29293, P06888

Reference sequence:
NP_001011738.1 (short-chain alcohol-
binding OR)

Derivatives (long-chain alcohol-
binding ORs):

NP_064686.1

In the text, amino acids are identified using both three-let-
ter and single-letter codes. A total of 319 sequences were
analyzed (82 hemagglutinin H5, 7 olfactory receptor
sequences, 150 amyloidogenic light chains and 80 non-
amyloidogenic antibody sequences from a total of 15
germlines); these sequences were obtained either from the
NCBI or from the papers in which these were published
[11]. Sequences are identified by its Genbank accession
number, when applicable [see Additional file 1].

AAD27596.2
NP_038648.2
NP_667256.1
AAKO00590. 1

Matrix scaling and visualization

The proposed visualization scheme is demonstrated by
developing a fully-automated visualization tool that
allows users to determine the most predominant muta-
tions and the approximate physico-chemical property
changes, based on the characteristics indicated in De
Genst et al. and Grantham [12,13], that result from these,
based on color information and the size of a matrix
square. The tool is developed using the Visualization

Table 2: Physicochemical property scales for naturally occurring amino acids.

Amino Acid Hydrophilicity [12] Size and Polarizability [12] Charge and Polarity [13]
Ala (A) 0.24 -2.32 8.10
Arg (R) 3.52 2.5 10.5
Asn (N) 3.05 1.62 1.6
Asp (D) 3.98 0.93 13.0
Cys (C) 0.84 -1.67 5.5
GIn (Q) 1.75 0.5 10.5
Glu (E) 3.1 0.26 12.3
Gly (G) 2.05 -4.06 9.0
His (H) 2.47 1.95 10.4
lle (1) -3.89 -1.73 52
Leu (L) -4.28 -1.3 4.9
Lys (K) 2.29 0.89 1.3
Met (M) -2.85 -0.22 57
Phe (F) -4.22 1.94 52
Pro (P) -1.66 0.27 8.0
Ser (S) 2.39 -1.07 9.2
Thr (T) 0.75 -2.18 8.6
Trp (W) -4.36 3.94 5.4
Tyr (Y) -2.54 2.44 6.2
Val (V) -2.59 -2.64 5.9
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Mutation matrix generation. A raw mutation matrix is
essentially a summary of the counts of all mutations from an
amino acid in the reference sequence to every other amino
acid in the sequences being compared to the reference. Its
normalized equivalent is generated by dividing all the values in
the matrix by the highest value found therein. Amino acids in
the matrices are always arranged based on a particular physic-
ochemical property. Normalization is done by dividing all
entries in the matrix by the highest mutation frequency found
in it. For a single alignment, it is possible to generate either
one or multiple matrices, depending on the level of analysis
that one wishes to subject it to.

Toolkit (vTk), Tool Command Language and the Tk
graphical user interface toolkit (Tcl/Tk) [14,15]. A concep-
tual representation of a mutation matrix is shown in Fig.
2. Both the original and replacement amino acid residues
are arranged in increasing order of a given property (i.e.
for size and polarizability, amino acids are arranged from
smallest to largest). The matrix component size reflects
the property of the amino acid being described, as well as
the degree of change involved on the occurrence of some
mutation. The diagonal signifies no change; values to the
left of the diagonal indicate a decrease in some property,
while those on the right indicate an increase in the same
property. The amount of change that results from a muta-

http://www.biomedcentral.com/1471-2105/9/218

tion corresponds to the difference in areas between some
mutation cell, (AA,,, AA,, m # n) and the cell of its non-
mutated counterpart, (AA,, AA). For instance, assuming
that Fig. 2 represents a size matrix, AA1, the smallest
amino acid, mutates to AA2. Since this mutation is above
the diagonal, it indicates an increase in size, with the
increase proportional to the difference of the areas of the
squares occupied by the cell defined by (AA1, AA2) and
that defined by (AA1, AA1).

Matrix comparison

A second tool that facilitates the automatic detection of
mutations exclusive to a single matrix is constructed for
applications that require the comparison of mutation
trends in sequence sets with diametrically opposed char-
acteristics (e.g. amyloidogenic vs. non-amyloidogenic
matrices). A non-Boolean adaptation of the exclusive-OR
(XOR) function is used in order to generate a visual super-
imposition of mutations that are exclusive to either matrix
(Table 3). Mutations exclusive to either matrix can be
identified based on their intensities, but the frequency of
these mutations are not reflected in the resulting image. A
complementary tool that identifies overlapping regions
can also be generated.

Results and Discussion

Quadrant-based trend mapping

The direct translation of a 20 x 20 amino acid mutation
matrix into its equivalent intensity map would allow
immediate extraction of general trends. For instance, a
matrix of amino acids arranged in increasing order of
hydrophilicity can be subdivided into the four Cartesian
planes, each of which representing a particular behavior
(Fig. 3). The diagonal, as well as the second and fourth
quadrants, can be generally associated with property
retention, while mutations associated with more drastic
changes are in the first and third quadrants. In the exam-
ple shown, most of the mutations are concentrated in the
second and fourth quadrants, indicating that property
conservation is an integral feature in the evolution of the
set of proteins analyzed. Visually, however, the mutations
in the first and third quadrants could not be easily com-
pared. A possible strategy for handling such cases would
be to limit visualization to selected quadrants, and to
eliminate scaling. Figure 4A shows the partial matrix that
corresponds to that in Fig. 3; here, it becomes more evi-
dent that hydrophobic to hydrophilic mutations (Quad-
rant I) are more favored than hydrophilic to hydrophobic
mutations (Quadrant III). A histogram of the the 8-bit
grayscale image equivalent indicates that lighter-colored
pixels are more predominant in Quadrant I (Fig. 4B) than
in Quadrant III. An analysis of the raw data (Fig. 4C) sim-
ilarly indicates the prevalance of mutations with higher
frequencies in Quadrant I.
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Replacement residues arranged according to some increasing property

(e.g. size, hydrophilicity or polarity)

AAT A2 AA3 Ald

High frequency
mutations

Original residues arranged according to some increasing property

Low frequency
mutations

Figure 2

No change in property

Matrix scaling. The size of the cells in the mutation matrix is proportional to the numeric quantity of some property (e.g.
size, hydrophilicity, or polarity) associated with each amino acid. The color of each cell corresponds to the frequency at which
each mutation (or conservation) occurs with respect to the reference sequence.

Applications in protein engineering

Application |: Generation of synthetic antibodies

Antibodies rank among the most important therapeutic
protein engineering targets. Synthetic antibodies, notably
humanized antibodies or antibodies with improved affin-
ities for its cognate ligands are in demand for cancer ther-
apy and immunosuppression (IL-2, anti-CD33, etc.).
Design issues in both cases include incorporating the nec-
essary changes in order to alter molecule behavior/interac-
tivity potential while maintaining or enhancing molecule
stability, as well as maintaining the general structure [16].
It is also important that the designed molecule will not
have a high potential for misfolding (i.e. would have min-

Table 3: Matrix comparison visualization function

Matrix 2 (+) Matrix 2 (-)
Matrix | (+) 0 |
Matrix | (-) 0.5 0

imal amyloidogenic potential), since this may result in
pathogenicity.

In a related study [7], the design principles may be derived
from the analysis of naturally-occurring mutation patterns
in data sets associated with certain characteristics like
those that may be derived from high affinity antibodies.
This may be extended further through the comparison of
data sets having diametrically opposed characteristics. For
instance, comparison of mutations occurring in high
affinity antibodies versus those with lower affinity sug-
gests mutation patterns responsible for favorable binding.
Similarly, comparing mutations that occur in amyloidog-
enic and non-amyloidogenic antibodies allows for the
identification of some mutations that are probably
responsible for misfolding. These mutations should sub-
sequently be avoided in protein design. In order to derive
these data, however, it is important to have a more con-
venient mode of representation than a raw matrix.
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Representative hydrophilicity mutation matrix. Elementary analysis may be performed by subdividing the matrix into
four quadrants, where mutations in the second and fourth quadrants may be generally associated with more conservative muta-

tions than those found in the first and third quadrants.

Figure 5 summarizes mutation patterns in high-affinity
non-amyloidogenic buried framework residues (A), corre-
sponding mutations in amyloidogenic antibodies derived
from the same germlines (B), and a visual comparison of
mutations, where these are identified based on their
exclusive appearance in one group of proteins (C). Buried
framework residues were chosen for this analysis since
these are particularly important for antibody structure,
and have a greater tendency to be implicated in amyloido-
sis. Hydrophilicity matrices were generated in order to
derive trends that may cause drastic changes in amino acid
exposure patterns, and subsequently, structure destabili-
zation.

It is immediately evident that mutations are more varied
and distributed in amyloidogenic (Fig. 5A) than in its
non-amyloidogenic counterparts (Fig. 5B). Furthermore,
most of the mutations that occur naturally in non-amy-
loidogenic sequences are concentrated near the diagonal
or in the second and fourth quadrants, indicating a greater
propensity for property conservation rather than property
change, which is expected for FRs. This is not the case with
mutations in amyloidogenic sequences, where a number
of these are distributed across the first and third quadrants
(Fig. 5B); a comparison of the matrices using the method

described previously indicates that a number of the muta-
tions exclusive to amyloid-formers involve maximal
changes (encircled clusters, Fig. 5C) such as a Trp to Arg
mutation or an Asp to Met mutation, which may cause a
change in residue exposure at the position in which these
mutations occur. Clearly, since these mutations are asso-
ciated with amyloid formation, a direct application for
these results is the general avoidance of such substitutions
in buried framework residues of engineered antibodies. It
would be important to reiterate at this point, however,
that the identification of mutations associated with amy-
loid formation would be dependent on the alignments
used; presumably, the best way to perform an analysis for
this purpose would be to obtain a set of amyloidogenic
sequences, as well as a set of high-affinity antibody
sequences, that are derived from the same germline as the
sequence being targeted for engineering.

This idea could be extended by evaluating the potential
use of a matrix generated from different sets of high-affin-
ity derivatives as a guide for pinpointing inadvisable sub-
stitutions in antibody engineering. The premise is that all
mutations retained in the affinity maturation of high-
affinity antibodies, regardless of affinity, are representa-
tive of those that promote affinity increases by increasing
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Normalized mutation frequency

Mutation matrix subsets. Quadrants | and Ill of the mutation matrix shown in figure 3 were reproduced in order to demon-
strate trends associated with these (A). Here, it is more evident that the most prominent mutations are located in Quadrant |
(hydrophobic to hydrophilic mutations). The generation of a 256-bin histogram for the grayscale equivalent of the image (B), as
well as a 10-bin histogram for the raw data (C) indicates that this is, in fact, the case.

the resulting interaction potential, structural stability, =~ improvement, while figure 6 shows mutation matrices for

and/or plasticity of the resulting antibody [7].

buried (a) and exposed (b) CDRs and buried (c) and
exposed (d) FRs of high affinity antibodies. These matri-

Table 4 lists some of substitutions in engineered antibod-  ces were derived from the analysis of affinity-matured
ies that have been implicated in either affinity decreasesor ~ anti-TPO sequences (K, = 10) previously reported in
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Figure 5

Mutation patterns in amyloidogenic (A) and non-
amyloidogenic (B) buried framework residues. Amino
acids were arranged by increasing hydrophilicity. These matri-
ces were compared to identify the characteristics of muta-
tions exclusively associated with either matrix (Fig. 4C).
Mutations that occur exclusively in amyloidogenic sequences
are in dark blue, while those associated with non-amyloidog-
enic sequences are in aqua. Encircled regions correspond to
mutation clusters that appear to be predominantly associated
with amyloidosis.
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David et al. [7]. The locations of the mutations in table 4
are indicated in the matrices. From a visual analysis of
these examples, it is clear that most of the mutations
implicated in affinity decreases are those that rarely occur
in the affinity maturation of high affinity antibodies,
while the mutations that are associated with affinity
increases occur with comparatively higher frequencies.

Application 2: Vaccine design

While some therapeutic strategies involve the rational
design of antibodies, others involve the opposite: the
deliberate modification or synthesis of the antigenic pro-
teins and peptides to which they bind, for use as vaccines.
Vaccine design can have a variety of purposes: to decrease
toxicity of an antigen or remove otherwise unwanted
effects; to increase binding affinity to antibodies and thus
improve their effectiveness in eliciting an immune
response; to heighten similarity with the most recently cir-
culating strains of a particular pathogen; or to render
more compatible with some method of delivery [24-27].
In each case, modifications of specific structural or phys-
ico-chemical features may be required in an antigen while
others, such as binding affinity, are preserved.

Analysis of mutations that have occurred in antigens of
rapidly mutating pathogens can provide clues as to how
corresponding vaccines should be designed. An example
of such a pathogen is the influenza virus: many studies
have detailed how its dominant surface glycoproteins,
neuraminidase and hemagglutinin, have evolved in
response to immunological pressure [28]. Presented in
Fig. 7 is the hydrophilicity mutation matrix for H5 hemag-
glutinin, belonging to the H5N1 subtype of avian influ-
enza that has caused multiple outbreaks of poultry, as well
as human infections and deaths, in recent years. It is evi-
dent that hydrophilicity is largely maintained, with most
substitutions represented in the second and fourth quad-
rants, as well as near the diagonal. This suggests the
importance of preserving this feature in targeted muta-
tions. The matrix also reveals that certain pairs of amino
acids, such as isoleucine and valine, or lysine and
arginine, are to an extent interchangeable, as evidenced by
the frequency of these mutations on both sides of the
diagonal (Fig. 7). The other prominent mutations in the
matrix are generally conservative.

Application 3: Olfactory receptor sequence analysis and biosensor
design

Olfactory receptors (ORs) are transmembrane G protein
coupled receptors that respond to a wide range of small,
hydrophobic odorants. Unlike antibodies, which also
exhibit highly varied ligand repertoires, OR do not
undergo somatic hypermutation to achieve sequence
diversity. Instead, diversity is conferred by the existence of
roughly 1000 individual OR genes [29,30]. The trans-
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Table 4: Artificially-introduced mutations implicated in antibody affinity reduction

Antibody chain, Region Mutation?  Antigen Affinity reduction Reference
Light Chain, CDR R66G Carcinoembryonic antigen (CEA) Four-fold (R) 17
Light Chain, CDR Y96V Finrozole > Ten-fold (R) 18
Light Chain, CDR Y96F Atrazine Two-fold (R) 19
Heavy Chain, CDR W33A Finrozole, d-enantiomer Five-fold (R) 18
Heavy Chain, CDR S52F Digoxin Two-fold (R) 20
Heavy Chain, CDR A7IF Tumor-associated glycoprotein 72 (TAG72) 12-fold (R) 21
Heavy Chain, CDR K93l TAG72 20-fold (R) 21
Heavy Chain, FR D72N CD30 Significantly decreased binding signal 22
Heavy Chain, FR K94N HyHEL-10 ~Ten-fold(R) 23

2 Written in the form original residue, followed by the position (Kabat notation), then the replacement residue

membrane regions of the ORs are generally thought to be

responsible for odorant binding.

An intriguing aspect of ORs is their involvement in com-
binatorial response, as opposed to the highly specific
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responses in the immune system. No single OR is exclu-

sively associated with an odorant, and no odorant is asso-
ciated with a single OR [29]. Applications of OR analysis
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include biosensor design. As an example, we generate a
matrix from the transmembrane regions of two alignment

Mutation locator

R66G, CDR, V,
Y96V, CDR, V|
Y96F, CDR, V.
W33A, CDR, Vy
S52F, CDR, Vy
A71F, CDR, Vy
K93l, CDR, V,

D72N, FR, Vy,
K94N , FR, Vy;

Mutation patterns in CDRs and FRs of high-affinity antibody sequences. The matrices shown were generated from
the analysis of affinity-matured anti-thyroid peroxidase antibodies (anti-TPO, Ky = 10-%) derived from six different germlines.
No distinction between mutations in light and heavy chains were made. The colored spots indicate the positions of artificially-
introduced mutations in engineered antibodies that were associated with decreased affinity (Table 4); each mutation is indi-
cated in two different matrices, since the exposure patterns of these residues were not indicated in the original references.
These mutations were never observed for high-affinity antibodies. Unscaled, grayscale matrices were used to improve contrast.
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Figure 7

Hemagglutinin H5 hydrophilicity mutation matrix. Note the localization of the most prominent mutations in the sec-
ond and fourth quadrants, indicating the predominance of mutations that tend to preserve hydrophilicity. These prominent
mutations correspond to well-known conservative mutation pairs like lle and Val and Lys and Arg; other prominent mutations

are indicated in the figure.

sets where the reference sequences exclusively recognize
short chain alcohols (i.e. 4 - 6 carbon alcohols), while the
other sequences in the alignment exclusively bind long
chain alcohols (i.e. 8 - 10 carbon alcohols). Presumably,
all deviations from the reference sequence in the trans-
membrane domains contribute to the observed difference
in specificity. We use size and polarizability as the basis
for arranging the matrices, since the size of residues in the
binding pockets would probably contribute significantly
to the ability of a specific OR to accommodate the neces-
sary number of odorant molecules to cause it to activate
its associated neuron.

Fig. 8 shows the composite mutation matrix representing
deviations of long chain alcohol-binding OR from its
short chain-binding counterparts. It is interesting to note
that most of the prominent differences are concentrated in
the first and third quadrants of the matrix. This indicates
that most of the small residues can only be substituted
with similarly small residues, and that larger residues in
short chain alcohol binding-OR tend to have smaller
counterparts in the long chain binders. The most promi-
nent differences include the substitution of Phe with
either Leu or Ile, which are both considerably smaller than
Phe (Fig. 8). Quadrant I is further subdivided into quad-

rants as well; note that the most prominent substitutions
here are those in Quadrant I-I and Quadrant I-III (i.e.
those that preserve size, or those that tend to decrease res-
idue size). These results are consistent with the probable
requirement for smaller residues to accommodate the side
chains of longer alcohols.

Applications of image processing techniques

Another distinct advantage of representing mutation
matrices as images is the applicability of image processing
techniques to improve the quality of the results, especially
if these contain numerous artifacts [31]. In this particular
application, noise is frequently caused by alignment
errors or the use of distantly-related data (non-ideal align-
ments). In the hypothetical hydrophilicity matrix pre-
sented as an intensity map in Fig. 94, it is comparatively
difficult to identify trends, since mutations have roughly
similar frequencies across the matrix.

Assuming that some of the data are, in fact, results of
noise, it is possible to use techniques such as median fil-
tering and wavelet transformations to lessen the effect of
unwanted signal and to improve the visibility of a partic-
ular mutation. Median filtering is ideal for removing salt-
and-pepper type noise [32-34]. This type of noise does not
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Figure 8

Amino acid differences between short and long chain alcohol-binding olfactory receptors. Most prominent differ-
ences are concentrated in the the first and third quadrants, indicating the preferential occurrence of small residues in the bind-
ing regions of ORs that exclusively recognize long chain alcohols. It is inferred that the smaller side chains allow the binding of

bigger molecules.

occur frequently in mutation matrices, where the frequen-
cies may exhibit high wvariability within a quadrant.
Median filtering will result in unwanted data averaging,
and subsequently, data loss. It is important to note, how-
ever, that other methods as Gaussian blurring, discrete
Fourier transformation or wavelet transformation are
available for effectively denoising a matrix (Fig. 9B).

Apart from denoising, automated matrix analysis with a
visual result is another possibility. Since our mapping
translates the size of a matrix cell with respect to fre-
quency, wavelet analysis, which is scalable, is an appropri-
ate approach for characterizing a particular mutation.
Unlike Fourier transformation, wavelet analysis is more
controllable because one can specify both the frequencies
to which the changes will be made and the extent of such
changes. Here, we perform image processing by applying
a convolution of the matrix image with an acircularly sym-
metric wavelet-like basis function given by:

2,..2 2.2

X"+ o
War)=[ 150 | -0 |
o o

where x and y are image coordinates, while o is the scaling
parameter of the basis function. The convolution of the
basis function and the matrix as represented in a two
dimensional image, I(x,y) yields an output, I'(x'y') and
can be described by

N/2 NJ2
Fxy)= Y Y Hx=iy=))W(ij) (2)
i=—N/ i=-N/

where N is the size of the two-dimensional array of the cir-
cularly symmetric basis functions. Figure 10 plots the
cross-sectional profile of the basis function.

Figure 11 shows the results of the image processing rou-
tine applied on the input matrix (Fig. 11a). Use of a fixed-
size basis function with o = 5 results in enhancement of
the peaks on the upper left quadarant. If the scale of the
wavelet is customized to fit the general shape of cells in a
particular matrix quadrant, trends are more prominent
and no distortion occurs. In Fig. 11¢, it is evident that
mutations for this matrix are concentrated in the bottom-
left and bottom-right quadrants. This indicates that for
this given set of sequences, the hydrophobic residues in
the reference sequence tend to mutate to hydrophilic
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Figure 9
Denoising using a fixed-size wavelet transformation. The original image (A) was subjected to a fixed-size Mexican hat
wavelet transformation (B) that effectively removed low frequency details.
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Figure 10

Profile of the circularly symmetric two-dimensional wavelet-like basis functions at various values of scaling
parameter, 0= 5, 10 and 15.
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Figure 11

(a) Image representing a two-dimensional mapping
of mutation matrix. Applying image processing routines to
distinguish certain mutations is achieved by convolving the
image with a wavelet-like basis function with scaling parame-
ter (b) 0=5, (c), c=10and (d) o= 15.

ones, while those that are already hydrophilic frequently
mutate to similarly hydrophilic amino acids. Fig. 11d
shows the result when the image is convolved with a basis
function with o= 15. It highlights the mutation at the bot-
tom-right quadrant with the other mutation peaks are dis-
criminated. As shown in the manipulation of the image,
different wavelet sizes result in different amounts of filter-
ing. This specialized filtering will eventually enable users
to perform highly selective manipulations on the matrix.

Conclusion

We have proposed a visualization technique that facili-
tates faster analysis of mutation matrices through the use
of color and scaling. Our technique enables effective cate

gorization of mutations by arranging amino acids in the
matrix according to one of three sets of physicochemical
characteristics. The matrix visualization tool has a number
of possible applications in protein engineering, notably in
simplifying the identification of mutations and/or muta-
tion trends that are associated with protein characteristics
and behavior. Currently, the implementation is in the
form of command-line operable standalone binaries in
Perl (matrix generator) and vTk and Tcl/Tk (image gener-
ator). In the future, we plan to to make the programs
available in a web application, and to link it to webserv-

http://www.biomedcentral.com/1471-2105/9/218

ices of external systems (i.e. NCBI) to enable the user to
create the alignments and generate the visualization
through a single interface. The incorporation of an inter-
face that would guide a user in generating the alignment
is of particular importance, since the significance and
validity of the results are dependent on the quality of the
alignment used to generate the matrix in the first place.

List of Abbreviations

OR: olfactory receptor; XOR: exclusive OR; AA: amino
acid; vTk: Visualization Toolkit; Tcl/Tk: Tool Command
Language and the Tk graphical user interface toolkit; CDR:
complementarity-determining region; FR: framework
region.

Availability and requirements

Additional material on the program source code for the
visualization toolkit [see Additional file 2] may be
requested from the authors; the matrix generator is writ-
ten in PERL, and may be accessed at http://www.bioinfor
matics.org/codon/cgi-bin/IgGrrrr5.cgi. A standalone pro-
gram may also be requested from the authors. The visual-
ization module was written in Tcl/Tk and vTk. To run the
programs offline, the user must install PERL http://
www.activestate.com/, Tcl/Tk http://www.actives
tate.com/ and vTk http://www.vtk.org/. User's manuals
will be provided by the authors together with the soft-
ware. The program has been tested in Windows XP and
selected Linux distributions.

Authors' contributions

MPCD conceptualized (with VRD) and generated the vis-
ualization program, obtained sequences and performed
the analysis for the synthetic antibody design and olfac-
tory receptor sequence analysis sections, and drafted bulk
of the manuscript. CML obtained sequences and per-
formed the analysis for the vaccine design section, wrote
the corresponding section in the manuscript. VRD con-
ceptualized the visualization application, generated the
specifically-adapted wavelet function, and drafted this
section of the manuscript.

Note
11t is possible for a single alignment to contain sequences

obtained from different references

Additional material

Additional file 1

Alignments used for the generation of the illustrated matrices.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-9-218-S1.doc]
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Additional file 2

Matrix visualization toolkit in vTk.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-9-218-S2.zip|
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