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Abstract

Background: Comparative prediction of RNA structures can be used to identify functional
noncoding RNAs in genomic screens. It was shown recently by Babak et al. [BMC Bioinformatics.
8:33] that RNA gene prediction programs can be biased by the genomic dinucleotide content, in
particular those programs using a thermodynamic folding model including stacking energies. As a
consequence, there is need for dinucleotide-preserving control strategies to assess the significance
of such predictions. While there have been randomization algorithms for single sequences for many
years, the problem has remained challenging for multiple alignments and there is currently no
algorithm available.

Results: We present a program called SISSIz that simulates multiple alignments of a given average
dinucleotide content. Meeting additional requirements of an accurate null model, the randomized
alignments are on average of the same sequence diversity and preserve local conservation and gap
patterns. We make use of a phylogenetic substitution model that includes overlapping
dependencies and site-specific rates. Using fast heuristics and a distance based approach, a tree is
estimated under this model which is used to guide the simulations. The new algorithm is tested on
vertebrate genomic alignments and the effect on RNA structure predictions is studied. In addition,
we directly combined the new null model with the RNAalifold consensus folding algorithm giving a
new variant of a thermodynamic structure based RNA gene finding program that is not biased by
the dinucleotide content.

Conclusion: SISSIz implements an efficient algorithm to randomize multiple alignments preserving
dinucleotide content. It can be used to get more accurate estimates of false positive rates of existing
programs, to produce negative controls for the training of machine learning based programs, or as
standalone RNA gene finding program. Other applications in comparative genomics that require
randomization of multiple alignments can be considered.

Awvailability: SISSIz is available as open source C code that can be compiled for every major
platform and downloaded here: http://sourceforge.net/projects/sissiz.
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Background

Comparative genome analysis is currently the most widely
used strategy to detect and annotate noncoding RNAs
(ncRNAs) [1,2]. In the past few years a series of different
algorithms have been developed that predict functional
ncRNAs on the basis of conserved secondary structure [3-
10]. Some of these methods have been used to predict
novel ncRNAs on a genome wide scale [7,11-14]. In com-
bination with experimental verification (microarray, RT-
PCR, Northern blot) these methods could successfully
uncover many examples of novel ncRNAs [15-20]. How-
ever, in particular in large vertebrate genomes the signal-
to-noise ratio of true predictions and false positives is
thought to be relatively low [20]. In a recent paper, Babak
and colleagues demonstrated that comparative ncRNA
gene finders are strongly biased by the genomic dinucle-
otide content leading to an excess of false predictions [21].
Especially methods that are based on a thermodynamic
folding model are sensitive to this effect: In the so-called
nearest neighbour model, energies are not assigned to sin-
gle base-pairs but rather to neighbouring base-pairs that
stack on each other. As a consequence, the folding stabil-
ity of genomic sequences does not only depend on the
monunucleotide content but also the dinucleotide con-
tent.

To assess the significance of predicted structures, e.g. to
estimate the false discovery rate in a genomic screen for
ncRNAs, one should therefore compare the genomic pre-
dictions to the results obtained on randomized data with
the same dinucleotide content. In the case of single
sequences, there are well known and widely used algo-
rithms to generate dinucleotide controlled random
sequences either by shuffling or first order Markov chain
simulation [22,23]. However, there is currently no algo-
rithm to randomize multiple sequence alignments pre-
serving the dinucleotide content. Babak and colleagues
[21] added the conservation of dinucleotides as an addi-
tional constraint to the commonly used (mononucle-
otide) shuffling algorithm shuffle-aln.pl [5] and applied it
to pairwise alignments. Their approach corresponds to a
heuristic used in reference 24, that is very inefficient as
only a small subspace of the whole permutation space is
covered. The heuristic exchanges only positions that have
the same neighbours left and right. For the short sequence
ACAGCCAA for example not a single permutation can be
found that way. However, there are 11 such permutations
according to the Altschul & Erikson algorithm [22]. But
even a more efficient shuffling algorithm will soon run
into difficulties on multiple alignments. Unless two
neighbouring columns are 100% conserved, there are sev-
eral different dinucleotide pairs in these columns. It is
therefore impossible to exactly preserve the dinucleotide
content as in the single sequence case.
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In this paper, we address the problem in a different way.
In analogy to a first order Markov model for single
sequences, we simulate alignments of a given dinucle-
otide content. We present a substitution model that cap-
tures the neighbour dependencies and all other relevant
alignment features. We describe a time efficient way to
estimate a tree under this model that we use as a guide to
simulate alignments of the desired properties. This new
control strategy is tested on genomic alignments and the
effect on thermodynamic RNA structure predictions is
studied.

Results

Requirements for an accurate null model

An optimal null model preserves all the features of the
original data with the exception of the signal under ques-
tion that needs to be removed efficiently. In our case, the
data are multiple alignments of homologous sequences
and the signal of interest is an evolved RNA secondary
structure. Correlations arising from base-pairing patterns
need to be removed. Currently, alignments are usually
randomized by shuffling the alignment columns (see ref.
5 for a discussion of this method). Although the shuffling
approach has its limitations and considering dinucle-
otides seems difficult, it is an appealing approach because
it is relatively simple, fast, and extremely conservative.
Changing the order of the columns does not change the
mutational patterns within the columns and thus the
underlying phylogenetic tree is exactly preserved.

In this paper we attempt to simulate new alignments from
scratch. Even the most sophisticated model cannot cap-
ture all evolutionary processes and therefore a simulation
approach will inevitably change the original data more
than shuffling does. So much care has to be taken to pre-
serve all the relevant characteristics of the data. To quali-
tatively assess the most important parameters that need to
be considered in our model, we performed a series of sim-
ulation experiments. Using a simple tree with four taxa we
simulated alignments under the HKY evolutionary model
[25]. We systematically varied model and tree parameters
to study how they affect thermodynamic RNA consensus
structure predictions in the alignment. We used RNAali-
fold [26] to predict consensus secondary structures which
is the basis of the AlifoldZ [5] and RNAz [6] gene finders.

Not surprisingly, base composition is one of the parame-
ters affecting the predicted folding energies strongest (Fig.
1A). High G+C content leads to more stable RNA predic-
tions, while high A+T content gives less stable predictions.
As mentioned in the introduction and in fact the main
motivation of this paper, also dinucleotide content affects
folding energies. We used our simulation algorithm that is
described below to simulate alignments of the same
mononucleotide content but varying dinucleotide con-
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(A) Mononucleotide content
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(B) Dinucleotide content

(C) Branch length
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Parameters effecting thermodynamic consensus RNA structure predictions. As a basic parameter set we used
equal base frequencies of 0.25, a transition/transversion rate ratio x = |, and the following tree

((A:0.09,B:0.09):0.09,(C:0.09,D:0.09):0.09) One parameter was varied at a time while others were kept constant. If necessary
branch lengths were adjusted to keep a mean pairwise sequence identity (MPI) of 0.75 + 0.01. 1000 alignments of length 80
were simulated under each condition. Cumulative histograms for the RNAalifold consensus folding energies are shown. Please
note that we plot negative minimum free energies, i.e. higher values correspond to more stable folds. (A) Base frequencies
were varied to get high and low G+C content. (B) Two specific dinucleotide frequencies were elevated 3-fold while the mono-
nucleotide content was kept constant. (C) Branch lengths were equally scaled to produce alignments with lower or higher MPI
identity than for the basic tree. (D) The transition/transversion rate ratio was varied. k= | means equal rates, while x> | gives
more transition than transversions. (E) The alignment of size 80 was divided into a central block of 40 and two anking regions
of 20. We set 100% conservation in the central block and low conservation in the anks (rate "high-low-high") and the other
way round ("low-high-low"). The total average MPI was always 0.75. (F) We tested all possible topologies of this 4 taxa tree
and adjusted the branch lengths to give a MPI of 0.75. For one given topology, all the branch lengths were of the same length.

tent. Fig. 1B shows for example that a three times enriched
ApT content lead to more stable predictions. The excess of
some other dinucleotides like for example GpT can cause
the opposite effect leading to less stable predictions.

Another major parameter that needs to be controlled is
the sequence diversity of the alignment. Variation of the
branch lengths of the tree gives alignments with different
sequence diversity which we usually measure as the mean
pairwise sequence identity (MPI, also sometimes refered
to as average pairwise sequence identity APSI). High diver-

sity (i.e. low MPI) makes it difficult to predict a consensus
structure if there is no selection pressure for it. On the
other hand, almost perfectly conserved sequences fold
readily in some random structure even if there is no natu-
ral RNA structure present. Therefore we observe a strong
dependency on the MPI (Fig. 1C).

One well known characteristic of natural mutation proc-
esses are the different rates for transitions and transver-
sions [27]. Interestingly, this also affects the consensus
structure predictions. A model with equal transition/
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transversion rates (parameter x = 1 in the HKY model)
gives less stable predictions than a model with more real-
istic rates (e.g x = 4, Fig. 1D). This parameter affects the
type of column patterns observed in the simulated align-
ments which in turn affects how well they can form con-
sensus base pairs.

Natural mutation processes are not homogeneous across
all sites, in particular in functional genomic regions. It was
observed previously that mutation patterns within an
alignment can affect structure predictions [5]. For exam-
ple, an alignment containing a 100% conserved block
with low mutation rate that is flanked by highly divergent
regions of high mutation rate can have different folding
energies compared to an alignment with homogeneous
rates but the same overall MPI (Fig. 1E). The same is true
for patterns of insertions and deletions which was also
already discussed in reference 5 and which we do not
show here explicitly again.

We also tested the effect of different tree topologies, but
did not find a significant influence of this parameter at
least in our four taxa example.

Taken together, an accurate randomization procedure
needs to generate alignments that preserve (i) mono- and
dinucleotide content, (ii) mean pairwise sequence iden-
tity, (iii) transition/transversion rate ratio (iv) site-specific
mutation rates, and (v) gap patterns.

In the next section we describe a model that is capable of
simulating alignments under these constraints.

Algorithm

Model

Sequence evolution is usually described by a time-contin-
uous Markov process [27,28]. The most commonly used
models assume that all sites of a sequence evolve inde-
pendently from each other rendering it impossible to
model dinucleotide dependencies between neighbouring
pairs. Various evolutionary models have been proposed in
the past years to overcome this limitation [29-36]. We
make use of the recently introduced framework called
SISSI (SImulating Site-Specific Interactions). SISSI allows
to define site dependencies of arbitrary complexity in the
form of a "neighbourhood system" that also may include
overlapping dependencies [37]. Given the requirements
of our specific problem, we extended and simplified sev-
eral aspects of SISSI as necessary.

Following the general framework of SISSI, we introduce a
site-specific rate matrix Q, for every site k = 1, ..., [ in a

sequence x = (Xy, ..., X;). This matrix defines the substitu-

tion process at site k, where the substitution of a given
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nucleotide x, € A = {A,C,G,U} by another one depends

on the states x, ;, x;, x;,,; (Fig. 2).

Thus, the instantaneous rate matrix Q,, has the dimension
| A3 x | A|3= 64 x 64. The stationary distribution of Q,
determines the equilibrium dinucleotide content of our
system (see the next section for how the required trinucle-
otide frequencies of Q,, are calculated from the dinucle-
otide frequencies).

To be able to control the transition/transversion rate ratio
and the site-specific mutation rates, we have to add two
additional parameters. Let s;, = (x;,.;, X}, X;,,;) Tepresent the
current triplet of sequence x and y = (y;, ¥,, y5) another tri-
pletin A 3. First, we introduce a general parameter (s, y)

> 0 to incorporate the additional mechanistic rates. Sec-
ond, we introduce a site-specific scaling factor f, with k =

1, ..., 1, such that:

1
1

We impose the usual restriction, that only one substitu-
tion per unit time is admissible [38,39]. Moreover, Q,
only allows for substitutions at site k. The diagonal ele-
ments of our instantaneous rate matrix Q, are defined by
the mathematical requirement that the sum of each row is
zero.

The entries of Q,, are thus given by

Qx 64164

A T R B oot
q(x) = oot feq(k) + o
Figure 2

Site dependencies for overlapping dinucleotides (red-
gray): The substitution process of a given nucleotide x, at
site k by another one depends on the states x,_, x,, X, the
subsequence s,. Q, has the dimension 64 x 64, where only
one mutation is allowed at the current site k. The substitu-
tion rate for the whole sequence q(x) is the sum of each rate
q(k) = Q,(s,, s,) multiplied with a site-specific scaling factor f,
withk =1, ..., L
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T(s1y) 7(y) ifH(sy, y)=1and x;, #y,

Qu(s1¥) = fi 1= D, Qulsi2) if H(syy) =0
ze A3
z7#8),
10 otherwise

(2)

where 7,(y) is the stationary frequency of y and the Ham-
ming distance H(s;, y) counts the number of differences
between the sites of the triplets s;and y.

In principle, we can choose any rate for the parameter (s,
y). However, based on the requirement that we want to
use the counted dinucleotide content as the stationary dis-
tribution, we choose r(s;, y) so that the model becomes
reversible. Any parameter of the commonly used inde-
pendent nucleotide substitution models, like HKY [25] or
the general time-reversible model GTR [40] can be chosen
for (s, y). For our application, we use a transition/trans-
version rate ratio and set r(s,, y)= « for transitions and
(s}, y) = 1 for transversions.

The restriction that a substitution is only possible at site k
leads to sparse rate matrices. Q,, has only | A |* non-zero

entries. Hence, we can write Q,, in the form of 16 subma-

trices, which describe the admissible substitutions for site
k depending on the left y, and right y; neighbours,

Y143 1Crs  nGys  nUys
V1AY; * Tycrs  KTycy, Ty,
YiCrs | Tyian * Tycys  KTyuy,
YIGY3 mY]AYS nylc)/S * n)’l“h
s | 7y, KTy, Ty, ¥

3)

Finally, we scale Q such that the number of substitutions
djequals 1:

dy ==Y mi(2) Quz,2) =1, (4)

ze A
and thus the total instantaneous substitution rate for a
sequence x can be written as the sum over each rate Q,(s,,

s,) multiplied with the site-specific scaling factor f,, with k
=1, .., 1 (Fig. 2),

1
40 == fi- Qulsisi): (5)
k=1
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Without dependencies on the neighbours, Q,,is of dimen-
sion 4 x 4 and the model reduces essentially to a HKY
model with a specific rate for each site. We use this mono-
nucleotide variant later in this paper for testing and com-
parison to the dinucleotide model.

Simulation

For the simulation process, we essentially used the same
algorithm described previously [37] with some modifica-
tions. During the simulation process, we pick a site k with
the relative mutability

q(x)
and for the chosen site k, the nucleotide x;, will replaced by

anew nucleotidey, € A from the corresponding triplety
with probability:

Py = yy) = JRQRGEY) _ Qe(Sky) 5y
| freQr(sksk)| [ Qr(sksk)|
In the most general SISSI framework Q) needs to be
updated for all k sites every time one nucleotide in x is
substituted. However, in our special case we can use the
same instantaneous rate matrix Q, for each site with spe-
cial conditions for r(s;, y). As a consequence, we can fix
g(x) and do not need to sum over each rate of the site,
which improves the running time of the algorithm.

Parameter estimation

The idea of our randomization procedure is to estimate a
tree under the model described in the previous section
and simulate sequences along this tree. Ideally, all param-
eters are estimated simultaneously within a maximum
likelihood framework. One problem is the high number
of parameters since we want to estimate a specific rate for
each site. A more fundamental issue is, however, that our
model includes overlapping dependencies which breaks
the independence assumption necessary for basic maxi-
mum likelihood estimation. Other possible techniques
like Markov chain Monte Carlo in a Bayesian framework
are not a viable alternative either. Speed is a critical issue
as the algorithm is meant to be applied to data on a
genome wide scale.

Facing these difficulties, we have developed heuristic
approximations to estimate the parameters and use a dis-
tance based approach to estimate the tree. The method is
fast and yet surprisingly accurate for our application.

Equilibrium frequencies
The stationary frequencies of our model are set in a way
that in equilibrium we obtain a dinucleotide frequency
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that is the same as the dinucleotide content of the align-
ment to be randomized. To this end, we first count the
dinucleotide frequencies as an average of all sequences in
the original alignment (see Methods on how gaps are
treated). Then, we calculate the corresponding trinucle-
otide frequencies needed for Q, as a function of the single
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and dinucleotide frequencies using an approximation
based on simple conditional probabilities [30,32]:

Observed differences per site

O

Average column MPI of sampled alignments

0.6 0.8 1.0

0.4

0.2

0.0

0.2 0.4 0.6 0.8 1.0

0.0

oy =" P ®)

x  Equal rates
o Site specific rates
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Substitutions per site

XX XXX X X X XXé" X

X Equal rates
o Site specific rates
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0.0 0.2 0.4 0.6 0.8 1.0

Column wise MPI in original alignment

Key concepts of the algorithm shown on an example alignment of 5.8S rRNA. (A) Distribution of dinucleotide fre-
quencies of 1000 simulated alignments are shown as box-plots (the line in the box indicates the median, the borders of the box
the 25th and 75th quartile, and the dotted lines 1.5% the interquartile range). Red circles show the frequencies observed in the
original alignment. (B) Relationship between the number of substitutions and observed differences empirically determined by
sampling of 25 points. Each point shows the average of 10 simulations. Note that the short distances are sampled more
densely. These settings are the default values in our program and used throughout the paper. (C) Distribution of mean pair-
wise identities for 1000 random samples. The MPI of the original alignment is shown in red. (D) Comparison of site-wise MPIs
in the original alignment and the average of the corresponding sites of 1000 random alignments.
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where 7{ af3y) are the trinucleotide frequencies, 7( o) and
7(fy) the counted dinucleotide frequencies and #(f) = £,

mapf) =2, fa)with a, §, ¥ € {A, C, G, U}.

Fig. 3A shows an example of the dinucleotide frequency
distribution of 1000 simulated alignments. We counted
the dinucleotide frequencies of an alignment of 7 5.8
rRNA sequences and set the trinucleotide parameters of
our model accordingly. On average, we get the same dinu-
cleotide frequencies in the simulated alignments as in the
original one.

Distances and tree construction

To build a distance based tree, we first have to estimate the
number of substitutions that have taken place between
two sequences. In other words, we have to estimate the
genetic or evolutionary distance d from the Hamming dis-
tances p under our model. Both distances are different
because back mutations have taken place that are not
directly visible. To estimate the relationship between d
and p, we simulate sequence pairs separated by different
branch lengths d and calculate the corresponding Ham-
ming distances p (Fig. 3B). We fit an exponential function
to this curve:

p=a-(1-eb? )

Using this function, all pairwise distances are calculated
for the sequences in the original alignment. From this dis-
tance matrix a tree is constructed using the BION]J algo-
rithm [41]. BIONJ is a variant of the well known
neighbour joining algorithm and currently one of the
most accurate algorithms for distance based tree building.

Given that the distances and the tree are accurately esti-
mated, we observe on average the same mean pairwise
identity in the simulated alignment as in the original one.
Fig. 3C shows the distribution of MPIs of 1000 simula-
tions of our example rRNA alignment. The average MPI of
the simulations is exactly the same as the MPI 0.73 of the
original alignment.

Site-specific rates

Setting different mutation rates at different sites gives us
the possibility to preserve natural mutation patterns of the
original alignment. The problem of finding accurate site-
specific rates is illustrated in Fig. 3D. For each site in the
alignment, the MPI of this site is plotted against the aver-
age MPI observed in the simulated alignments on the
same site. If we consider equal rates for all sites, each site
will have the same average MPI which is of course equal
to the overall MPI of 0.73 of the whole alignment. Ideally,
the average MPI for each simulated site is the same as the
original MPI at this site. In this case, the points in the plot

http://www.biomedcentral.com/1471-2105/9/248

are on a diagonal indicating that we have found accurate
estimates for the rates.

Simple estimates for site-specific rates in combination
with distance based trees have been described previously
[42]. The method includes fits to a gamma distribution
which requires data of at least 1000 nucleotides and 30
sequences to get reasonable results. Here we use a differ-
ent approach that also gives good results for smaller align-
ments.

The substitution rate at a site is of course related to the
observed sequence diversity at this site. If a site is highly
conserved the rate is low, whereas high sequence diversity
indicates a high mutation rate. So in a first step, we calcu-
late the average number of pairwise differences (p,) for
each site k in the alignment with n sequences:

2 NONC sk ..y sk |1 ifnudeotides in sequences i, j differ at site k
1) = n(n-1) ZZSU, with §; =

0 otherwise
(10)

j>i

(p,) are observed differences ignoring multiple substitu-
tions. If we naively choose our rates proportional to (p,) we

would underestimate high rates while overestimating low
rates. We therefore use the relationship in equation 9 to

correct for this effect and calculate estimates f; for the

rates at site k as follows:

szl-ln(l—@fe)]

a

(11)

|

It must be pointed out that the site-specific rates change
the relationship between genetic distance and observed
differences (Fig. 3B). For correcting the site-specific rates

we use the estimates for @ and b from our model without
site-specific rates. So this is only an approximation and
one could think about iteratively refining the estimates.
However, we found that this approach already yields accu-
rate rates within one step as can be seen in Fig. 3D. Using
the model with site-specific rates, the simulated align-
ments have on average almost exactly the same site-wise
MPI as the original one.

The reader will notice that the first three points deviate
from the diagonal. This illustrates a limitation of our
method. With our simulation procedure we can on aver-
age only reach the level of saturation even if we use very
high rates. It is possible, however, that the original data
contains sites below the level of saturation. For example in
a four way alignment a column can be ACGT, i.e. MPI = 0.
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However, we cannot simulate on average columns with
MPI = 0, since the MPI is bounded below by zero and our
simulations will always contain columns with MPI > 0. In
practice this does not seem to cause any obvious problems
in particular when we have many sequences where it is
unlikely to see columns below saturation.

Gaps

Gaps have been ignored completely so far. There are evo-
lutionary models including deletions and insertions [43-
47] and, in principle, it would be possible to combine the
insertion-deletion dynamics with our model. However,
this does not appear practical in our case. Existing algo-
rithms for joint estimation of phylogenies and alignments
are not only very time-consuming [47], it also seems diffi-
cult to estimate reasonable indel model parameters on rel-
atively short alignment blocks which hold only little
information. Moreover, alignment programs produce gap
patterns that do not necessarily reflect phylogenetically
reasonable insertion/deletion events and thus cannot
always be captured by an idealized model that is moti-
vated by evolutionary processes and ignores algorithmic
idiosyncrasies of alignment programs.

So we follow here a very pragmatic strategy that has also
been used previously [5]: We keep exactly the same gap
pattern in our randomized alignments as in the original
alignment. To this end, we simply treat gaps as missing
data and simulate nucleotide characters for the gapped
positions. This is done in a way that the overall character-
istics are not changed when they are replaced with gaps
again at the end (see Methods for details).

Transition/transversion rate ratio

The transition/transversion rate ratio x is a parameter in
our model that cannot be simply counted as in the case of
the dinucleotide frequencies, or empirically determined
like the branch lengths. Given that the influence of this
parameter is not that critical as for example the branch
length or base composition (see Fig. 1), one possibility
might be to use a fixed transition/transversion ratio if a
reasonable average value is known for the genome at
hand. Alternatively, we found that a good estimate can be
obtained by using maximum likelihood on an independ-
ent mononucleotide model. We used here the HKY model
with -distributed rates which is closest to our dinucleotide
model.

Putting it together

Fig. 4 gives a short outline over the whole randomization
procedure. We start by parametrization our model: we
count the dinucleotides and calculate the corresponding
stationary trinucleotide frequencies. A transition/transver-
sion rate ratio for the alignment is estimated using maxi-
mum likelihood under a HKY+I" model. Having set these
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parameters, we empirically estimate the relationship
between substitutions and observed differences with
equal rates for each site. This first estimate is used to cal-
culate the site-specific rates, which are then used for the
second estimation. In the next step, the pairwise distances
between all sequences are calculated. For the calculation
of the site-specific rates and the pairwise distances gap
characters are treated in a special way as missing data (see
Methods). From the distance matrix a tree is built using
the BIONJ algorithm. An ancestral sequence is sampled
from a first order Markov model parametrized according
to the dinucleotide frequency in the original alignment.
This is used as a starting sequence for the simulation that
is guided by the tree. Finally, the gap pattern of the origi-
nal alignment is introduced into the simulated one. Fig. 5
shows our rRNA example and two randomized versions
obtained by this procedure.

Implementation

We implemented our method in ANSI C in a program
called SISSIz. The source code is available under the GNU
Public Licence for download [48].

Some words on running time: One might suspect that the
randomization algorithm including two times the sam-
pling procedure to estimate the parameters of equation 9
and the maximum likelihood estimation of the transi-
tion/transversion rate ratio is relatively slow. Indeed, it is
much slower than for example randomization by shuf-
fling, but still very fast. To build the model for our exam-
ple of 7 rRNAs of 158 length takes 0.2 seconds on a
modern Intel Core 2 Quad CPU at 2.4 GHz. To simulate
1000 alignments using this model takes another 0.6 sec-
onds.

Testing

Randomizing vertebrate genomic alignments

We tested our randomization method on vertebrate
genomic alignments. In a setting similar to recent
genomic screens in vertebrates [11,20], we extracted Mul-
tiz [49] alignment blocks from human chromosome 1.
We randomly selected 1000 alignment blocks between 70
and 120 nt in length and between 4 and 10 sequences
without considering annotation information of any sort.
These alignments are meant to represent an unbiased
"genomic background" that may also contain functional
elements like coding exons or structured RNAs depending
on their frequency in the genome.

The alignments were randomized using our new simula-
tion procedure with both the dinucleotide and the mono-
nucleotide model. In addition, we shuffled the
alignments using shuffle-aln.pl. The global distribution of
dinucleotides for the original and randomized data is
shown in Fig. 6. As expected, the shuffling approach and
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Multiple sequence alignment

Set up model parameters: Count dinucleotides, estimate
transition/transversion rate ratio by maximum likelihood

Calculate consensus minimum free
energy in original alignment

v

Empirically estimate relationship between number of

substitutions and observed differences

' V|t

Calculate z-score

Calculate distance matrix Estimate site
of sequences specific rates

4

Estimate tree from distances
using the BIONJ algorithm by 1st order Markov

Sample ancestral sequence

X 4

Simulate new sequences along the tree,
(re-introduce gaps)

Figure 4

Calculate background distribution
of the folding energies in the
randomized alignments

Overview of the algorithm. Left: The steps of the randomization procedure are shown. Right: In combination with RNAal-
ifold consensus folding the randomization procedure can be used to calculate z-scores and to predict significant RNA struc-

tures. See text for details.

the mononucleotide simulation give the same results. The
dinucleotide distribution obtained by these methods,
however, differs from the distribution in the native align-
ments. One can see for example the well known under-
representation of CpGs in the native genomic data. Using
our dinucleotide based model, we obtain simulated align-
ments which are statistically indistinguishable from the
native data in terms of their average dinucleotide content.

Also the observed sequence diversity of the simulated
alignments closely follows the original data as shown in
Fig. 7. 98.7% of the simulated alignments are within a
range of + 0.05 mean pairwise identity compared to the
original alignments. It must be noted, that the distribu-
tion in Fig. 7 has a mean of +0.007 which indicates a sub-
tle bias of the simulations towards higher MPIs. We
suspect that this is an indirect result of the way we esti-
mate site-specific rates and related to the issue of sites
below saturation discussed before. However, this devia-
tion does not have any practical consequences since it rep-

resents a conservative bias in the context of RNA folding
controls and, more importantly, seems to be too small to
have any noticeable effect at all.

Influence of randomization procedure on RNA predictions

The main motivation of this paper is to provide dinucle-
otide based controls for comparative RNA gene predic-
tions. Therefore, we ran RNAalifold and RNAz on the
alignments to demonstrate how different randomization
procedures affect the results. Fig. 8A shows the distribu-
tion of RNAalifold consensus MFEs on the genomic align-
ments and their different randomizations. One can see
that the genomic alignments show the most stable struc-
tures. There is a clear difference between the native
genomic alignments and the shuffled and mononucle-
otide simulated ones. However, the folding energies of the
dinucleotide simulated alignments are much closer to the
native data. This difference between the di- and mononu-
cleotide simulations reflects the bias caused by the
genomic dinucleotide content. The difference between the

Page 9 of 16

(page number not for citation purposes)



BMC Bioinformatics 2008, 9:248

QOriginal
alignment

* *%k%k % *hkkkkkk

* %k k% * *kkkk *

Randomized alignments

Figure 5
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--BATG

*hkkkkkk * k%

Example of randomized alignments. Part of the example alignment used in Fig. 3 are shown. The grey bars indicate the
level of local conservation. Exactly conserved sites are marked by asterisks.

native and the dinucleotide controls indicates the exist-
ence of RNA signals in the genome or, alternatively,
another as yet unidentified bias.

Clearly, the differences shown here in these cumulative
histograms might appear very subtle. The results for the
RNAz predictions, however, show that such differences
can strongly affect the statistics of RNA gene predictions
(Fig. 8B). On this particular test set, RNAz predicts RNA
signals in 4.3% of the native alignments. Using the con-
ventional shuffling strategy or mononucleotide based
simulation one would estimate a false positive rate of
0.8% or 0.7%, respectively. Using the more conservative
dinucleotide based model the estimate would be 2.1%,
i.e. three times higher. This is consistent with the results
obtained by Babak et al. using their dinucleotide shuffling
approach on pairwise alignments.

Calculating z-scores to predict structural RNAs

We can directly assess the significance of a predicted RNA
by calculating a z-score. The folding energy of the native
data m and the mean u and standard deviation o of rand-

omized data is calculated. The significance of the native
fold can then be expressed as z = (m - u)/ o; i.e. the number
of standard deviations from the mean. This score has been
repeatedly used on single sequences applying mono- or
dinucleotide shuffling or simulation using a zero or first
order Markov model [23,24]. Using shuffled alignments
as null model, this approach is implemented in the RNA
gene finding program AlifoldZ [5]. The same strategy can
be used in combination with our new dinucleotide base
randomization strategy without any further modifications

(Fig. 4).

To test the effectiveness of this approach, we conducted a
benchmark similar to those used previously [5,6] for test-
ing AlifoldZ and RNAz. We used multiple sequence align-
ments of eight different structural RNA families taken
from the Rfam database [50]. The alignments contained
three to six sequences and had a mean pairwise identity
between 50% and 100% (see Methods for details). For the
tests of AlifoldZ and RNAz, shuffled alignments were used
as negative controls. For obvious reasons, this is not pos-
sible here. So we used genomic alignments from random
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Dinucleotide frequencies of genomic alignments. 1000 vertebrate genome alignments were randomized using three dif-
ferent methods. The dinucleotide frequency of the native and randomized data is shown as box-plots.

locations of the human genome (see Methods). Using the
"genomic background" as negative controls in this test
implies the assumption that the genome does not contain
any structural RNAs at all, which is clearly not valid. How-

Frequency
40 60 80 100 120
l |

20

[ I I I |
-0.10 -0.05 0.00 0.05 0.10

Mean pairwise identity difference

Figure 7

Mean pairwise identity in randomized genomic align-
ments. The distribution of the difference of the mean pair-
wise identity between the original genomic alignments and
the simulated ones (dinucleotide model) is shown.

ever, if we assume true structural RNAs to be sparse in the
genome this conservative assumption seems to be a sensi-
ble choice.

We calculated z-scores with a sample size of 1000 rand-
omizations for both sets of true structured RNAs and the
genomic background using three different randomization
methods: Shuffling (AlifoldZ), simulation using a mono-
nucleotide model (SISSIz mono) and simulation using
the dinucleotide model (SISSIz di). The results are sum-
marized in Tab. 1.

Using mononucleotide based randomization the z-scores
of the genomic background are approximately half a
standard deviation from zero (-0.44 and -0.58, for shuf-
fling and mononucleotide simulation respectively). This
shows the relatively strong "bias" of the genomic back-
ground that causes false positive predictions as shown in
the previous section and in reference 21. Albeit the signal
does not vanish completely, the dinucleotide based z-
scores are much closer to zero (-0.15).

The z-scores of the structural RNAs in this test set are on
average well below -4 indicating a clear structural signal.
Also here, we observe that mononucleotide simulated z-
scores are lower than the dinucleotide simulated ones. In
this case, a dinucleotide content that favors stable RNA
structures is clearly not only a general background effect of
the genomic base composition but a feature of structural
RNAs. However, this signal is lost if the more conservative
dinucleotide based null model is used.
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Influence of the randomization procedure on RNA
predictions. (A) Cumulative frequency distribution of
RNAalifold consensus folding energies for the native and ran-
domized alignments. (B) Cumulative frequency distribution
of RNAz scores. The "decision-value" is the result of the sup-
port vector machine classification. Positive values indicate a
potential functional RNA while negative values indicate no
significant fold. The positive tail is magnified.

There is also a clear difference between the two monunu-
cleotide randomization procedures: Shuffling leads to
more significant z-scores than simulation. The main rea-
son is the fact that simulation results in higher standard
deviations than shuffling which in turn lead to more con-
servative z-scores.

This shows that there are many effects that have to be
taken into account. To assess the overall classification per-
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formance we generated receiver operating characteristic
curves based on the three different z-scores, as well as the
support vector machine score from RNAz (Fig. 9). In addi-
tion, we calculated the sensitivity at two different levels of
specificity (0.01 and 0.05) for all four approaches (Tab.

1).

The ROC curve shows that all the methods perform very
well on this test set. The curve further suggests that there is
not much difference between them. However, differences
become evident when looking at the region of high specif-
icity, the only relevant region for practical applications
(see inset Fig. 9). Here, the dinucleotide based approach
generally outperforms the mononucleotide based meth-
ods. The improvement is small but clearly noticeable: At a
false positive rate of 0.01%, dinucleotide based simula-
tion shows the highest sensitivity for 7 of the 8 RNA
classes. For example, in the tRNA group the sensitivity is
13% higher than AlifoldZ and RNAz. The latter performs
significantly worse than all other methods at this level. At
a false positive rate of 0.05%, dinucleotide simulation still
performs slightly better than mononucleotide shuffling/
simulation but is on the same level as RNAz that performs
significantly better here.

Discussion

Any experiment is only as good as its controls. What is
true for experimental biology clearly also holds in the
field of computational biology. The value of even the
most sophisticated algorithm remains unclear if the sig-
nificance of the results cannot be assessed properly. In this
paper we addressed the problem of finding an adequate
control strategy for comparative noncoding RNA predic-
tions, which are started to get widely used for genome
annotation.

Babak et al. demonstrated that currently used null models
based on mononucleotide shuffling lead to an underesti-
mation of the false positive rate in such screens. Although
single opinions may be different [51], it is generally
accepted that in the context of RNA gene prediction one
should consider dinucleotide content as "background"
rather than "signal". However, while there have been
dinucleotide controlled randomization algorithms for
single sequences for more than 20 years, it is a non-trivial
problem in the case of multiple sequence alignments.

Here we devised a simulation procedure that produces
alignments that have on average a given dinucleotide fre-
quency and sequence diversity (globally and locally). The
corresponding model needs to be relatively complex
including overlapping dependencies and site-specific
rates. Clearly, this model with a high number of parame-
ters would not be a reasonable choice for use in phyloge-
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Table I: z-scores and classification performance
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RNAz AlifoldZ SISSIz (mono) SISSIz (di)
Data type N z Sool So.0s z Sool So.05 z Soo So.s z Sool So.os
5S rRNA 368 nfa 077 0.98 -6.72 0.84 0.98 -6.35 0.86 0.98 -635  0.93 1.00
tRNA 382 nfa  0.74 0.98 -6.29 0.75 0.98 -6.24 0.74 0.98 -586 0.88 0.99
U2 snRNA 458 nla 076 1.00 -7.17 0.89 0.99 -5.92 0.84 0.97 -522 093 0.99
U3 snRNA 377 nfa 052 0.92 5.1 0.74 0.86 -4.47 0.69 0.83 -4.23 0.76 0.86
U5 snRNA 424 na 090 096 -56I 0.77 0.96 -5.10 0.69 0.89 -4.43 0.76 091
Hammerhead 499 nfa  0.78 1.00 -6.68 0.85 1.00 -6.67 0.90 1.00 -6.66 0.99 1.00
Group Il intron 480 nfa 0.68 0.82 -6.58 0.74 0.81 -6.77 0.72 0.8l -629  0.77 0.82
micro RNA precursor 571 nla  0.75 1.00 -889 1.00 1.00 -884 1.00 1.00 -7.58 1.00 1.00
Total of all classes 3559 n/a 0.80 096 -6.75 0.87 0.95 -6.43 0.85 0.94 -5.93 0.90 0.95
Genomic background 3559 nla n/a n/a -0.44 n/a n/a -0.58 n/a n/a -0.15 n/a n/a

Soor» S5 - Sensitivity at a false positive rate of 0.01 and 0.05, respectively. The highest values among the four different methods are shown in bold

letters.

netic analysis, but it turned out to be a good choice for this
specific application.

We have to use heuristics and simplifications to estimate
the tree and parameters for this model in reasonable time.
The accuracy of our approach is measured in terms of how
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Figure 9

Accuracy of z-score based classification of structured
RNAs. As positive examples, alignments from eight different
classes of structural RNAs were used. As negative examples,
random locations from genome wide vertebrate alignments
were chosen. ROC curves are shown in dependence on the
null model used. In addition, the results of the RNAz support
vector machine are shown. The region of high specificity
which is of special interest is magnified.

well the simulations reflect the properties of the original
data. In this respect, we found that our strategy performs
very well. Again, phylogenetic analysis was not the goal
here, but some of the techniques introduced here might
be of interest in this context. For example, we found that
in the mononucleotide case our estimations for site-spe-
cific rates are surprisingly competitive when compared to
the currently best maximum likelihood methods (data
not shown).

The influence of the null model for genomic RNA predic-
tions was found to be remarkable. Consistent with Babak
and colleagues' findings on pairwise alignments, we
observed three times more false positives using dinucle-
otide controls than using mononucleotide controls. This
clearly shows that the new approach should be the
method of choice to get more sensible estimates of the sig-
nificance of comparative RNA predictions.

The next obvious step, is to use the new null model to
improve current RNA gene prediction algorithms. In anal-
ogy to AlifoldZ, we combined our new simulation proce-
dure with the RNAalifold consensus structure prediction
algorithm. SISSIz calculates z-scores that are not biased by
the genomic dinucleotide content and it is thus the first
comparative gene finding program, that explicitely cor-
rects for this effect. However, by using this conservative
null model we also loose part of the signal in true struc-
tured RNAs. This might be the main reason, why the
observed improvements in the overall classification per-
formance were only relatively small.

In general, the support vector machine approach used by
RNAz is preferable over the AlifoldZ approach, since it is
orders of magnitude faster. However, it turned out to be
difficult to create a dinucleotide based version of RNAz
mainly for two reasons. Until now, there was no way to
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produce a dinucleotide controlled negative test set that is
necessary for training the two class support vector
machine [6]. With the method presented here, we have
solved this problem and it is now possible to create test
sets with specific dinucleotide properties. However, it
remains an unsolved question how to compute dinucle-
otide based z-scores efficiently without shuffling. RNAz
uses a regression approach to solve this problem for
mononucleotides, which, unfortunately, does not scale
well to the high dimensional dinucleotide case.

A promising alternative to the thermodynamic RNA pre-
diction methods used in this paper, are probabilistic
methods. The EvoFold algorithm [7] uses phylogenetic
stochastic context-free grammars and, in its core, depends
on a null model which is essentially an independent
mononucleotide model. Since the folding grammar of
EvoFold does not explicitely model stacking interactions
there is no need for using a null model with overlapping
dinucleotides as we have described here. However, also
EvoFold was found to be affected to some degree by the
dinucleotide content for reasons that are not immediately
obvious [21]. A dinucleotide background model together
with an advanced folding grammar that considers stacks
can thus be expected to improve performance. However,
it would require considerable effort to include such a null
model into the sophisticated probabilistic framework of
EvoFold.

Finally, we want to add that our randomization algorithm
is not only of interest in the context of RNA gene predic-
tion. It can be used for other comparative genomics appli-
cations whenever random alignments are needed as
control. One could consider other applications in the con-
text of RNA structures (e.g. prediction of conserved
miRNA target sites) but also in different context (e.g. con-
served sequence motifs). Currently our software imple-
ments a mono- and dinucleotide model which should be
sufficient for many applications. In principle, however, it
is also possible to consider higher order correlations
within this framework.

Methods

Treating gaps

Gapped positions are treated as missing data. When
counting the dinucleotide content, dinucleotides includ-
ing a gap (N-, -N, --) are ignored. During simulation, gap
positions are filled with nucleotides and gaps are re-intro-
duced afterwards. Note that this way, if two nucleotides
N; and N, are separated by a gap (e.g. N;----N,) the dinu-
cleotide N;N, is not in equilibrium. Depending on how
gaps are treated in the downstream analysis this might be
or might not be of concern. In any case, since not every
gap position but only every gap opened is affected, this
(potential) error is generally very small for reasonable
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alignments. So we did not consider correcting for this
effect which would require reconstructing the gap history
and setting lineage specific neighbourhood systems.

For calculating the site-specific rates, we also treat gaps as
missing data and calculate (p,) in eq. 10 only over non-gap
positions. After the simulation, the whole column has on
average (p,) estimated from the non-gap positions that
does not change when originally gapped positions are
masked again. For calculating the observed differences p
between two sequences we set positions that includes gaps
to the average (p;) at this site.

Distances above the level of saturation

When calculating genetic distances between two
sequences the problem may occur that the observed
number of differences is higher than the level of satura-
tion. We found that this problem becomes severe when
considering site-specific rates that generally lead to much
lower levels of saturation (cf. Fig. 3B). We use a simple
trick to overcome this limitation. We add additional sites
during the simulation with site-specific rates that corre-
spond to the average of the whole alignment (i.e. (p, ) is set
to 1-MPI in eq. 11 for all these additional sites). They act
as "buffer sites" that reduces the number of mutation
events that repeatedly hit the same sites of high rate lead-
ing to many double substitutions. As a consequence, the
overall level of observed differences is higher and we do
not run into problems building the distance matrix. In the
end, the sites are removed again and since the relative rate
ratios between the sites remained unchanged, we get the
desired site-specific mutation patterns.

Limiting base composition variation

During the testing of the influence of the randomization
procedure on RNA folding, we made an interesting obser-
vation. As expected, the variance of the folding energies of
randomized data is higher with simulation than with
shuffling. However, we also observed that there is differ-
ence in the mean. Simulation leads to slightly higher (i.e.
less stable) folding energies than shuffling. We observed
this behaviour not only on multiple alignments but also
on single sequences using shuffling vs. first order Markov
simulation. We suspect that extreme deviations in the
base composition that can occur in simulated data do not
symmetrically lead to the same deviations of the folding
energies but preferentially impair the formation of RNA
structures. To compensate for this effect, we have intro-
duced an option in our software that only outputs simu-
lated alignments, that are within a specific range of
mononucleotide frequencies. We can thus limit our simu-
lations to mononucleotide frequencies that are almost
exactly as in the original data. As a distance measure we
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use the Euclidean distance zaEA corV(me = m,)? with

7, the desired frequency of nucleotide ¢ in the original

alignment, and x;, the observed frequency in the simula-

tion. For all the data shown in Figs. 8, 9 and Tab. 1 we
used simulations with this cutoff set to 0.05.

Software

For the simulations in Fig. 1 we used seq-gen version 1.3.2
[52,53]. Monunucleotide shuffling was carried out using
shuffle-aln.pl with option "--mode conservative2".
Together with alifoldz.pl it is available online [54]. For the
tests in Figs. 1 and 8 we used RNAalifold from the Vienna
RNA package [55] version 1.6.1. with options "-nc 0 -cv
0") and RNAz [56] version 1.0 with standard parameters.
For implementation of our software we used a series of
third party C-code that is available as open source: levmar
[57] by Manolis Lourakis for least squares fitting, BION]
[41,58] by Olivier Gascuel, PHYML [59,60] by Stéphane
Guindon and Olivier Gascuel for maximum likelihood
estimation of the transition/transversion rate, Vienna
RNA package [55] by Ivo L. Hofacker and others for con-
sensus folding in SISSIz.

Sequence data

For the benchmark we used sequences from the following
eight Rfam families: RF00001 (5S rRNA), RF00004 (U2
snRNA), RF00005 (tRNA), RF00008 (Hammerhead
ribozyme), RF00012 (U3 snRNA), RF00020 (U5 snRNA),
RF00029 (Group II intron), RF00104 (mir-10 precursor).
From these sequences, a set of non-redundant alignments
between 3 and 6 sequences per alignment and mean pair-
wise identity between appr. 50% and 100% was created as
described [5,6]. The families were chosen because they
represent different structural families and contain enough
sequences to create sets of reasonable sample size.

Genomic alignments were extracted from Multiz 17-way
vertebrate alignments available at the UCSC genome
browser [61,62]. For creating the set of 1000 alignments
used for Figs. 6 and 8, we used the rnazWindow.pl script
from the RNAz software package [56,63] to get typical
alignment blocks as used previously in genomic ncRNA
screens [20] or [14]. For the benchmark we selected for
each positive example of the structural RNA set a negative
example from the genomic alignments. Subsets of
sequences were chosen to get the same number of
sequences and the same mean pairwise identity (+ 0.05)
as the structural RNA counterpart. Also the alignment
length was adjusted accordingly (limited to a maximum
length of 150).
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