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Abstract

Background: Expression profiles obtained from multiple perturbation experiments are
increasingly used to reconstruct transcriptional regulatory networks, from well studied, simple
organisms up to higher eukaryotes. Admittedly, a key ingredient in developing a reconstruction
method is its ability to integrate heterogeneous sources of information, as well as to comply with
practical observability issues: measurements can be scarce or noisy. In this work, we show how to
combine a network of genetic regulations with a set of expression profiles, in order to infer the
functional effect of the regulations, as inducer or repressor. Our approach is based on a consistency
rule between a network and the signs of variation given by expression arrays.

Results: We evaluate our approach in several settings of increasing complexity. First, we generate
artificial expression data on a transcriptional network of E. coli extracted from the literature (1529
nodes and 3802 edges), and we estimate that 30% of the regulations can be annotated with about
30 profiles. We additionally prove that at most 40.8% of the network can be inferred using our
approach. Second, we use this network in order to validate the predictions obtained with a
compendium of real expression profiles. We describe a filtering algorithm that generates
particularly reliable predictions. Finally, we apply our inference approach to S. cerevisiae
transcriptional network (2419 nodes and 4344 interactions), by combining ChIP-chip data and |5
expression profiles. We are able to detect and isolate inconsistencies between the expression
profiles and a significant portion of the model (15% of all the interactions). In addition, we report
predictions for 14.5% of all interactions.

Conclusion: Our approach does not require accurate expression levels nor times series.
Nevertheless, we show on both data, real and artificial, that a relatively small number of
perturbation experiments are enough to determine a significant portion of regulatory effects. This
is a key practical asset compared to statistical methods for network reconstruction. We
demonstrate that our approach is able to provide accurate predictions, even when the network is
incomplete and the data is noisy.
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Background

A central problem in molecular genetics is to understand
the transcriptional regulation of gene expression. A tran-
scription factor (TF) is a protein that binds to a typical
domain on the DNA and influences transcription. The
effect of this TF can be either a repression or an activation
of transcription depending on the type of binding site, the
distance to coding regions, or on the presence of other
molecules. Finding which gene is controlled by which TF
is a reverse engineering problem, usually named network
reconstruction. This question has been approached over the
past years by various groups.

A first approach to achieve this task is to collect the infor-
mation spread in the primary literature. Following this
idea, a large number of databases that take protein and
regulatory interactions from the literature and curate them
have been developed [1-5]. For the bacteria E. coli, Regu-
lonDB is a dedicated database that contains experimen-
tally verified regulatory interactions [6]. For the budding
yeast (S. cerevisiae), the Yeast Proteome Database contains
a large amount of regulatory information [7]. In this latter
case, however, the amount of available information is not
sufficient to build a reasonably accurate model of tran-
scriptional regulation. Databases with regulatory knowl-
edge extracted from the literature are, nevertheless, an
unavoidable starting point for network reconstruction.

The alternative to a literature-curated approach is a data-
driven approach. This approach is supported by the avail-
ability of high-throughput experimental data including
microarray expression analysis of deletion mutants (sim-
ple or more rarely double non-lethal knockouts), over
expression of TF-encoding genes, protein-protein interac-
tions, protein localisation, or ChIP-chip experiments cou-
pled with promoter sequence analysis. We may cite
several classes of methods that use these kinds of data,
such as correlation, mutual information or causality stud-
ies, Bayesian networks, path analysis, information-theo-
retic approaches, and ordinary differential equations [8-
10].

In short, most available approaches so far are based on a
probabilistic framework which defines a probability dis-
tribution over the set of models. The reconstructed net-
work is then defined as the most likely model given the
data. Such an optimization problem is usually non con-
vex, and finding a global optimum cannot be guaranteed
in practice. Existing algorithms report a local optimum
which should be interpreted with care: errors can appear
and no consensual model may be produced.

As an illustration, special attention has been paid to the
reconstruction of S. cerevisiae network from ChIP-chip data
and protein-protein interaction networks [11]. A first reg-
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ulatory network was obtained with promoter sequence
analysis methods [12,13], yet, some undetected transcrip-
tional regulatory motifs were proposed using non-para-
metric causality tests [14]. Moreover, Bayesian analysis
also identified new regulatory modules for this network
[15,16]. Thus, the results obtained with the different
methods do not coincide and a fully data-driven search is
in general subject to over-fitting and not fully reliable
[17].

In regulatory networks an important and non-trivial phys-
iological information is the regulatory role of TFs as
inducer or repressor, also called the sign of the interaction.
This information is needed if one wants to know, for
instance, the physiological effect of a change caused by
external conditions or the effect of a perturbation on the
TF. While this can be achieved for one gene at a time with
(long and expensive) dedicated experiments, probabilistic
methods such as Bayesian models [18] or path analysis
[19,20] are capable of proposing models from high-
throughput experimental data. However, as for the net-
work reconstruction task, these methods are based on
optimization algorithms that compute an optimal solu-
tion with respect to an interaction model.

In this paper, we apply formal methods to compute the
sign of interactions in networks that have an available
topology. By doing so, we also validate the topology of the
network. Roughly, we use expression profiles to constrain
the possible regulatory roles of TFs, and we report those
regulations that are assigned the same role in all feasible
models. Thus, we over-approximate the set of feasible
models, and then look for invariants in this set. A similar
idea was applied in [21] to check the consistency of gene
expression assays. However, we use a deeper formalisa-
tion and stronger algorithmic methods to achieve the
inference task.

Different sources of large-scale data are exploited in this
study: gene expression arrays, which provide information
on the interaction signs; and ChIP-chip experiments,
which provide the topology of the regulatory network
when not available.

The main tasks we address are the following:
1. Building a formal model of regulation for a set of genes
that integrates information from ChIP-chip data,

sequence analysis, and literature annotations.

2. Checking its consistency with expression profiles on
perturbation assays.

3. Inferring the regulatory role of TFs as inducer or repres-

sor if the model is consistent with expression profiles.
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4. Isolating ambiguous pieces of information if it is not.

The Results section is organised as follows. We first intro-
duce the mathematical framework which is used to define
and to test the consistency between expression profiles
and transcriptional networks. Then, we apply our algo-
rithms to address three main issues:

e Analysis of the dependence between the number of
available observations and the number of inferred regula-
tions. In the case where all genes are observed, we prove
that at most 40.8% of E. coli network can be inferred and
that 30 perturbation experiments are enough to infer 30%
of the network on average. In the case of missing observa-
tions, we estimate how the proportion of unobserved
genes affects the number of inferred regulations.

e [llustration and validation of our method on the tran-
scriptional network of E. coli, obtained from RegulonDB
[6], with a compendium of expression profiles [9,22].

¢ Execution of our inference algorithms over the S. cerevi-
siae transcriptional network. We inferred, for small scale
subnetworks, more than 20% of the roles of regulations.
For more complex networks, we detected and isolated
inconsistencies (ambiguities) between expression profiles
and a significant part of the model (15% of all the inter-
actions).

Results

Detecting the role of a regulation and validating a model
Our goal is to determine the regulatory role of a TF on its
target genes by using expression profiles. Let us illustrate
our purpose with a simple example.

We suppose that we are given the topology of a network
(this topology can be obtained from ChIP-chip data or
any computational network inference method). In this
network, let us consider a node A with a single predeces-
sor. In other words, the model tells us that the protein B
acts on the expression of the gene coding for A and no
other protein acts on A.

Independently, we suppose that we have several gene
expression arrays at our disposal. One of these arrays indi-
cates that A and B simultaneously increase during a steady
state shift experiment. Then, common sense tells us that B
must have been an activator of A during the experiment.
More precisely, protein B cannot have inhibited gene A
since they both have increased. Consequently, we say that
the model predicts the sign of the interaction from B to A
as positive (see Fig. 1).

This naive rule is actually used in a large class of models;
we will call it the naive inference rule. When several expres-
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Model

B—— A

Expression profile Prediction
The action from B
to A is an activa-

tion.

B increases
A increases

Figure |
lllustration of the simple inference rule.

sion profiles are available, the predictions of the different
profiles can be compared. If two expression profiles pre-
dict different signs for a given interaction, there is an ambi-
guity or inconsistency between data and model (see Fig. 2).
Then, the ambiguity of the regulatory role can be attrib-
uted to three factors: (1) a complex mechanism of regula-
tion, the role of the interaction depends on the state of the
system; (2) a missing interaction in the model; (3) an
error in the experimental source. This simple strategy is
implemented in the Algorithm 1.

Let us consider now the case when A is activated by two
proteins B and C. No more natural deduction can be done
when A and B increase during an experiment since the
influence of C must be taken into account. A model of
interactions between A, B, and C has to be proposed.
Probabilistic methods estimate the most probable signs of
regulations that fit with the theoretical model [18,23].

Our point of view is different; we introduce a basic rule
that shall be checked by each interaction in the model.
This rule tells us that any variation of A must be
explained by the variation of at least one of its predeces-
sors. In previous papers, we introduced a formal frame-
work to justify this basic rule under some reasonable
assumptions. We also tested the consistency between
expression profiles and a graphical model of cellular inter-
actions. This formalism will be introduced here in an
informal way; its full justification and extensions can be
found in the references [24-27].

In our example, the basic rule means that if B and C acti-
vate A, and both (B and C) are known to decrease during
a steady state experiment, A cannot be observed as increas-
ing. Then A is predicted to decrease (see Fig. 3). More gen-
erally, we apply the rule as a constraint for the model, we

Model
+

B——A

Expression profile  Prediction

Model and data are
ambiguous (also called
inconsistent).

B increases
A decreases

Figure 2
A simple case of inconsistency between some data
and a model.
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Model Expression profiles Prediction
B

\

A B decreases A decreases
/ C decreases
+

c
Figure 3

lllustration of a prediction.

write constraints for all the nodes of the model, and we
use several approaches in order to solve the system of con-
straints. From the study of the set of solutions, we deduce
which signs are surely determined by these rules. Then, we
obtain necessary conditions on the signs instead of the most
probable signs given by probabilistic methods.

A formal approach

Consider a system of n chemical species {1,...,n}. These
species interact with each other and we model these inter-
actions using an interaction graph G = (V, E). The set of
nodes is denoted by V = {1,....n}. Thereis an edgej —> i
E if the level of species j influences the production rate of
species i. Edges are labelled by a sign {+, -} which indi-
cates whether j activates or represses the production of i.

In a typical stress perturbation experiment a system leaves
an initial steady state following a change in control
parameters. After waiting long enough, the system may
reach a new steady state. In genetic perturbation experi-
ments, a gene of the cell is either knocked-out or over-
expressed; perturbed cells are then compared to the refer-
ence. Our approach relies on the signs of the variations in
expression or activity of the species in the network. Let us
denote by sign(X;) € {+, -, 0} the sign of the variation of
species i during a given perturbation experiment, and by
sign(j — i) € {+, -} the sign of the edge j — i in the inter-
action graph.

Let us fix species i such that there is no positive self-regu-
lating action on i. For every predecessor j of i, sign(j — i) *
sign(X;) provides the sign of the influence of j on the spe-
cies i. Then, we can write a constraint on the variation to
interpret the rule that was previously stated: the variation
of species i is explained by the variation of at least one of its
predecessors in the graph.

sign(X;) = Zsign(j — i)sign(X ;). (1)
j—i
When the experiment is a genetic perturbation, the same

equation holds for every node that was not genetically
perturbed during the experiment and such that all its
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predecessors were not genetically perturbed. If a predeces-
sor X,, of the node was knocked-out, the equation
becomes

sign(X;) = —sign(M — i)

+2 sign(j — i)sign(X ). (2)
j—i
=M
The same holds with +sign(M — i) when the predecessor
X,,was over-expressed. There is no equation for the genet-
ically perturbed node.

The sign algebra is the suitable framework for reading these
equations [26]. It is defined as the set {+, -, 2, 0}, provided
with a sign consistency relation =, and arithmetic opera-
tions + and x. The following tables describe this algebra:

+4+—=1 +++=+ +X—==  +X+t=+
-—+—==-  +4+0=+ —-x—=+ +x0=0
0+0=0 -+0=- O0x0=0 -x0=0
4 —=1 H++=1 WX —=1 X+ =1
H+?=2 +0=2? WX?=1 *x0=0
+#— +=0 —-=0 ?=+ ?=- 1=0

For a given interaction graph G, we will refer to the quali-
tative system associated with G as the set made up by apply-
ing constraint (1) for each node in G. We say that node
variations X; € {+, -, 0} are consistent with the graph G
when they satisfy all the constraints associated with G
using the sign consistency relation ~.

With this material at hand, let us come back to our origi-
nal problem, namely to infer the regulatory role of TFs
from the combination of heterogeneous data. In the fol-
lowing we assume that:

¢ The interaction graph is either given by a model to be
validated, or built from ChIP-chip data and TF binding
site search in promoter sequences. Thus, as soon as a TF j
binds to the promoter sequence of gene i, j is assumed to
regulate i. This is represented by an arrow j — i in the
interaction graph.

¢ The regulatory role of a TF j on a gene i (as inducer or
repressor) is represented by the variable S;;, which is con-
strained by Egs. (1) or (2).

¢ Expression profiles provide the sign of variation of the
gene expression for a set of r steady-state perturbation,
mutant, or over-expression experiments. In the following,
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x,k will stand for the sign of the observed variation of gene

i in experiment k.

Our inference problem can now be stated as finding val-

ues in {+, -} for S, subject to the constraints:

forall(1<i<n),(1<k<r)s.t iisnot

genetically perturbed in the k-th experiment
Xk = 2 ‘ ‘Sﬂx;z if all predecessors j
]

are not genetically perturbed

I § : k (3)
X = =S, + S..x”
i Mi josi j%M jittj
if Mis knocked-out.
k E : k
X, = S, + S..x%
i Mi josijem I

if M isover-expressed.

Most of the time, this inference problem has a huge
number of solutions. However, some variables Sﬁ may be
assigned the same value in all solutions of the system.
Then, the recurrent value assigned to S;; is a logical conse-
quence of the constraints (3), and a prediction of the
model. We will refer to these inferred interaction signs as
predictions of the qualitative system, that is, sign variables
S;i that have the same value in all solutions of a qualitative
system (3). When the inference problem has no solution,
we say that the model and the data are inconsistent or
ambiguous.

Let us illustrate this formulation with a very simple (yet
informative) example. Suppose that we have a system of
three genes A, B, C, where B and C influence A, as given in
Fig. 4. Let us say that for this interaction graph we
obtained six experiments, and in each of them the varia-
tion of all products in the graph was observed. Using
some or all of the experiments provided will lead us to dif-
ferent qualitative systems, as shown in Table 1, hence to
different inference results.

B Stress perturbation

expression profile ta TB  TC

\ el +  + +

€2 + + -

A €3 - + -

/ €q - - -

€5 - - +

C €6 + - +

Figure 4

Interaction graph of three genes A, B, C, where their
changes in expression was observed in six stress per-
turbation experiments.
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Algorithmic procedure

When the signs on edges of the interaction graph are
known (i.e. fixed values of S;), finding consistent node
variations X; is a NP-complete problem [26]. When the
node variations are known (i.e. fixed values of X;), finding
the signs of edges S;; from X; can be proven NP-complete
in a very similar way. However, we have been able to
design algorithms that perform efficiently on a wide class
of regulatory networks. These algorithms predict signs of
the edges when the network topology and the expression
profiles are consistent. In case of inconsistency, though,
they identify ambiguous motifs and propose predictions
on parts of the network that are not concerned with ambi-
guities.

The general process flow is as follows (see the Methods
section for details):

Step 1 Sign Inference

Divide the graph into motifs (each node with its predeces-
sors). For each motif, find sign valuations (see Algorithm
1 in the Appendix section) that are consistent with all
expression profiles. If there are no solutions, call the motif
Multiple Behaviours Module (MBM) and remove it from the
network.

Solve again the remaining equations and determine the
edge signs that are fixed to the same value in all the solu-
tions. These fixed signs are called predicted edge and repre-
sent our predictions.

Step 2 Global test/correction of the inferred signs

Solutions at the previous step are not guaranteed to be
global. Indeed, two node motifs at step 1 can be consist-
ent separately, but not altogether (with respect to all
expression profiles). This step checks global consistency
by solving the equations for each expression profile. New
Multiple Behaviours Modules can be found and removed
from the system.

Step 3 Extending the original set of observations

Once all conflicts have been removed, we get a set of solu-
tions in which signs are assessed to both nodes and edges.
Predicted nodes, representing inferred gene variations can
be found in the same way as we did for edges. We add the
new variations to the set of observations and return to step
1. The algorithm is iterated until no new signs are inferred.

Step 4 Filtering predictions

In the inconsistent case, the validity of the predictions
depends on the accuracy of the model and on the correct
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Table I: lllustration of the sign inference process
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Experiments used Qualitative system

Replacing values from

Consistent solutions Inferred signs

experiments (SgarSca) (identical in all solutions)
()
{ei} Xy (H) = Spa X (+) + Sca x (+) (*-) <
-+)
{e e} Xl (F) = Spa X (¥) + Sca * (+) (++) {Sea=+}
X3 (+) = Spa X (+) + Sca* () (*+-)
{er, ey €3} xk (+) = Sga X (+) + Sca * (+) (+.#) {Sea=+. S =}
X3 () = S (+) *+ Sca * ()
3 () = S (4) * S ()

In this example the variables are only the roles of regulations (signs) in the interaction graph. Variations of the species in the graph are obtained
from six experiments. Using different sets of experiments we infer different roles of regulation. Using experiments {e|, e,, 3}, for example, our
qualitative system will have three constraints and not all valuations of variables Szjand Sgsatisfy this system according to the sign algebra rules. As
we obtain unique values for these variables in the solution of the system, we consider them as inferred (predicted).

identification of the MBMs. The model can be incomplete
(missing interactions), and MBMs are not always identifi-
able in a unique way. Thus, it is useful to sort predictions
according to their reliability. Our filtering parameter is a
positive integer k representing the number of different
experiments with which the predicted sign is consistent.
For a filtering value k, all the predictions that are consist-
ent with less than k profiles are rejected.

The inference process then generates three results:

1. A set of MBMs, containing interactions whose role was
unclear and generated inconsistencies. We have identified
several types of MBMs:

® Modules of Type I: are composed of several direct regu-
lations towards the same gene. They are detected in the
Step 1 of the algorithm, and most of them are composed
of only one edge like illustrated in Fig. 5, but bigger exam-
ples exist.

® Modules of Type II, III, IV: are detected in Steps 2 or 3,
hence they contain either direct regulations coming from
the same protein or indirect regulations and/or loops.
Each of these regulations represents a consensus of all the
experiments, but when we attempt to assess them glo-
bally, they lead to contradictions. The indices II-IV have
no topological meaning, they label the most frequent sit-
uations and are illustrated in Fig. 5.

2. A set of inferred signs, meaning that the expression pro-
files fix the signs of certain interactions in a unique way.

3. A reliability ranking of inferred signs. The filtering param-
eter k used for ranking is the number of different expres-
sion profiles that validate a given sign.

On a computational level, the division between Step 1
(which considers each small motif with all profiles
together) and Step 2 (which considers the whole network
with each profile separately) is necessary to overcome the
memory complexity of the search for solutions. To handle
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®

[Type III]

o & ©®

[Type I [Type II] [Type IV

Figure 5

Classification of the Multiple Behaviours Modules
(MBM) found in S. cerevisiae transcriptional network.
Green and red interactions correspond to inferred activa-
tions and repressions respectively. Significant differentially
expressed genes of the MBM, during one experimental con-
dition, are coloured green (up-regulated), or red (down-reg-
ulated) (a) Type | modules are composed by regulations
towards the same gene. Regulations in this module were
found to be inconsistent in at least 2 experiments. (b) Type
Il are composed by genes regulated by the same direct pred-
ecessor. Explanation: The interaction among Sum| and
YFLO40W is inferred at the Step | of the algorithm as an acti-
vation, while among Sum| and DIT2 as an inhibition. During
the correction step (Step 2), expression profiles related to one
experiment showed that the expression of these two genes
(YFLO40W and DIT2) is up-regulated. As it is impossible to
state if SUM| is up or down-regulated (inconsistency), we
mark this module as MBM. (c) Type Il are composed by
coloured genes that share a predecessor. (d) Type IV are
composed by coloured genes sharing the same predecessor
or successor.

large scale systems we combine decision diagrams and
constraint solvers (see details in the Methods section).

Since our basic rule is a weak constraint, we expect it to
produce very robust predictions. On the other hand, there
are theoretical limits to this approach. For certain interac-
tion graphs, not a single sign may be inferred even with a
high number of experiments. In the next paragraphs, we
comment on the maximum number of signs that can be
inferred from a given graph.

In perturbation experiments, gene responses are observed
following changes of external conditions (temperature,
nutritional stress, etc.), gene inactivations, knock-outs, or
over-expression. When one expression profile is available
for all the genes in the network we say that we have a com-
plete profile, otherwise the profile is partial (data is miss-

ing).

In the following pragraphs we describe the results we
obtained. First of all, in order to validate our formal
approach, we evaluated the percentage of the E. coli net-
work recovered from a reasonable number of artificial
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randomly generated perturbation experiments. Secondly,
we combined real perturbation experiments with the E.
coli network and computed the percentage of the recov-
ered network. Finally, we performed the same previous
analysis in a real setting of the S. cerevisiae network
obtained from ChIP-chip data.

On a computational level, we checked that our algorithms
were able to handle large scale data, as produced by high-
throughput measurement techniques (expression arrays,
ChIP-chip data). This is demonstrated in the following by
considering networks of thousands of genes.

Stress perturbation experiments: how many do you need?

For any given network topology, even when considering
all possible experimental profiles, there are signs that can-
not be determined (see Table 1). Sign inference has thus a
theoretical limit, referred to here as theoretical percentage of
recovered signs, that is unique for a given network topol-
ogy. If only some perturbation experiments are available,
and/or data is missing, the percentage of inferred signs
will be lower. For a given number N of available expres-
sion profiles, the average percentage of recovered signs is
defined over all sets of N different expression profiles con-
sistent with the qualitative constraints Eqs. (1) and (2).

In order to calculate the theoretical and the average per-
centages of recovered signs for the transcriptional network
of E. coli, we modelled the network as an interaction graph
using the public database RegulonDB [6]. For each tran-
scriptional regulation A — B we added the corresponding
arrow between genes A and B in the interaction graph.
This graph will be referred to as the unsigned interaction
graph.

From the unsigned interaction graph of E. coli, we build
the signed interaction graph by annotating the edges with a
sign. Most of the time, the regulatory role of a TF is avail-
able in RegulonDB, however, when it is unknown or
depends on the TF level, we arbitrarily choose the value +
for this regulation. This provides a graph with 1529 nodes
and 3802 edges, all signed edges. The signed interaction
graph is used to generate complete expression profiles that
simulate the effect of perturbations. More precisely, a per-
turbation experiment is represented by a set of gene
expression variations {X;};_, _, that are not entirely ran-
dom, for they are constrained by Egs.(1) and (2). Then,
we forget the signs of the network edges and compute the
qualitative system with the signs of regulations as
unknown.

The theoretical maximum percentage of inference is given by
the number of signs that can be recovered assuming that
complete expression profiles of all conceivable perturba-
tion experiments are available. We computed this maxi-
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mum percentage using constraint solvers (see Algorithm 2
in the Appendix section). We found that at most 40.8% of
the signs in the network can be inferred, corresponding to
M, .= 1551 edges.

However, this maximum can be obtained only if all con-
ceivable (more than 250) perturbation experiments are
done, which is in practice not possible. We performed
computations to understand the influence of the number
of experiments (N) on the inference. For each value of N
(from 5 to 200), we generated 100 sets of N complete ran-
dom expression profiles and performed our algorithm for
each set. Then, the percentage of inference was calculated
as a function of N. The resulting statistics are shown in Fig.
6.

We can obtain a theoretical formula explaining the satura-
tion aspect of the curve in Fig. 6. Let us suppose that the
network contains M, single incoming regulations. These
can be inferred with probability one from only one exper-
iment, using the naive algorithm (see Algorithm 1). Let us
suppose a second category of interactions, whose signs are
inferred with probability p (0 <p < 1) on average, per
experiment. This implies that the average number of
inferred signs for one experiment is M(1) = M; + pM,,
where M, is the number of interactions in the second cat-
egory. Supposing now that inference failures are inde-

whole network 1529 nodes 3802 edges

0.35

o
w

0.25

fraction of inference
o
N

0.15

20 40 60 80 100 120 140 160 180 200
number of expression profiles

Figure 6
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pendent for different experiments, we obtain the average
number of inferred signs for N experiments: M(N) = M, +
M,(1 - (1 - p)N). In general, we have M, + M, <E (E is the
total number of edges), meaning that there are edges
whose signs cannot be inferred.

In our example, the value M; = 609 corresponds to the
average number of signs inferred by the naive algorithm.
Surprisingly, by using our method we can significantly
improve the naive inference with little effort. For the
whole E. coli network it appears that a few expression pro-
files are enough to infer a significant percentage of the net-
work. More precisely, 30 different expression profiles may
be enough to infer one third of the network (1267 regula-
tory roles). Adding more expression profiles continuously
increases the percentage of inferred signs. For N > 100 we
are practically on the plateau close to 37.3% (this corre-
sponds to M = 1420 signed regulations).

According to our estimates the position of the plateau is
M =M, + M, = 1420, which is smaller than the theoretical
maximum M <M,,,.. The difference, although negligible
in practice (to obtain M,,,, one has to perform N > 250
experiments), suggests that the plateau has a very weak
slope. This means that contributions of different experi-
ments to sign inference are weakly dependent.

Core of the network 28 nodes, 57 edges
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(Both) Statistics of the sign-inference process on the regulatory network of E. coli from complete expression profiles. The signed interac-
tion graph is used to generate sets of N random artificial expression profiles which cover the whole network. Then, each set of N profiles is used with the
unsigned interaction graph to recover regulatory roles. X-axis: number N of expression profiles in the dataset. Y-axis: percentage of recovered signs in the
unsigned interaction graph. Each set of N random profiles was generated 100 times; the distribution of the recovered signs is plotted as a boxplot. The
continuous line corresponds to the theoretical formula Y = M, + My(1 - (I - p)X); M, denotes the number of single incoming regulations inferred with prob-
ability one from any complete profile (using the naive inference algorithm), and M, denotes the number of signs inferred with a probability p (0 <p < I) per
experiment. (Left) Statistics using the whole E. coli regulatory network. We estimated that at most 37.3% of the network can be inferred from a small
number of different complete profiles. Among the inferred regulations, we estimated to M; = 609 the number of signs inferred with probability one from
any complete expression profile. The remaining M, = 811 signs are inferred with a probability whose average is p = 0.049 per experiment. Hence, 30 per-
turbation experiments are enough to infer 33% of the network. (Right) Statistics using only the core of the former graph (see definition of a core in the
text). We estimated M, = 18 and M, = 9, implying that the maximum rate of inference is 47.4%. Since p = 0.001 I, the number of expression profiles
required to obtain a given percentage of inference is greater than in the case using the whole network (N = 100 to infer 33% of the network).
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The values of M;, M,, p estimate the efficiency of our
method: large p,M;,M, mean small number of expression
profiles needed for inference.

Inferring the core of the network

Obviously, not all interactions play the same role in the
network. The core is a subnetwork that naturally appears
for computational purposes and plays an important role
in the system. It consists of all oriented loops and of all
oriented chains leading to loops. All oriented chains leav-
ing the core without returning are discarded when reduc-
ing the network to its core. Acyclic graphs and in particular
trees have no core. The main property of the core is that if
a system of qualitative equations has no solution, neither
has the reduced system built from its core. Hence it corre-
sponds to the most difficult part of the constraints to
solve. It is obtained by reduction techniques that are very
similar to those used in [28] (see details in the Methods
section). As an example, the core of E. coli network
(shown in Fig. 7) only has 28 nodes and 57 edges.

In the previous section, we applied the same inference
process to this graph. Not surprisingly, we noticed a rather
different behaviour when inferring signs on a core graph
than on a whole graph as demonstrated in Fig. 6. In the
former case, we needed many more experiments for the
inference since the sets of expression profiles contained
from N = 50 to 2000 random profiles.

Two observations may be concluded. First, a greater
number of experiments is required to reach a comparable
percentage of inference; the value of p is smaller than for
the whole network. This confirms that the core is more
difficult to infer than the rest of the network. Second, Fig.

\“ & |
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Figure 7

Core of E. coli network. It consists of all oriented loops
and of all oriented chains leading to loops. The core contains
the dynamical information of the network, hence sign edges
are more difficult to infer.
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6 displays a much less continuous behaviour for the core.
More precisely, when using the core, different perturba-
tion experiments have a strongly variable impact on sign
inference. For instance, the experimental maximum per-
centage of inference (27 signs over 58) can be obtained
already from about 400 expression profiles, yet, most of
the datasets with 400 profiles infer only 22 signs.

This suggests that not only the core of the network is more
difficult to infer, but also that a brute force approach
(multiplying the number of experiments) may fail as well.
This situation encourages us to apply experiment design
and planning, that is, computational methods to mini-
mise the number of perturbation experiments while infer-
ring a maximal number of regulatory roles.

This also illustrates why our approach is complementary
to dynamical modelling. In the case of large scale net-
works, when an interaction stands outside the core of the
graph, an inference approach is suitable for inferring the
sign of the interaction. However, when an interaction
belongs to the core of the network, more complex behav-
iours occur (e.g. influences that depend on activation
thresholds) thus, a precise modelling of the dynamical
behaviour of this part of the network should be per-
formed [29].

Influence of missing data

In the previous paragraphs, we assumed that all products
in the network were observed. That is, in each experiment
each node is assigned a value in {+, 0, -}. However, in real
measurement devices, such as expression profiles, a part
of the values is discarded due to technical reasons. A prac-
tical method for network inference should cope with
missing data.

We studied the impact of missing values on the percentage
of inference. For this, we have considered a fixed number
of expression profiles (N = 30 for the whole E. coli net-
work, N =30 and N = 200 for its core). Then, we have ran-
domly discarded a growing percentage of observed
products in the profiles, and computed the percentage of
inferred regulations. The resulting statistics are shown in
Fig. 8.

In both cases (whole network and core), the dependency
between the average percentage of inference and the per-
centage of missing values is qualitatively linear. Simple
arguments allow us to find an analytic dependency. If not
observing one node of the network implies losing infor-
mation on d interaction signs, we are able to obtain the

following linear dependency M; = M™™ -d * f* M,,;

where M["™™ is the number of inferred interactions for
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(AIl) Statistics of the sign-inference process on the regulatory network of E. coli from partial expression pro-
files. The setting is similar to the one used in Fig. 6, except for the cardinal of the expression profiles (N is fixed), and for the
variable on X-axis which represents the percentage of missing values in the expression profiles. The continuous line corre-

sponds to the theoretical prediction M;= M™™ -d* f*M,,; where M"™ is the number of inferred interactions from com-

plete expression profiles, d is the number of interaction signs no longer inferred when a node is not observed, f'is the fraction

of unobserved nodes, and M, is the total number of nodes. (Left) Statistics for the whole network; we used 30 sets of artifi-

cial expression profiles (N = 30). We estimated d = 0.35, meaning that on average we lose one interaction sign for about 2.9
missing values in the profiles. (Middle) Statistics for the core network (N = 30). We estimated d = 0.43; the core of the net-
work, however, is more sensitive to missing data. (Right) Statistics for the core network (N = 200). We estimated d = 0.74;

hence, increasing the number of expression profiles increases the sensitivity to missing data.

complete expression profiles (no missing values), f is the
fraction of unobserved nodes, and M,,, is the total

number of nodes. In order to keep M; non negative, d

must decrease with f. Our numerical results imply that the
constancy of d and the linearity of the above dependency
extend to rather large values of f. This indicates that our
qualitative inference method is robust enough for practi-
cal use. For the whole network we estimated d = 0.35,
meaning that on average we lose one interaction sign for
about 2.9 missing values. However, for the same number
of expression profiles, the core of the network is more sen-
sitive to missing data (the value of d is larger, it corre-
sponds to losing one sign for about 2.3 missing values).
For the core, increasing the number of expression profiles
increases d and hence the sensitivity to missing data.

Application to E. coli network with a real compendium of
expression profiles

We validated our method on the transcriptional E. coli
network using the compendium of expression profiles
publicly available in [9] and [22]. This time the network
was composed of 1418 nodes and 2888 edges. The differ-
ence with the previous model are the sigma-factors - gene
interactions.

Several profiles were available, including a reference con-
dition. We grouped together the different profiles corre-

sponding to the same experiment; for each gene we
calculated its average variation in the group of profiles.
When profiles were time series, we considered that each
time series ends with steady state and we used the last state
in the time series. Then, we sorted the measured genes in
four classes: 2-fold up-regulated, 2-fold down-regulated,
non-observed, and zero variation; this last class corre-
sponds to non significantly (2-fold) expressed genes.
Only the first two classes were used in the algorithm.
Therefore, there will be missing data: for some edges, nei-
ther the input nor the output are observed. Altogether, we
have processed 226 sets of expression profiles correspond-
ing to 61 different experiments (over-expression, gene-
deletion, and stress perturbation). We verified, for all the
experiments, that they correspond to the comparison
between one perturbed condition against a control condi-
tion with identical levels in all chemical components
except for the one altered in the perturbed condition.

We applied our inference algorithm twice: the first time
we used the signed network in a pre-processing step, in
order to clean the expression data. It appears that the
signed network is consistent with only 31 of the 61
selected experiments. After discarding the inconsistent
motifs from each experiment (deleting observations that
caused conflicts), we stayed with 61 experiments which
only contained the data consistent with the signed net-
work. In these 61 experiments, on average 12.62% of the
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network nodes were observed. When summing up all the
observations, we obtained that 6.5% (190) of the edges
(input and output) were observed in at least one expres-
sion profile; these represent the maximal set of signs that
can be inferred at Steps 1 and 2 of our inference algo-
rithm. In order to test our algorithm we wiped out the
information on edge signs and then tried to recover it.
Since the profiles and network were consistent, our algo-
rithm found no ambiguity and predicted 38 signs, i.e.
20% of the edges observed at least once (input and out-
put). The naive inference algorithm inferred 31 signs.
Hence, 18% of the total of our predictions could not be
obtained by the naive algorithm.

Afterwards, we tested our algorithm with the full set of
observations, no data being discarded. Conflicts appeared
and we filtered our inference with different parameters on
the full set of 61 experiments including inconsistencies.
This time 12.9% of the network products were observed
on average. When summing all the observations, 17.2%
(497) of the edges (input and output) were observed in at
least one expression profile. Several values of the filtering
parameter k were used from k = 1 to k = 5. Without filter-
ing we predicted 152 signs of the network (30% of the
edges observed at least once), among them, 41.4% were
not inferred by the naive algorithm. We compared the pre-
dictions to the known interaction signs: 28.3% of the pre-
dictions were false predictions. Sources of errors may lie
on non-modelled interactions (possibly effects of sigma-
factors), or in using experiments on different E. coli
strains. Filtering improves our score allowing us to retain
only reliable predictions. Thus, for k = 5, we inferred 41
signs, of them, only 1 was an incorrect prediction (2.5%
of false prediction). We conclude that filtering is a good
way to strengthen our predictions even when the model is
not precise enough. We illustrated the effect of the filter-
ing process in Fig. 9.

It should be noted that we obtained very similar results
either by cleaning the data thanks to the signed network,
either by using our filtering procedure. This is a particu-
larly clear indication that this filtering procedure is an
effective strategy to produce robust predictions.

Our algorithm also detected ambiguous modules in the
network. There are seven MBM of Type (i.e. single incom-
ing interactions); four of them are also stated as ambigu-
ous by the naive algorithm. In addition, there are 4 MBM
of Type II that are not detected by the naive inference algo-
rithm. All the ambiguities are shown in Fig. 10. A list of
experimental assays that yield ambiguities on each inter-
action is given in the Supplementary Web site. This analy-
sis shows that there exist non-modelled interactions that
balance the effects on the targets in the MBM detected.

http://www.biomedcentral.com/1471-2105/9/228
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Results of the inference algorithm applied to E. coli
network with a compendium of 61 experiments not
globally coherent. The dark and light regions of the bars
correspond to false positive and validated predictions,
respectively. Without filtering, there are 28.3% of false posi-
tives. With filtering — keeping only the sign predictions con-
firmed by k different experiments — the rate of false positives
decreases to 2.5%.

A real case: inference of signs in S. cerevisiae
transcriptional regulatory network

We applied our inference algorithm to the transcriptional
regulatory network of the budding yeast S. cerevisiae. Let
us here briefly review the available sources that can be
used to build the unsigned regulatory network. The exper-
imental dataset proposed by Lee et al. [11] is widely used
in the network reconstruction literature. It is a study con-
ducted under nutrient rich conditions, and it consists of
an extensive ChIP-chip screening of 106 TFs. Estimations
regarding the number of yeast TFs that are likely to regu-
late specific groups of genes by direct binding to the DNA
vary from 141 to 209, depending on the selection criteria.
In follow-up papers of this work, the ChIP-chip analysis
was extended to 203 yeast TFs in rich media conditions
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Figure 10
Interactions in the regulatory network of E. coli that
are ambiguous with a compendium data of expres-
sion profiles. For each interaction, there exist at least two
expression profiles that do not predict the same sign on the
interaction. Dotted and filled lines represent the MBM of
Type | and Type Il, respectively.

Page 11 of 21

(page number not for citation purposes)



BMC Bioinformatics 2008, 9:228

and 84 of these regulators in at least one environmental
perturbation [12]. Analysis methods were refined in 2005
by Maclsaac et al. [13]. Other studies continued to work in
this network using different approaches [10,14-16]. Here
we selected two of these sources. All networks are pro-
vided in the Supplementary Web site.

(A) The first network consists of the core of the transcrip-
tional ChIP-chip regulatory network produced in [11].
Starting from the full network with a p-value of 0.005, we
reduced it to the set of nodes that have at least one output
edge. This network was already studied in [28]. It contains
31 nodes and 52 interactions.

(B) The second network contains all the transcriptional
interactions between TFs shown by [11] with a p-value
below 0.001. It contains 70 nodes and 96 interactions.

(C) The third network is the set of interactions among TFs
as inferred in [13] from sequence comparisons. We have
considered the network corresponding to a p-value of
0.001 and 2 bindings (83 nodes, 131 interactions).

(D) The last network contains all the transcriptional inter-
actions among genes and regulators shown by [11] with a
p-value below 0.001. It contains 2419 nodes and 4344
interactions.

Inference process with gene-deletion expression profiles

We first applied our inference algorithm to the large scale
network (D) using a panel of expression profiles for 210
gene-deletion experiments [30]. The information given by
this panel is quite small, since 1.6% of all the products in
the network is on average observed, and 12% of the edges
(input and output) of the network are observed in at least
one expression profile. Using these data, we inferred 162
regulatory roles.

We validated our prediction with a literature-curated net-
work on Yeast [31]. We found that among the 162 sign-
predictions, 12 were referenced with a known interaction
in the database, and 9 with a good sign.

Gene-deletion expression profiles were used in order to
compare our results to path analysis methods [20,23]
since the latter can only be applied to knock-out data.
Other sign-regulation inference methods needed either
other sources of gene-regulatory information (promoter
binding information, protein-protein information), or
time-series data to be performed [10,15,18].

First, we tested the consistency between the inferred net-
work obtained from path analysis methods with the 210
gene-deletion experiments. We obtained that the network
was inconsistent with 28 of the 210 experiments. Second,

http://www.biomedcentral.com/1471-2105/9/228

we compared the inference results for both methods, our
approach and the path analysis method, obtaining in the
latter that 234 roles of widely connected paths were
inferred; whereas with our method 162 roles were
inferred, mainly localised in the branches of the network.
Both results intersected on 17 interactions and no contra-
diction in the inferred role was reported. An illustration of
these results is given in the Supplementary Web site.

This suggests that our approach is complementary to path
analysis methods. Our explanation is as follows: in
[20,23], network inference algorithms identify probable
paths of physical interactions connecting a gene knock-
out to genes that are differentially expressed as a result of
that knock-out. This leads to a search for the smallest
number of interactions that carry the largest information
in the network. Hence, inferred interactions are located
near the core of the network, but not exactly in the core.
On the contrary, as we already mentioned, the combina-
torics of interactions in the core of the network are too
intricate to be determined from a few hundreds of expres-
sion profiles with our algorithm, thus, we concentrate on
interactions around the core.

Inference with stress perturbation expression profiles

To overcome the problem exposed using the small
amount of information contained in [30], we have used
stress perturbation experiments. These data correspond to
curated information available in SGD (Saccharomyces
Genome Database) [32]. When time series profiles were
available, we selected the last time expression array.
Therefore, we collected and treated 15 experiments
described in Table 2. For each expression array, we sorted
the measured genes in four classes: 2-fold up-regulated, 2-
fold down-regulated, non-observed, and zero variation.
Full datasets are available in the Supplementary Web site.

As in the case of E. coli, it appeared that all the networks
(A), (B), (C), and (D) were not consistent with the whole
set of expression arrays. Thus, when executing our algo-
rithms we identified motifs that held ambiguities, and we
marked them as MBM of type I-IV (as described in our
inference algorithm). We also generated a set of inferred
signs and applied the filtered algorithm (with filter k = 3)
to the large scale network (D).

We obtained our total inference rate by adding the
number of inferred signs fixed in an unique way to the
number of non-repeated interactions in the MBM
detected, and dividing it by the total number of edges in
the network. In Table 3 we illustrate the inference rate
obtained for each of the networks. Depending on the net-
work, the inference rate varies from 19% to 37%; thus,
they are similar to the theoretical rates obtained for E. coli
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Table 2: List of genome expression experiments on S. cerevisiae used in the sign inference process

http://www.biomedcentral.com/1471-2105/9/228

Experiment Identifier Description Ref.
El Diauxic Shift [40]
E2 Sporulation [41]
E3 Expression analysis of Snf2 mutant [42]
E4 Expression analysis of Swil mutant [42]
E5 Pho metabolism [43]
E6 Nitrogen Depletion [44]
E7 Stationary Phase [44]
E8 Heat Shock from 21°C to 37°C [44]
E9 Heat Shock from 17°C to 37°C [44]
EIO Wild type response to DNA-damaging agents [45]
Ell Mec| mutant response to DNA-damaging agents [45]
El2 Glycosylation defects on gene expression [46]
EI3 Cells grown to early log-phase in YPE (Rich medium with 2% of Ethanol) [47]
El4 Cells grown to early log-phase in YPG (Rich medium with 2% of Glycerol) [47]
EIS Titratable promoter alleles — Erol mutant [48]

All experiments contain information on steady state shift and their curated data is available in SGD (Saccharomyces Genome Database) [32].

network even with a small number of perturbation exper-
iments (14 or 15).

We validated the inferred interactions comparing them to
the literature-curated network published in [31]. We
obtained 631 predictions when no filtering is applied.
Furthermore, among the 198 interactions predicted with a
filter parameter k = 3, 19 were referenced with a known
interaction in the database, and only 1 prediction had a
wrong sign. As in the case of E. coli, we conclude that fil-
tering is a good way to produce extremely robust predic-
tions. Additionally, we compared our predictions to the
naive inference algorithm finding that the naive algorithm
usually predicts half of the signs that we obtain. In Fig. 11
we illustrate the inferred interactions for Network (B).

As already mentioned, the algorithm identified a large
number of ambiguities. The exhaustive list of MBM is
given in the Supplementary Web site and the Type I mod-
ules of size 2 found for the networks (A), (B), and (C) are
detailed in Table 4. We noticed that the MBM of Type I

Table 3: Results of the sign inference process on S. cerevisiae

were detected in the four networks; whereas the MBM of
Type II-IV were only detected, in an large number, for Net-
work (D); Type II MBM being the most numerous
(85.4%). For each MBM, a precise biological study of the
species should enable to understand the origin of the
ambiguity: erroneous expression data, missing interac-
tions in the model, or context-dependent regulations.

Contribution of expression profiles to the inference
Analysing only the sign inference process on the global
network (D), we wish to estimate how the 14 experiments
used influence the unique way {+, -} inferred signs. On
that account we address the following question: Assuming
that all the inferred roles in Step 1 of our inference algo-
rithm are correct, which is the experiment that marks
more inferred roles as inconsistent (i.e. that generates
more MBM)?

Therefore, we classified the 14 experiments according to
the MBM of Type II-IV generated per experiment. MBM of
Type I are not included in this computation, for they are

Interaction network ~ Nodes Edges Average In/Out observed  Inferred signs {+,-} MBM Type| MBM Type ll-IV  Total Inference  Naive Algorithm
observed nodes simultan. Inference
(A) Core of Transc. 31 52 28% 88% I 3 0 26.8% 1%
Network [11,28]
(B) Extended Transc. 70 96 26% 72% 29 7 0 37.4% 15,6%
Network [11]
(C) Maclsaac inferred 83 131 33% 69% 21 4 0 19% 1%
network [12,13]
(D) Global Transc. 2419 4344 30% 52% no filter : 631 filter 281 463 32% 13.9%

Network [11]

k=3:198

Sign inference process applied on four transcriptional networks of S. cerevisiae. 15 significant (2-fold) experiments were used for the inference. The In/Out observed
simultaneously rate refers to the possible sign inference rate if all observations of the in/out nodes of one edge lead to predictions. The Inferred signs are the number of signs
fixed in an unique way {+, -} by all the experiments; MBM Type I, refers to the number of edges found in a module of this type; and analogusly for MBM Type II-IV. The sum of
these 3 values divided by the total number of edges will represent the rate of the Total Inference. In addition, we calculated the inference rate obtained with the Naive
Algorithm. For network (D) all the inference rates were obtained using the algorithm without filtering, except for the number of Inferred signs.
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Figure 11

S. cerevisiae transcriptional network. Only interactions among transcription factors were taken into account (70 nodes,
96 edges) [ I]. A total of 29 interactions were inferred. Green and red arrows correspond to inferred activations and repres-
sions, respectively. Blue arrows correspond to the detected MBM of Type |. The diagram layout was produced using the Cyto-

scape package [39].

inferred in Step 1 of the algorithm. The results of this clas-
sification are shown in Fig. 12. The fourth chart illustrates
that the real contribution of each expression profile does
not depend on the amount of observed genes it contains.

Discussion

Predicting from a "small" number of expression profiles
In principle, inferring the functional effect of regulations
could be done using general reconstruction methods. The

most outstanding approaches in this domain include
Bayesian networks [33], linear ordinary differential equa-
tions (ODE) [34,35] and correlation/causal networks
[14,16,36] (see [10] for a review, and a comparison on
several datasets). These are quantitative methods which
are carefully designed to cope with the high level of noise
that is generally observed in expression data. They rely
either on an explicit parametric modelling of noise distri-
bution (like in Bayesian networks), either on robust statis-

Table 4: Ambiguous modules of Type | found for 3 transcriptional networks of S. cerevisiae.

Interaction network Actor  Target Experiment |

Experiment 2

(A) Core of Transc. Network ~ YAP6  CIN5

GRFIO MBPI  YPD Broth to Stationary Phase [44]
PDHI  MSN4 Nitrogen Depletion [44]
(B) Extended Transc. Network  YAP6  CIN5  Expression during Sporulation [41]
RAPI SIP4  Expression during Sporulation [41]
SKN7  NRGI YPD Broth to Stationary Phase [44]
PHDI  SOK2 Heat shock 21°C to 37°C [44]
RAPI RCSI  Wild type + Heat [45]
PHDI  MSN4 Nitrogen Depletion [44]
HAP4  PUT3  Expression during the diauxic shift [40]
(C) Maclssac inferred network ~ SWI5  ASHI  Expression regulated by the PHO path- way [43]
SKN7  NRGI YPD Broth to Stationary Phase [44]
NRGI  YAP7  Expression regulated by the PHO path- way [43]
NRGI  GAT3  Glycosylation [46]

Expression during Sporulation [41]

YPD Broth to Stationary Phase [44]
Mec| mutant + Heat [45]

Heat shock 21°C to 37°C [44]

YPD Broth to Stationary Phase [44]
Expression during the diauxic shift [40]
Expression during the diauxic shift [40]
YPD Broth to Stationary Phase [44]

Transition from fermentative to glycerol- based
respiratory growth [47]

Heat shock 21°C to 37°C [44]

Snf2 mutant, YPD [42]

YPD Broth to Stationary Phase [44]

Nitrogen Depletion [44]

Transition from fermentative to glycerol- based
respiratory growth [47]

Transition from fermentative to glycerol- based
respiratory growth [47]

For each ambiguous module, we list two inconsistent experiments that infer a different role of regulation.
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Figure 12

Classification of the 14 experiments used in the sign-inference
process for the global transcriptional network (2419 nodes, 4344
edges). The experiments are represented by their identifier (see Table 2).
Each experiment has a twofold contribution: it spots inconsistent modules
(MBM that are further excluded from inference) and it predicts interaction
roles. Some experiments have more predictive power, just because they
include more genes. In order to normalise the predictive power, we
divided the percentage of predictions by the percentage of observed
nodes. For each experiment we have estimated: (A) Number of significant
(2-fold) up/down-regulated genes. (B) Percentage of edges in the spotted
MBMs of type -1V divided by the percentage of observed genes. (C) Per-
centage of inferred signs divided by the percentage of observed genes. (D)
Real contribution of each experiment, calculated by subtracting C (infer-
ence) from B (eliminated inconsistency); negative values correspond to
experiments whose main role is to spot ambiguities.
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tical estimators for the network and its kinetic parameters.
The main limitation of these approaches is the number of
independent samples they require in order to be properly
used. It is often stated [10,36] that a minimum of 100 to
300 expression profiles are needed for the estimation pro-
cedure. While there exists a couple of datasets of such size,
the usual number of available profiles for a given biolog-
ical system is much smaller. Our approach is meant to be
used when the number of profiles ranges from 1 to a cou-
ple of hundreds, and should thus be seen as complemen-
tary to quantitative methods. Indeed our simulations on
E. coli network show that one can characterise about 30%
of the regulations from 30 expression profiles. We addi-
tionally showed that this is close to the theoretical limit of
our approach. This result was confirmed using expression
data on the same network: we infer 20% of the regulations
whose input and output are simultaneously observed in at
least one experiment, using 61 expression profiles.

Generating accurate predictions

The problem of inferring functional effect of transcription
factors was specifically addressed by Yeang and colleagues
[20,23], using a probabilistic discrete model. In this
approach, one identifies probable paths of physical inter-
actions connecting a gene knock-out to genes that are dif-
ferentially expressed as a result of that knock-out.
Predictions correspond to the signs found in models of
maximum likelihood. More generally, most reconstruc-
tion methods are based on computing an "optimal"
model with respect to the data. This raises two main
issues. First, the underlying optimization problems are
often non convex, and finding a global optimum is a very
difficult computational task. In practice, most algorithms
only guarantee to find a local optimum, which should be
cautiously examined before being reported as a predic-
tion. Second, even if a global optimum is found, it is
important (but computationally difficult) to check that
there is no slightly sub-optimal model that yields very dif-
ferent predictions. In other terms, it is necessary to evalu-
ate the robustness of the predictions. In our approach, we
describe the (possibly huge) set of models that are consist-
ent with the data, then look for invariants in this set. This
means that our predictions are compatible with all feasi-
ble models. In order to cope with experimental noise, we
combine this strategy with a filtering procedure, which
selects predictions that agree with a minimal number of
expression profiles. This led us to very accurate predic-
tions, as it was shown on data from E. coli and yeast. We
compared our inference approach to the path analysis
method by Yeang and colleagues [20,23]. We found that
both algorithms infer a similar number of regulations,
and that the predictions coincide. We noticed that the pre-
dictions are located in different parts of the network,
depending on the algorithm: path analysis tends to infer
signs in highly connected regions, while our approach
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infer signs on regulations acting on small in-degree nodes.
Another difference is that path analysis requires expres-
sion profiles from gene-deletion experiments, whereas
our method gives better results with stress perturbation
experiments (though it can be applied to both types of
experiment).

Sign inference and network topology

Using simulations, we evaluated the dependence between
the number of available expression profiles and the
number of signs that can be inferred from them. Not sur-
prisingly, we noticed that the topology of the regulatory
network has a strong influence on the estimated relation-
ship. This was illustrated by computing statistics on both
a complete regulatory network and its core. The complete
network is characterised by an over-representation of
feedback-free regulatory cascades, which are controlled by
a small number of TFs. In this setting, the number of
inferred signs grows almost continuously with the
number of observations. In contrast, the core network
does not obey the simple law "the more you observe, the
better", some expression profiles being clearly more
informative than others. Additionally, in these core net-
works an unfeasible number of experiments is necessary
to infer a small number of signs with high probability. For
these core networks, two different strategies may be
adopted. First, to build a more accurate model for these
restricted subnetworks using dynamic modelling tech-
niques (see [29] for a review). Second, to develop experi-
ment planning in our qualitative framework: given some
control parameters, how to find the most informative
experiments while keeping their number as low as possi-
ble?

Conclusion

In this work we proposed a discrete approach for a partic-
ular case of reconstruction problem: given a set of regula-
tions between genes, and a set of expression profiles,
determine the functional effect of each regulation, as acti-
vation or inhibition. Our approach is based on a qualita-
tive modelling framework, that was initially introduced to
check the consistency between a regulatory network and
expression data [24,25]. This framework is based on a
rule, which basically says that if the expression of a gene
varies between two conditions, then this should be
accounted for by the variation of at least one of its prede-
cessors. Here we applied this approach to predict the func-
tional effect of transcription factors on their target genes.

While intuitive and simple, the qualitative rule we pro-
pose can be used to infer a significant number of regula-
tory effects from a reasonable number of expression
profiles. As shown using data on E. coli and yeast, the pre-
dictions are particularly reliable, especially when they are
validated with our filtering procedure. Furthermore, our
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algorithms can handle datasets of realistic size. It should
be noted that computing the predictions presented in this
work requires to solve thousands of NP-hard problems
(more precisely, constraints with variables on a finite
domain). Each of these problem has several thousands of
variables. Nevertheless, our algorithms are exact and com-
pute the predictions in no more than an hour using a
standard desktop PC. This means that they are able to
cope with system-wide data in a fairly reasonable amount
of time. Due to the structure of the algorithms, we are con-
fident that they can handle even larger datasets in less
time, by distributing the computations on several
machines.

From our results on yeast, it appears that a significant pro-
portion of the network - as given by ChIP-chip data - is
not compatible with the available expression profiles. As
explained in the Results section, these data is discarded
from the analysis, in order to compute safe predictions -
but at the expense of a loss of information. The subject of
our current work is to develop an improved notion of pre-
diction, that copes better with inconsistent network and
data. The goal is to include inconsistent data in the infer-
ence process, while preserving the reliability of the predic-
tions.

Methods

Problem statement

We consider the set of equations derived from a given
interaction graph G:

XF=) sx) for1<i<ni<k<r (4)

joi

where X¥ stands for the sign of the variation of species i
in experiment k, and S;; the sign of the influence of species
j on species i. Recall that the graph G itself comes from

chIP-chip experiments or sequence analysis. Using expres-
sion arrays, we obtain an experimental value for some var-

iables X, which will be denoted x¥; more generally

uppercase (resp. lowercase) letters will stand for variables
of the systems (resp. constants +, - or 0).

A single equation in the system (4) can be viewed as a
predicate P; (X, S) where i denotes a node in the graph
and k one of the r available experiments. If the value for
some variables in the equation is known, the predicate
resulting from their instantiation will be denoted P; (X,
S) [«x%, s].

Our problem can now be stated as follows: given a set of
expression profiles x1,...,x", decide if the predicate:
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P(X.S)= A PuX9)x"] (5)

1<i<n,1<ks<r

can be satisfied. If so, find all variables that take the same
value in all admissible valuations (so called hard compo-
nents of the system).

Decision diagram encoding

In a previous work [26], we showed how the set of solu-
tions of a qualitative system can be computed as a deci-
sion diagram [37]. A decision diagram is a data structure
meant to represent functions on finite domains; it is
widely used for the verification of circuits or network pro-
tocols. Using such a compact representation of the set of
solutions, we proposed efficient algorithms for comput-
ing solutions of the systems, hard components, and other
properties of a qualitative system. Back to our problem: in
order to predict the regulatory role of TFs on their target
genes, it is enough to compute the decision diagram rep-
resenting the predicate (5), and compute its hard compo-
nents as proposed in [26]. This approach is suitable for
systems of at most a couple of hundred variables. Above
this limit, the decision diagram is too large in memory
complexity. In our case however, we consider systems of
about 4000 variables at most, which is far too large for the
above mentioned algorithms.

In order to cope with the size of the problem, we propose
to investigate a particular case, when all species are
observed, in all experiments. In this case, i # j implies that
P, (X, S) [¥*] and P; (X, S) [x*] share no variables. This
means that P may be satisfied if and only if each predicate

P (S)= A X P(X.9)[x"] (6)

1<k<r

may be satisfied. As a consequence, a variable S;; is a hard
component of P if and only if it is a hard component of
P; P, correspond to the constraints which relate species i
to its predecessors in G for all experiments. The number of
variables in P; is exactly the in-degree of species i in G,
which is at most 10-20 in biological networks.

As soon as some species are not observed in some experi-
ment, the predicates P; share some variables and it is not
guaranteed to find all hard components by studying them
separately. A brief investigation showed (data not shown)
that due to the topology of the graph, most of the equa-
tions are not independent any more, even with few miss-
ing nodes. Note however, that any hard component of P;_
is still a hard component of P. The same statement holds
for
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P(X)= A 3ISP(X 9)[x"] ?)

1<i<n

where P ; corresponds to the constraints that relate all spe-
cies in G for a single experiment. Relying on this result, we
implemented the following algorithm

In practice, this algorithm is very effective in terms of com-
putation time and number of hard components found.
However, as already stated, it is not guaranteed to find all
hard components of P. This is what motivates the tech-
nique described in the next paragraph.

Solving with Answer Set Programming

In order to solve large qualitative systems, we also tried to
encode the problem as a logic program, in the setting of
answer set programming (ASP). While decision diagrams
represent the set of all solutions, finding a model for a
logic program provides one solution. In order to find hard
components, it is enough to check for each variable V, if
there exists a solution such that V = + and another solu-
tion such that V = -. The ASP program we used in order to
solve the qualitative system is given in supplementary
materials. In the following we will denote by asp_solve(P)
the call to the ASP solver on the predicate P. The returned
value is an admissible valuation if there is one, or L oth-
erwise. The complete algorithm is reported below

We use clasp for solving ASP programs [38], which per-
forms astonishingly well on our data. The procedure
described in Algorithm 3 is particularly efficient in finding
non hard components: generating one solution may be
enough to prove non hardness of many variables at a
time.

To sum up, in order to solve a system of qualitative equa-
tions (4) with only partial observations, we use Algorithm
2 first and thus determine most (if not all) hard compo-
nents. Then, Algorithm 3 is used for the remaining com-
ponents, which are nearly all non hard.

Reduction technique

As mentioned in the Result section, interaction graphs
may be reduced in a way that preserves the satisfiability of
the associated qualitative system. Consider a graph G with
defined signs on its edges. If some node n has no succes-
sor, then deletes it from G. Note then, that any solution of
the qualitative system associated to the new graph can be
extended in a solution to the system associated to G. The
same statement holds if one iteratively delete all nodes in
the graph with no successor. The result of this procedure
is the subgraph of G such that any node is either on a
cycle, or has a cycle downstream. We refer to it as the core
of the interaction graph.
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The core of an interaction graph corresponds to the most
difficult part to solve, because extending a solution for the
core to the entire graph can be done in polynomial time,
using a breadth-first traverse.

Diagnosis for noisy data

When working with real-life data, it may happen that the
predicate P defined in Eq. (5) cannot be satisfied. This
may be due to three (non exclusive) reasons:

e a reported expression data is wrong
¢ an arrow (or more generally a subgraph) is missing
¢ the sign on an edge depends on the state of the system

In the third case, the conditions for deriving Eq. (1) are
not fulfilled for one node and its qualitative equation
should be discarded. This, however, does not affect the
validity of the remaining equation.

In all cases, isolating the cause of the problem is a hard
task. We propose the following diagnosis approach: as P
is a conjunction of smaller predicates, it might happen
that some subsets of the predicates are not satisfiable yet.
Our strategy is then to find "small" subsets of predicates
which cannot be satisfied. A particularly interesting fea-
ture of this approach is that by selecting subsets of P;
predicates, the result might directly be interpreted and vis-
ualised as a subgraph of the original model.

How to determine if a sign can be inferred

In the Results section, we have seen some examples show-
ing that even when all feasible observations are available,
it might not be possible to infer all signs in the interaction
graph. Whether or not a sign can be inferred depends on
the topology of the graph, and also on the actual signs on
interactions. In practice, it is thus impossible to tell from
the unsigned graph only if a sign can be recovered. How-
ever, it is still interesting to evaluate on fully signed inter-
action networks which part can be inferred. A trivial
algorithm for this consists in explicitly generating all fea-
sible observations and using the algorithms described
above. This is unfeasible due to the number of observa-
tions.

With the notations introduced above, consider an obser-
vation X and sign variables S for an interaction graph.
P,(X, S) denotes the constraints that link the variation of a
node i to that of its predecessors given the signs of the
interactions. Moreover, the real signs in the graph are
denoted by s. For each node i, we build the predicate giv-
ing the feasible observations on node i and its predeces-
sors, given the rest of the graph and the real signs s
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0;(X) = Hine(i}upred(l) /\ Pi/k(X’ 5)

1<i<n

Then, the constraint that we can derive on S variables is:
for any observation X that is feasible P;(X, S) should hold.
This constraint is more formally defined by

Ci(S) = VXO,(X) = P{(X, S)

Finally, the hard components of C; are exactly the signs
that can be inferred using all feasible observations. Let us
sum up the procedure:

1. compute P(X, S) = Ay <j<, Pi(X, 5)
2. compute O, from P and the actual signs s

3. compute C; the constraints of signs given all feasible
observations

4. compute the hard components of C;, which are exactly
the signs that can be inferred.

If it is not possible to compute P(X, S) (mainly because
the interaction graph is too large), we use a more sophis-
ticated approach based on a modular decomposition of
the interaction graph. The resulting algorithm, as well as
all inference algorithms, experimental data, and the
results obtained for the S. cerevisiae, and E. coli regulatory
networks can be found at: http://www.irisa.fr/symbiose/
interactionNetworks/supplementaryInference. html.
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Appendix
Algorithm 1

Naive Inference algorithm
Algorithm: Naive Inference algorithm
Input:
a network with its topology
a set of expression profiles
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Output:
a set of predicted signs
a set of ambiguous interactions
For all Node A with exactly one predecessor B
if A and B are observed simultaneously then return
prediction sign(B — A) = sign(A) * sign(B)
if sign(B — A) was predicted different by another
expression profile then return Ambiguous arrow B — A
Algorithm 2

Heuristic for finding hard components in large interaction
networks with many expression profiles.

Input:
the predicates P; and P jforall i and k
observed variations x

Output:
a set s of hard components of P

R

while True do
s' <= U, hard_components(P; [x, s])
if s' = & then return s
S¢suUS'
x' <= Uy, hard_components(P j [x*, s])
if x' = & then return s
X xUx'

end

Algorithm 3

Exact algorithm for finding the set of hard components of
P, based on logic programming.

Algorithm:Hard components using ASP

http://www.biomedcentral.com/1471-2105/9/228

Input:
the predicates P
observed variations x
Output:
a set h of hard components of P
h« @
C« {Sj,| j— i}
s * « asp_solve(P)
if s* = | then return L
while C # & do

choose Vin C

s < asp_solve(P [V = —sy, ])
if s = | then
h{(V,sy)} uh

else

delete from C all Win Cs.t. any sy, # = sy,
end
end
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