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Abstract

Background: The combination of gene expression profiling with linkage analysis has become a
powerful paradigm for mapping gene expression quantitative trait loci (eQTL). To date, most
studies have searched for eQTL by analyzing gene expression traits one at a time. As thousands of
expression traits are typically analyzed, this can reduce power because of the need to correct for
the number of hypothesis tests performed. In addition, gene expression traits exhibit a complex
correlation structure, which is ignored when analyzing traits individually.

Results: To address these issues, we applied two different multivariate dimension reduction
techniques, the Singular Value Decomposition (SVD) and Independent Component Analysis (ICA)
to gene expression traits derived from a cross between two strains of Saccharomyces cerevisiae.
Both methods decompose the data into a set of meta-traits, which are linear combinations of all
the expression traits. The meta-traits were enriched for several Gene Ontology categories
including metabolic pathways, stress response, RNA processing, ion transport, retro-transposition
and telomeric maintenance. Genome-wide linkage analysis was performed on the top 20 meta-
traits from both techniques. In total, 21 eQTL were found, of which || are novel. Interestingly,
both cis and trans-linkages to the meta-traits were observed.

Conclusion: These results demonstrate that dimension reduction methods are a useful and

complementary approach for probing the genetic architecture of gene expression variation.

Background

Recently, the combination of gene expression profiling
and classic quantitative trait locus (QTL) mapping has
emerged as an important tool in dissecting the genetic
basis of gene expression variation [1-5]. Using transcript
levels as surrogates for higher order quantitative traits ena-
bles a finer scale resolution of the underlying molecular
basis of complex phenotypes. Gene expression traits can
also be integrated with network inference methods to
reconstruct genetic pathways and metabolic networks

from genetic perturbation data [6,7]. The first expression
QTL (eQTL) study was performed in offspring derived
from a cross between two divergent strains of Saccharomy-
ces cerevisiae [1]. Linkage analyses revealed thousands of
eQTLs, acting both in cis and trans, with most trans-link-
ages being due to a few regulatory "hotspots".

Current statistical methods that analyze high-dimen-
sional phenotypes, such as expression traits, one trait at a
time suffer from low power because of the challenges
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associated with multiple hypothesis testing. In addition,
such approaches fail to take advantage of the potentially
informative correlation structure of high-dimensional
phenotypes. In order to exploit the correlation structure
among genes, various data reduction techniques can be
used to reduce the overall dimensionality of the data. For
example, in the context of eQTL studies, hierarchical clus-
tering has been performed followed by linkage mapping
of the average expression of cluster members [8]. Such an
approach is constrained by the size and number of clus-
ters and the clustering algorithm. A more unbiased data
driven feature selection can be used to overcome both the
sparse sampling problem and multiple testing issue.

Singular Value Decomposition (SVD) and Independent
Component Analysis (ICA) are popular dimension reduc-
tion techniques with different operating characteristics.
Briefly, SVD is a factorization method that decomposes
the data into a set of mutually orthogonal "eigentraits"
that are sorted according to variance explained [9,10]. ICA
decomposes the expression data into a set of statistically
independent modes that we term as "[CAtraits". The sta-
tistical independence between modes is estimated by opti-
mizing a contrast function, such as kurtosis or mutual
information [11]. Unlike SVD, ICA components might
differ based on the contrast function and number of
underlying sources, which under a generative model is
responsible for the variation in the data. We will refer to
eigentraits and ICAtraits as "meta-traits", both of which
are built from the linear combinations of the original set
of expression traits. By analyzing only the most relevant
meta-traits it is possible to capture major biological trends
while potentially averaging out the gene-specific noise
[10]. We used both ICA and SVD approaches as they cap-
ture different sources of variation. The more widely used
method of SVD makes the implicit assumption of under-
lying gaussian sources when maximizing the variance
explained by the uncorrelated features. If this assumption
is not valid, then the orthogonal dimensions may be com-
binations of two or more distinct biological signals [12].
ICA is more sensitive to sources that exert independent
influence on the data and is ideal for detecting mixtures of
higher order statistics. It has been applied, to a wide vari-
ety of problems such as face recognition [13], image anal-
ysis algorithms [14], and for pathway enrichment in
breast cancer data [15].

Both SVD and ICA have been previously applied to gene
expression data [10,16-19]. SVD based methods like Prin-
cipal Components Analysis (PCA) have found applica-
tions in studying oscillation profiles from genome-wide
expression measurements [20,21], inferring network con-
nectivity from expression data [22], and tissue sample
classification [23,24] while ICA has been used for pattern
recognition in tumor microarray data [19,25,26], to dis-
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cover functional modules in microarrays [18] and in other
more general signal processing applications [11]. PCA has
also been explored in the context of QTL mapping. How-
ever, these mapping methods have been applied to small
subsets of genes or a limited number of quantitative traits
[27-30], but not to eQTL data.

In this study, SVD and ICA were applied to a well studied
eQTL data set in yeast. The resulting meta-traits, which are
mutually uncorrelated, can be thought to represent inde-
pendent trends in expression variation [10]. We used the
top 20 ranked SVD and ICA meta-traits to map eQTLs. We
identified 21 eQTLs, 11 of which have not been previ-
ously described. Finally, we discuss the performance of
both SVD and ICA with respect to capturing patterns in
expression variation and linkage mapping.

Results and Discussion

Single Trait Analysis

We used data previously described by Brem et al [31] who
measured gene expression levels of 6216 ORFs in 112 seg-
regants derived from a cross between the Saccharomyces
cerevisiae strains BY and RM. The expression level of each
gene was treated as a quantitative trait (which we will refer
to as gene expression trait) and eQTL were identified by
linkage analysis using 3312 genetic markers distributed
across the genome.

Our goal was to investigate the use of data reduction tech-
niques for mapping eQTL and to compare it with tradi-
tional single trait analyses. To this end, we first performed
a genome-wide linkage analysis on each of the 6216 gene
expression traits by standard regression techniques [32].
Each trait was tested for linkage at all 3312 markers, which
amounts to approximately 8 million hypothesis tests. Sig-
nificant linkages were detected for 5013 traits at a false
discovery rate (FDR) of 0.05 (see Methods) [33]. Loci with
widespread genetic effects were identified by dividing the
genome into non-overlapping 20 kb bins and counting
the number of linkages in each interval (Figure 1). Sixty
percent of all linkages fell in 36 bins that had more than
20 linkages. With more segregants compared to a previous
study [8], we identify a larger set of gene expression traits
that link to each of the previously described eQTL
hotspots (see Additional file 1). The linkage hotspots
derived from single trait analyses are summarized in Table
1, and provide the necessary baseline to compare the
eQTL analyses based on meta-traits too.

Dimension reduction using SVD and ICA

SVD analysis was performed to reduce the dimensionality
of the data from the original 6216 expression traits to 112
eigentraits, where each eigentrait is a linear combination
of all gene expression traits. The proportion of variance
explained for each eigentrait relative to total variation in
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Table I: Summary of single trait linkage analyses
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Group Bin: Chromosome, Coordinate N XIT P-adj Common GO Annotation
| I: 52357 23 10/215 <0.001 lipid/fatty acid metabolism
2 II: 368991 74 NA NA NA
3 IIl: 554641 514 80/213 <0.001 ribosome biogenesis
4 IIl: 667104 99 22/213 <0.001 cytoplasm organization and ribosome bio-genesis, rRNA processing
5 11l: 90986 265 49/99 <0.001 amino acid biosynthesis
6 I1: 201 166 53 5/8 <0.001 regulation of transcription, mating-type specific
7 V: 116389 40 3/13 <0.001 pyrimidine base biosynthesis
8 V: 422588 287 44/171 <0.001 cytosolic ribosome
9 VII: 55461 42 10/252  0.001  cytoplasm organization and ribosome bio-genesis
10 VIIl: 111679 153 18/100 < 0.001 conjugation, response to pheromone
I X: 329085 21 NA NA NA
12 Xll: 671271 182 24/45 <0.001 ergosterol/sterol metabolism
13 XII: 1051813 44 15/84 < 0.001 helicase activity, telomerase maintenance
14 Xlll: 49969 65 3/5 0.008  serine family amino acid metabolism
15 XIV: 48686 | 511 61/83 <0.001 mitochondrial ribosome
16 XV: 172654 458 37/218 <0.001 carbohydrate metabolism
17 XV: 563943 38 18/46 < 0.001 oxidative phosphorylation/respiratory- chain phosphorylation

eQTL positions of the 5013 traits for which linkage was detected at an FDR cutoff of 0.05, were binned into 20 kb bins and the chromosomal
coordinates of each linkage hotspots that have more eQTLs than expected by chance, the number of traits linking to the hotspot (N), the number
of those traits that have the over-represented GO attribute (X), the total number of traits that have this attribute (T) and over-represented GO

annotation terms are reported‘

the data set is shown in Figure 2. Eigentraits that explained
more variation than expected by chance were identified by
comparing with a null-dataset (see Methods), and in total,
the top 20 eigentraits, which collectively account for
approximately 72% of all variation, were selected for fur-
ther study.

Independent modes from an ICA based decomposition
were sorted by the Liebermeister criterion [34] (see Meth-
ods). To enable comparison between the trends in varia-
tion captured by the two different methods we selected
the top 20 ICAtraits consistent with the 20 significant
eigentraits that were analyzed.

As each meta-trait is a linear combination of all 6216 gene
expression traits, it would be informative to infer the set
of specific genes that make the largest contribution to each
one. To identify these genes, we calculated the correlation
between each of the 6216 gene expression traits with each
meta-trait and determined significantly correlated genes
by permutations (see Methods). As shown in Tables 2 and
3, the number of significantly correlated (p < 0.0001) gene
expression traits range from 5 to 1919 (see Additional file
2) and 3 to 1448 (see Additional file 3) for each eigentrait
and ICAtrait, respectively.

To identify general biological themes, we performed a
Gene Ontology (GO) analysis for each set of significantly
correlated expression traits across the top 20 meta-traits
(Table 2 and 3, [35]). For 12 of the 20 eigentraits, the sig-
nificantly correlated genes show an overrepresentation of
GO terms related to specific biological processes such as

budding, amino acid, sterol and carbohydrate metabo-
lism, and ribosome biogenesis, which is generally consist-
ent with previous analyses [8]. Similar enrichment of GO
terms were found for 17 out of 20 ICAtraits, with addi-
tional categories such as retro-transposon, alcohol dehy-
drogenase and acid phosphatase activity being detected
(Table 3). In addition to the enriched set of traits with
common biological process that have been described in
earlier eQTL studies, we identified four novel group of
traits that have not been identified through linkage analy-
sis to date. Two of them, Eigentraits 4 and 19, are defined
by clusters of genes with similar function and will be
described in more detail below. The other two, ICAtraits 7
and 9, are associated with retro-transposon activity and
alcohol dehydrogenase activity, respectively.

Linkage Analysis of Meta-traits

For the top 20 meta-traits, we performed a genome-wide
linkage analysis using 3312 genetic markers that were gen-
otyped in each segregrant. Linkage analysis was performed
by regressing marker genotypes on trait values for each
meta-trait and significance was determined by permuta-
tions. We considered markers to be significant according
to a permutation based genome-wide error rate of 5% as
significant [36]. The genome-wide linkage analyses for
each eigentrait and ICAtrait is shown in Figure 3 and Fig-
ure 4, respectively. In total, 14 eigentraits demonstrate sig-
nificant linkage to one or more places in the genome
resulting in a total of 15 unique eQTL. Eigentraits 2, 4, 5,
6, 8 and 12 each link to 2 eQTL while eigentrait 7 links to
three eQTLs. Similar analysis of the ICAtraits resulted in
20 unique eQTLs being detected (p < 0.05, Table 3) that
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Genome-wide distribution of linkages from single trait analyses. The yeast genome was divided into non-overlapping
20 kb bins and the number of significant linkages to that bin was recorded. In total, 5013 gene expression traits showed signifi-
cant linkage (FDR = 0.05) in the single trait analyses. The probability of any bin having 20 linkages or more by chance is less
than 2.1E-4. This is denoted by the solid red line (Methods). Details about each linkage hotspot are summarized in Table I.

were distributed over 17 ICAtraits. ICAtraits 1, 15 and 18
showed linkages to two eQTLs while ICAtrait 16 linked to
four eQTLs. At a genome-wide error rate of 5 %, we expect
two false positive among the total of 45 eQTL deemed sig-
nificant.

Ten of 21 unique eQTLs identified map to previously
described regions of trans-regulatory hotspots [1] that reg-
ulate groups of genes with shared biological functions
such as amino acid catabolism (eigentrait 2, ICAtrait 8),
mating (eigentrait 3, ICAtrait 2), mitochondria (eigentrait
6, ICAtrait 1), and heme/fatty acid metabolism (eigentrait
10, ICAtrait 11). For each of these meta-trait, we observed
a corresponding enrichment of related GO terms in the set
of correlated traits (Table 2 and Table 3).

The genome-wide linkage results of meta-traits derived
from SVD and ICA show considerable overlap (Figure 5).
Overlapping eQTLs primarily correspond to loci that exert
widespread expression variation and include eQTLs with
strong trans-acting effects, which is consistent with the fact
that both SVD and ICA were able to capture the major
sources of variation by its top ranked components. Of the
eleven new eQTL, four showed evidence for cis-linkage,
which will be discussed in more detail below. The other
linkages map to regions in the genome that either show
no significant enrichment of linkages from the single trait
analysis or there is no obvious gene to explain the enrich-
ment of GO annotation for that meta-trait.

Figure 6 summarizes shared linkages between eigentraits.

Each plot corresponds to a common eQTL that shows
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Proportion of Variance explained by each eigentrait. Singular value decomposition results in dimensions that we refer
to as "eigentraits”, which are ranked according to how much variation in the dataset they explain. The distribution of variance
explained for the observed and null data are shown as blue and red circles, respectively.

linkage to different eigentraits. These regions could poten-
tially harbor either pleiotropic eQTL or two or more
linked eQTLs.

Analysis of Putative cis-Acting Meta-trait Linkages

In traditional linkage scans where traits are analyzed one
at a time, a cis-linkage is characterized as an expression
trait showing linkage to its own genomic location. In the
setting of meta-trait linkage scans, we define a cis-linkage
of a meta-trait as linkage to the genomic position of a trait
that is also significantly correlated with this meta-trait. In
the following sections we describe in depth analyses of
four novel cis-linkages that were not described in previous
eQTL studies. These include eigentraits 4 and 19, and ICA-
traits 7 and 9, which show significant enrichment of GO
annotation terms.

Cis-regulation of Asparaginase Metabolism

Eigentrait 4 has a strong cis-linkage on chromosome 12
(Figure 3). The region harbors genes involved in the catab-
olism of asparaginase during nitrogen starvation (ASP3-1,
ASP3-2, ASP3-3, ASP3-4; see Additional file 4). There are
13 expression traits that are significantly correlated with
this eigentrait (p < 0.0001) and the top four correlated
genes make up the tandem array of asparaginase (ASP)
genes. The nine remaining significantly correlated genes
are strong candidates for participating in the asparaginase
metabolism network. Comparative sequence analysis
with the published draft RM genome sequence [37]
revealed the absence of the ASP gene cluster in the RM
strain, which is consistent with the eQTL being supported
by the highest F-statistic among all linkages and the small
number of genes that are principal contributors to this
particular eigentrait.
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Table 2: Summary of Eigentrait linkage and Gene Ontology analyses
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Trait QTL N XIT P-adj GO over-representation
| 11:554641 1919  190/252 < 0.001 ribosome biogensis, rRNA processing
2 11l: 90986, XV: 172654 601 92/180 <0.001 amino acid metabolism, carbohydrate metabolism, ligase activity
3 11:201 166 196 20/94 <0.001 Ty element transposition
4/4 <0.001 mating pheromone activity
4 11:530481, XI1:473036 13 4/5 <0.001 asparagine catabolism, cellular response to nitrogen starvation
5 II: 554641, 11l: 201 166 38 3/8 <0.001 SRP-dependent cotranslational protein-membrane targeting
6 11:310928, X1V:48686 1 366  227/1017 <0.001 Cellular protein/macromolecule metabolism
7 11:554641, V:116389, VIII:1 11686 37 6/100 0.007  conjugation, sexual reproduction, response to pheromone
8 XIl: 796771, Xll: 1056097 47 15/84 <0.001 helicase activity, telomerase maintenance, mitotic recombination
9 0 74 8/106 <0.007 Bud neck
10 XllI: 660992 41 9/25 <0.001 ergosterol/sterol/steroid/lipid metabolism/biosynthesis
I 0 8 NA NA Unknown
12 V:116389, XIlII:379975 15 NA NA Unknown
13 0 8 NA NA Unknown
14 V:116389 8 2/13 0.039  pyrimidine base biosynthesis
15 IV:435872 5 NA NA Unknown
16 0 0 NA NA NA
17 0 0 NA NA NA
18 0 6 NA NA Unknown
19 1V:518397 5 3/3 <0.001 sodium ion transport/sodium transport, ATPase activity
20 XV:538788 5 NA NA Unknown

For each eigentrait, we report the number and position of any significant linkages detected, the number of traits that are significantly correlated
with a specific eigentrait (N), the number of correlated traits that have the over-represented GO attribute (X), the total number of traits that have
this attribute (T) and also the over-represented GO annotation term. Two of the twenty have no correlated traits that can be called significant
while six showed no significant over-representation of any biological function and remaining twelve show over-representation of certain biological
functions that are consistent with previously reported trends of large scale expression variation like the mating locus, auxotrophic markers and
stress response among others. Novel eQTLs detected for eigentraits 4 and |9 are described in more detail in the text.

Cis-regulation of Sodium Transport

Eigentrait 19 also shows evidence of cis-linkage on chro-
mosome 4. This eigentrait is enriched for genes involved
in sodium transport. Genes with the highest correlation to
eigentrait 19 are the group of ENA genes ENA5, ENA2 and
ENA1, which are members of the sodium efflux ATPase
family and span the chromosome 4 region that surrounds
the linked eQTL (see Additional file 4). Sequence analysis
of the RM draft genome for the ENA group of genes shows
alignment hits to a single copy of the ENA gene on super-
contig 1, which suggests that copies of the ENA genes have
been deleted along the RM lineage as one would expect an
alignment to all three copies otherwise. This observation
is consistent with the hypothesis of possible copy number
changes existing at this locus between the two strains.
However, the draft status of the genome precludes a more
definite inference of copy number change.

Cis-regulation of Retrotransposon Activity

Sixty-three genes are significantly correlated with ICAtrait
7 (p < 0.0001) and one significant eQTL was mapped on
chromosome 5 (Figure 4). As the GO analysis of the 63
genes shows, a large proportion of these genes are trans-
posable elements and/or involved in the process of retro-
transposition. The multipoint linkage profile of the eQTL
on chromosome 5 shows the location of a subset of genes
that lie in the 1 LOD support interval (see Additional file

5). The gene YERCTyl-1, a retrotransposon of the Tyl
family, is present in the eQTL support interval and also is
significantly correlated with ICAtrait 7. This supports the
hypothesis that YERCTy1-1 is a possible candidate gene
underlying this eQTL.

Further analysis of the sequence data was performed using
the published RM draft sequence. The alignment of the
gene as well as part of its upstream and downstream
genomic sequence in the two strains points to a possible
insertion-deletion polymorphism spanning the whole
retro-transposon. A caveat for this observation is a possi-
ble alignment error, which might result due to the high
degree of homology within different transposable ele-
ment families and the unassembled state of the RM
genome. This does not rule out the presence of a polymor-
phism underlying the eQTL, but makes detection using
currently available sequence data more difficult.

Cis-regulation of Alcohol Dehydrogenase Activity

ICAtrait 9 is comprised of 22 significantly correlated genes
that are enriched for alcohol dehydrogenase activity and
fermentation. Of the 22 genes, only YJLO56C falls in the 1
LOD support interval of the eQTL on chromosome 10
(see Additional file 5). YJLO56C is a transcription factor
that binds to zinc-responsive promoter elements to
induce transcription in the presence of zinc. The other
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Table 3: Summary of ICAtrait linkage and Gene Ontology analyses
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Trait QTL N XIT P-adj GO over-representation
| XIl: 423789, XV: 179409 189  58/1017 <0.001 mitochondrion
2 11: 201 166 45 5/8 <0.001 mating-type specific/mating-type specific transcriptional control
3 0 77 26/108 < 0.001 nitrogen compound biosynthesis, amine biosynthesis
4 XII: 473036 12 4/5 <0.001 asparagine catabolism
5 0 3 NA NA NA
6 IIl: 554641 1448  54/83 <0.001 mitochondrial ribosome
7 V: 422588 63 26/94 < 0.001 retrotransposon nucleocapsid/VLP/Virus-like particle
8 1l: 90986 49 8/13 <0.001 nitrogen compound biosynthesis, amine biosynthesis
9 X: 329085 22 4/6 <0.001 alcohol dehydrogenase activity/alcohol dehydrogenase (NAD) activity,
fermentation
10 XIV: 449639 304 225/1017 <0.001 mitochondrion, mitochondrial ribosome
I Xill: 660992 83 22/37  <0.001 sterol metabolism, sterol biosynthesis
12 V: 116389 9 3/13 <0.001 pyrimidine base biosynthesis
13 XV: 563943 184 125/1017 < 0.001 oxidative phosphorylation/respiratory- chain phosphorylation, mitochondrion
14 VIII: 111686 42 16/100 < 0.001 conjugation, sexual reproduction
I5 IX: 141014 XIlI: 395391 8 NA NA  NA
16 IV: 1501558, XI: 298361, 47 15/84  <0.001 helicase activity, telomerase-independent
XIl: 824230, XlI: 1056097 telomere maintenance
17 IV: 527484 6 33 <0.001 sodium ion transport/sodium transport/sodium:solute transport
18 XII: 423789, XV: 179409 32 212 0.015 NA
19 XIIl: 40447 14 4/5 <0.001 acid phosphatase activity
20 0 63 NA NA NA

For each ICAtrait, we report the number and position of any significant linkages detected, the number of traits that are significantly correlated with
a specific ICAtrait (N), the number of correlated traits that have the over-represented GO attribute (X), the total number of traits that have this
attribute (T) and also the over-represented GO annotation term. Three of the 20 show no over-representation of biological functions while for
remaining |16 both previously described and novel GO categories with associated eQTL were detected. Analysis of ICAtrait 7 and 9 are described

in more detail in the text.

genes in the correlated set include the ADH group of
enzymes that are alcohol dehydrogenases involved in fer-
mentation and the glycolytic pathway. The transcription
of these genes is activated in times of zinc deficiency,
which is also supported by the presence of zinc transport-
ers like ZRT3 and ZRT2 in the set of correlated genes.
These observations suggest that ZAP1 is a possible candi-
date gene underlying the eQTL. We performed multiple
sequence alignment of the ZAP1 coding sequence from
the two Saccharomyces cerevisiae strains, BY and RM as well
as two related species Saccharomyces mikatae and Saccharo-
myces paradoxus. Of the 19 single nucleotide polymor-
phisms that were found, 10 resulted in a non-
synonymous change (see Additional file 6). These poly-
morphisms are strong candidates for further computa-
tional and functional analysis in order to narrow down
the eQTL underlying ICAtrait 9 to the nucleotide level.

Conclusion

Analyzing low dimensional representations of high-
dimensional data through techniques such as SVD and
ICA is a useful approach for studying the genetic architec-
ture of gene expression variation [1]. We find that the
meta-trait linkage analysis approach is complementary to
traditional single trait linkage scans, which are inefficient
in exploiting the complex correlation structure that exists
among gene expression levels. In addition, this approach

results in a smaller number of traits to analyze, thus
increasing statistical power by attenuating the multiple
testing problem.

Randomizing parental yeast genomes through genetic
crosses induces widespread changes in expression, which
allows the contribution of genetic variation to gene
expression changes, to be systematically probed and
makes it an appealing situation to apply dimension reduc-
tion methods. By applying SVD and ICA to the unfiltered
expression matrix, we are able to focus our analysis on the
most biologically meaningful meta-traits that we term
"eigentraits” and "ICAtraits", respectively. In this low
dimensional snapshot, each meta-trait is uncorrelated
with the others and is a weighted average of all the 6216
traits and hence can be analyzed independently of others.
The approach we outline for identifying significantly cor-
related genes for each meta-trait allows gene sets to be
identified and subjected to further bioinformatics and
functional analyses.

The complementary nature of this study compared to sin-
gle trait analyses is supported by the fact that eigentraits
with some of the highest singular values map to previ-
ously described strong effect eQTLs such as LEU2, URA3,
MAT locus, Msn2/4 targets, and AMN1. These results are
also reinforced by the ICAtrait analysis that uncovered
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Figure 3

Genome-wide linkage analysis for the top 20 eigentraits. In each linkage profile, the negative log p-value of the linkage
statistic for each eigentrait is plotted against the genomic position of all the markers. Significance is determined by a GWER <
0.05. Fourteen of the 20 eigentraits show linkage to at least one QTL. Tolerance is set at |E-10 for p-values equal to zero.

similar large effect QTLs. Furthermore, the utility of both
approaches is demonstrated by the detection of eleven
novel eQTLs that supplements our understanding of the
genetic architecture of gene expression differences
between these two S. cerevisiae strains. These include four
novel cis-linkages that were studied in greater detail. Two
of them map to tandem arrays of genes with similar func-
tions that are involved in asparaginase metabolism and
sodium ion transport. Comparative sequence analysis of
the BY and RM strains sugests that these gene clusters have
been lost in RM and is consistent with reports of copy
number changes at these loci in non-laboratory yeast

strains [38]. These two meta-traits also show differential
expression between the two parental strains at the marker
with the highest linkage statistic (see Additional file 7).
This is interesting as the two strains have evolved in very
different ecological niches and might depend on different
nutrient sources for survival. Using ICAtraits, two addi-
tional cis-linkages were identified and found to be associ-
ated with differences in retro-transposititon and alcohol
dehydrogenase activity. Analysis of the linkage region at a
finer scale also provided strong candidate genes that
might be potential regulators of these expression differ-
ences.

Page 8 of 14

(page number not for citation purposes)



BMC Bioinformatics 2008, 9:244

http://www.biomedcentral.com/1471-2105/9/244

1 ICAtrait — 1 1 ICAtrait - 2 ICAtrait - 3 1 ICAtrait — 4
- 10 4 q 7
% 1 1
>
o 7 ] 1
g - o 1
T
2 . — 1
o 1 | 1 J b I N B
1 3 4 5 7 8 10 12 13 15 16 1 3 4 5 7 8 10 12 13 14 15 16 3 4 5 7 8 10 12 13 14 15 16 1 3 4 5 7 8 10 12 13 14 15 16
12 4 . - . . - N
ICAtrait - 5 ICAtrait — 6 ICAtrait - 7 ICAtrait — 8
° 10 + =1 |
s 1 1
>
[ 1 1
oD
o + J 9
T
24 E -
" | | i ol
LB S S e o e e e s P e AL e e e e e o e s e
3 3 4 5 7 8 10 12 13 15 16 1 3 4 5 7 8 10 12 13 14 15 16 3 4 5 7 8 10 12 13 14 15 16 1 3 4 5 7 8 10 12 13 14 15 16
il ICAtrait — 9 1 ICAtrait — 10 ICAtrait — 11 } ICAtrait — 12
u:J 10 A o
=R 4 i
g
[ ] 1
8 . |
Y | S — 1
5 ] | A L1 s |
Ll s e e e R b e T e o o e e o e e e B iam e
1 3 4 5 7 8 10 12 13 15 16 1 3 4 5 7 8 10 12 13 14 15 16 3 4 5 7 8 10 12 13 14 15 16 1 3 4 1 7 B 10 12 13 14 15 16
12 4 . e . & - P
ICAtrait - 13 ICAtrait — 14 ICAtrait — 15 ICAtrait - 16
o T A |
3 1 1
g
a e o i
(=]
o 49 | l g
1
i 4 1
W1 . 1 3 - )
T e e e e e e R e e e T e e o i o S S KA R e e B e e o e s i
1 3 4 5 7 8 10 12 13 15 16 1 3 4 5 7 8 10 12 13 14 15 16 3 4 5 7 8 10 12 13 14 15 16 1 3 4 L 7 B 10 12 13 14 15 16
12 ¥ B " . g -
e ICAtrait — 17 ICAtrait — 18 ICAtrait — 19 ICAtrait — 20
g
T ¢ ! 1
>
[ ] 1
g 1 1
T, 4 A | i
. | 1 i
LB T LELEL LU T T T T 1 L T UL LI T U T T T 1 T T LU LI Ll T U T 1 T LI 1 T T T 1 T T T T T
1 3 4 5 7 8 10 12 13 15 186 1 3 4 5 7 8 10 12 13 14 15 16 3 4 5 7 8 10 12 13 14 15 16 1 3 4 5 7 B 10 12 13 14 15 16
Chromosome Chromosome Chromosome Chromosome
Figure 4

Genome-wide linkage analysis for the top 20 ICAtraits. In each linkage profile, the negative log p-value of the linkage
statistic for each ICAtrait is plotted against the genomic position of all the markers. Significance is determined by a GWER <
0.05. Seventeen of the 20 ICAtraits show linkage to at least one QTL. Tolerance is set at |E-10 for p-values equal to zero.

Despite the strict genome-wide threshold that we used,
there were four cases of eQTLs common between eigen-
traits (Figure 6). Such observations coupled with the
orthogonal property of meta-traits is consistent with
either pleiotropy or coordinate linkage between two
closely spaced eQTLs. However, it is important to note
that such inferences are tenuous because a single biologi-
cal signal may be captured by multiple eigentraits. This
cannot be ruled out as the eigentraits, being linear combi-
nations of all expression traits, are hard to interpret qual-
itatively. Interestingly, there is only one case of linkages
being shared between ICAtraits, suggesting that ICA is bet-
ter at discriminating between the different biological sig-
nals present in the data. Furthermore, ICA identified a

larger set of novel eQTLs compared to SVD. This may be
due to ICA's estimation of statistically independent com-
ponents in higher order moments that detects non-nor-
mally distributed trends, while SVD relies on the absence
of correlation in second order moments of normal trends.
The non-normally distributed or long-tailed distribution
in this dataset is expected based on the finding from single
trait analyses that there exists a small number of linkage
"hotspots" that are responsible for most of the variation in
the dataset.

Another scenario where the interpretation of the results
might be potentially misleading is when the meta-traits
capture technical artifacts in the microarray experiment,
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Overlap between results from single trait linkage scans with linkage analysis of eigentraits. The y-axis of the top
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the x-axis the position of genotyped markers at which linkage was estimated is marked. The next two rows of solid circles
mark the position of eQTLs detected for eigentraits and ICAtraits, respectively. The position is aligned with the markers on
the x-axis of the top plot. The red solid circles represents novel eQTLs while black represents previously described eQTL.

for example signal that is driven by cross-hybridization
instead of true differential expression. One approach to
assess the effect of cross-hybridization on the eQTL data is
to test the hypothesis that paralogous genes are enriched
among significantly correlated meta-traits. For example,
eigentrait 8 consists of 47 significantly correlated traits, of
which 7 are paralogs (YRFI1-1, YRF1-2, YRF1-3, YRF1-4,
YRF1-5, YRFI1-6, YRF1-7). Thus cross-hybridization
among these genes may be influencing this eigentrait.
Note, linkage analysis of eigentrait 8 identified two closely
linked cis-eQTL on chromosome 12 (Figure 3). One of
these cis-linked regions contains YRF1-4 and YRF1-5. Thus
cross-hybridization of YRF1-4 and YRF1-5 with the other
YRF1 paralogs could potentially explain this apparent cis-
linkage. However, if this were true we would expect to see
a cis-linkage at one of the other YRF1 genes, which we do

not observe. Therefore, the linkages observed for eigen-
trait 8 appear to be robust, but the larger issue of technical
artifacts due to cross-hybridization and other sources is
important to keep in mind when interpreting eQTL stud-
ies.

In summary, we highlight the applicability of dimension
reduction methods for studying large-scale patterns of var-
iation in gene expression traits. We argue for the use of
both SVD and ICA if there are no prior expectations about
the different patterns of variation present in genome-wide
expression trait measurements. It also represents an
important tool in recovering previously undetected eQTL,
for exploring the widespread but uncharacterized cases of
pleiotropy, and provides the basis for a more detailed
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understanding about how regulatory variation manifests
itself across transcriptional networks.

Methods

Data

We used data previously described by [31]. Briefly, 112
segregants from a cross between the yeast strains BY and
RM were genotyped at 3312 markers using high density
Affymetrix oligonucleotide arrays that were designed
against the BY genome. The marker set covered more than
99% of the genome and of the whole marker set, 1226
genotypes are unique across the segregants and were
retained for further analysis. Expression levels of 6216
ORFs measured using cDNA microarrays were normalized
by spatial lowess smoothing and dye, array and sample

effects were accounted for using a mixed-model ANOVA
[39].

Singular Value Decomposition

The expression matrix X of 6216 (N) traits in 112 (M) seg-
regants was mean centered for each trait to remove the
baseline level of expression to focus on levels of expres-
sion variation. SVD was performed on the centered data to
result in U, a N x M "eigensegregant" matrix, D aM x M
diagonal "eigenweight" and V7, the M x M "eigentraits"
matrix:

X=UDVT
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The proportion of variance explained by each eigentrait,
v(e;) was calculated as:

5
v(e;) = M 2
=1

where e; denotes the eigenvalue of the ith eigentrait.

The Shannon entropy of the data was calculated as:

M
1
log() Z v(e;)log(v(e))
To determine the significance threshold for eigentraits, we
used Horn's procedure [40]. A null dataset with same
dimensions as the original dataset was constructed and
those eigentraits with eigenvalues greater than those of
their respective random components were considered for
the analysis.

Independent Component Analysis

The fastICA algorithm implemented in the fastICA R pack-
age [41,42] was used to extract 112 modes from the
expression matrix X, where each trait was mean centered.
Independent Component Analysis decomposed X into its
constituent source matrix S, and mixing matrix A.

X=SA

The modes of A, which are linear combinations of the
expression traits form the ICAtraits. The default Lieber-
master contrast value from mlica R package [41,43] was
used to sort the ICAtraits. The contrast is a measure that
combines the data variance and also non-normality. The
top 20 of the sorted ICAtraits were selected for further
analysis to enable comparison with 20 significant eigen-
traits. Selecting the number of independent modes in an
ICA analysis is by itself a current research topic. To enable
comparison with the SVD analysis we selected the same
number of 112 independent modes in the ICA decompo-
sition of the data.

Correlation Analysis

To identify genes that make a significant contribution to a
meta-trait, we calculate the correlation of each of the 6216
gene expression traits to each of the 20 meta-traits. To esti-
mate the significance threshold for the correlation meas-
ure, 1000 permutations of the segregants are performed
and correlation with each eigentrait is estimated as
described previously. The absolute value of the null corre-
lations are pooled and threshold set at a p-value < 0.0001.

http://www.biomedcentral.com/1471-2105/9/244

Linkage Analysis

Genome-wide linkage analysis was initially performed on
each expression trait separately. Briefly, for each trait we
tested for linkage across all 3312 genetic markers using
standard linear regression. To estimate null statistics, the
gene expression of 112 segregants were permuted 10
times and linkage tested as before with all markers. The
maximum statistic in each permutation was retained and
used to calculate the p-value for each trait. The 5013 sig-
nificant linkages at a FDR cut-off of 0.05, with an esti-
mated upper bound of 7 = 0.152 of the expression traits
showing no linkage [33], grouped together in 589 20 kb
bins across each chromosome to identify regulatory
hotspots. Adjacent bins around hotspots on chromosome
2, 3, 5,8, 12 and 15 that had more significant linkages
expected by chance were merged, to estimate the GO
annotation overrepresentation associated with traits, as
these likely represent the action of the same underlying
QTL. Assuming that the distribution of significant link-
ages across the bins is random and follows a Poisson dis-
tribution, the probability that the number of linkages in a
bin will be more than 20 is < 2.1e-4.

Similar single marker analysis was used to perform
genome-wide linkage scans for each of the 20 meta-traits.
The genome-wide error rate (GWER) of 0.05 was deter-
mined by estimating p-values from pooling together the
maximal statistic across 3312 markers from 10,000 per-
mutations of each meta-trait [36]. As there are only 20
traits, no correction of multiple hypothesis tests was per-
formed while analysing meta-traits. As reported earlier in
the text, the analysis of each set of 20 meta-traits result in
one expected false positive linkage. Multipoint linkage
was also estimated for those meta-traits for which novel
eQTLs were described in more detail. These include eigen-
traits 4, 19 and [CAtraits 7, 9. The R/QTL package [44] was
used to estimate the linkage score after computing geno-
type probabilities at 1 cM intervals.
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Additional material

Additional file 1

Linkage hotspot information. List of all significant genes from the single
trait linkage analyses where the linkage results were binned into 20 kilo-
base bins across each chromosome to identify "hotspots". Using a poisson
distribution, the probability of having 20 linkages present in a bin by
chance is < 2.1E-4. 17 such "hotspots" were identified.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-9-244-S1.txt]

Additional file 2

Eigentrait composition. List of all transcripts that are significantly corre-
lated with each of the top 20 eigentraits.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-9-244-S2.txt]

Additional file 3

ICAtrait composition. List of all genes that are significantly correlated
with each of the top 20 ICAtraits.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-9-244-S3.txt]

Additional file 4

Multipoint linkage profile of Eigentrait — 4 and Eigentrait — 19. The
multipoint linkage profile of Eigentrait 4 and 19 are plotted in the upper
and lower half of the figure, respectively. In each case, only a section of
the chromosome spanning the maximum LOD score is plotted with the 1
LOD support interval denoted by solid black bar. For Eigentrait 4, the
position of the tandem array of three genes that are involved in asparagi-
nase catabolism are represented by blue vertical bars. Similarly, for Eigen-
trait 19 the position of the tandem array of sodium ion efflux genes are
denoted by blue vertical bars.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-9-244-54 tiff]

Additional file 5

Multipoint linkage profile of ICAtrait — 7 and ICAtrait — 9. Similar to
S4, the multipoint linkage profile spanning the maximum LOD score for
ICAtrait 7 and 9 are plotted in the upper and lower half of the figure,
respectively. In both plots, the position of a subset of genes that lie in the
1 LOD support interval represented by solid black bar is shown. For ICA-
trait 7, only YERCTy1-1, a retrotransposon, shows significantly correla-
tion while for ICAtrait 9, only ZAP1 shows a significant correlation with
the ICAtrait.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-9-244-85.tiff]

http://www.biomedcentral.com/1471-2105/9/244

Additional file 6

Multiple sequence alignment of YILO56C. CLUSTALW was used to cre-
ate a sequence alignment of the protein encoded by YJLO56C/ZAP1 from
two strains of Saccharomyces cerevisiae and two related species Saccha-
romyces mikatae and Saccharomyces paradoxus. The alignment out-
put was then run through BOXSHADE to generate a colored output based
on the conservation and degree of identity of the aligned residues. Nine-
teen SNPs were detected in the protein alignment, of which 10 were non-
Synonymous.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-9-244-S6.tiff]

Additional file 7

Differential expression of two Eigentraits showing cis-linkage. The top
panel represents Eigentrait 4 and the bottom panel represents Eigentrait
19. Scatter plot of eigentrait values on the y-axis against the parental gen-
otypes at the marker with the highest linkage statistics on the x-axis shows
marked differential expression in the segregants (p < 0.0001).

Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-9-244-87.pdf]
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