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Abstract

Background: A number of studies have used protein interaction data alone for protein function
prediction. Here, we introduce a computational approach for annotation of enzymes, based on the
observation that similar protein sequences are more likely to perform the same function if they

share similar interacting partners.

Results: The method has been tested against the PSI-BLAST program using a set of 3,890 protein
sequences from which interaction data was available. For protein sequences that align with at least
40% sequence identity to a known enzyme, the specificity of our method in predicting the first
three EC digits increased from 80% to 90% at 80% coverage when compared to PSI-BLAST.

Conclusion: Our method can also be used in proteins for which homologous sequences with
known interacting partners can be detected. Thus, our method could increase 10% the specificity
of genome-wide enzyme predictions based on sequence matching by PSI-BLAST alone.

Background

While the amount of genome sequence information is
increasing exponentially, the annotation of protein
sequences remains a problem, both in terms of quality
and quantity [1]. Bioinformatics-based annotation of
uncharacterized proteins is still one of the most challeng-
ing problems in biology [2]. The classical approach
involves transfer of annotation from a functionally char-
acterized protein to its functionally uncharacterized

homologs. Although, several studies have highlighted the
limitations of such methods|1,3,4], they have been exten-
sively used on annotating proteins and in particular
enzymes [5,6].

About half of all proteins with experimentally character-
ized functions have enzymatic activity, making enzymes
the largest single class of proteins [5]. The Enzyme Com-
mission (EC) uses four numbers (integers) separated by
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periods to classify the functions of enzymes [7]. The first
three digits describe the overall type of an enzymatic reac-
tion, while the last digit represents the substrate specificity
of the catalyzed reaction. The accuracy of transferring an
enzymatic annotation between two globally aligned pro-
tein sequences has been reported to significantly drop
under 60% sequence identity [6]. To address this limita-
tion, we introduce for first time an approach that com-
bines sequence similarity search and comparative protein
interaction data to increase the confidence in automatic
enzyme annotation. Our hypothesis relies in the rationale
that homologous proteins perform similar functions
when associated with similar interacting partners. There-
fore, two sufficiently similar proteins with common inter-
actions should probably share the same first three EC
numbers (common enzymatic function).

Protein-protein interactions have been used for functional
annotation by several different approaches, such as
Markov random fields [8,9], minimization of interactions
among proteins from different functional categories [10],
message passing algorithms [11], neighbourhood weights
[12], network-flow algorithms [13], the number of com-
mon interaction partners [14], and the combination of
common interaction partners and common domains
[15]. However, the results from some of the existing meth-
ods are limited by the need to know the function of inter-
acting partners to annotate the query protein. This
limitation is even more dramatic for annotating enzy-
matic function because enzymes usually do not interact
with other enzymes of the same function. Possible excep-
tions are enzymes involved in proteolytic (e.g., clotting
cascade) or signalling cascades (e.g., MAP-kinase cas-
cades). Moreover, the benchmarks of such methods did
not account for the fact that protein families have differ-
ent distributions in different genomes. Therefore, the
accuracy obtained for a method in a given genome can be
biased due to the specific representation of protein fami-
lies within the genome. This problem has been already
addressed by averaging the results for each protein fami-
lies according to PFAM [5,6] or by describing the degree of
function conservation versus sequence identity [15,16].

Next, we outline the impact of protein interactions on
annotation based on sequence similarity alone (Results).
Then, we discuss the implications of our combined
approach for functional annotation in general (Discus-
sion). Finally, we describe our approach in detail (Meth-
ods).

Results

Approach overview

As mentioned above, our method relies in the rationale
that homologous proteins perform similar functions
when associated with similar interacting partners. Moreo-
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ver, based on the observation that homologous proteins
interact with similar partners in similar ways [17], our
method applies an additional transference of interactions
by means of homology (we name this as expansion of
interactions [18]). Thus, if two proteins do not share
exactly the same interaction, but interact with homolo-
gous proteins, our method is still applicable. Our method,
called ModFun, has been trained and tested using a
benchmark set of proteins with known enzymatic func-
tion and known interactions or with detectable homolo-
gous with known interactions. The benchmark set was
randomly split in two sets with similar number of pro-
teins. The first set (for training) was used to find the best
criteria of similarity between sequences for the transfer-
ence of interactions (expansion) and the threshold to fil-
ter the predictions using common interactions. The
second set (for testing) was used to test the increase in
accuracy for function assignment of our approach with
respect to PSI-BLAST.

Analysis of the data set

The set SP-DIP (Methods) contains 1,227 enzymes and
2,663 non-enzymes. According to the PFAM domain
architecture [19], enzymes and non-enzymes were
grouped into 630 and 1,296 homologous families, respec-
tively. The enzyme PFAM families cluster in 116 EC fami-
lies according to the first three digits of the EC code.
Approximately, half of these EC families have between 1
and 4 sequences (Figure 1). However, the six most popu-
lated EC families have more than 40 representatives each,
accounting for 40% of all enzymes in the test set. These EC
families are: (i) kinases using alcohol groups as acceptors,
EC 2.7.1; (ii) nucleotidyl transferases, EC 2.7.7; (iii) phos-
phatases, EC 3.1.3; (iv) ATPases catalyzing transmem-
brane movement of substances, EC 3.6.3; (v) amino-acid
ligases, EC 6.1.1; and (vi) dehydrogenases acting on CH-
OH groups using NAD/NADP as acceptor, EC 1.1.1.
Therefore, to perform an unbiased statistical analysis, the
degree of conservation was averaged over each family.

Parameters optimization

A pair of homologous proteins P1 - P2 can be related
through common interaction partners. The method
requires that the proteins used in the expansion procedure
(P1 and P1') perform the same enzymatic function. Previ-
ous work suggested 60% identity of a BLAST alignment as
a reliable cutoff for the conservation of the enzymatic
function as defined by the first three EC digits [6]. How-
ever, to a lesser extent the BLAST e-value [20] has also
been reported as indicative of enzymatic function conser-
vation [6]. Therefore, to expand an interaction between
two proteins to their homologs, both sequence identity
and BLAST e-value cutoffs need to be fulfilled, hereby
referred as the expansion cutoff. We have explored expan-
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Frequency distribution of EC families within the SP-
EC dataset, as defined by the first three EC digits.

sion cutoffs ranging from 20% to 70% for the sequence
identity and 0.0001 for the e-value.

Protein interactions were used in combination with
homology detection only for sequence pairs below a cer-
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tain sequence identity cutoff, referred as the filter cutoff.
We have explored filter cutoffs ranging from 25% to 65%
sequence identity.

The data set was randomly split into training and testing
sets of equal size. Using the training set, ROC curves were
obtained for PSI-BLAST and for our method (ModFun)
using different expansion and filter cutoff values. For each
combination of expansion and filter cutoff values, the
minimum distance between the ROC curve and the upper
right corner of the plot (maximum specificity and sensitiv-
ity) was measured. The relative improvement with respect
to PSI-BLAST was maximized to define the best results
(Figure 2a). The corresponding optimal cutoff values were
40% sequence identity and 0.0001 e-value for the expan-
sion cutoff and 55% sequence identity for the filter cutoff.

ROC Analysis and Validation

At 40% sequence identity threshold, measured from the
PSI-BLAST alignment, ModFun was able to annotate
enzymes from the training set with 10% higher specificity
than PSI-BLAST for the sensitivity of 80% (Figure 2b). The
utility of the expansion procedure is further demonstrated
by comparing the ROC curves obtained for different
expansion cutoffs. For instance, for a specificity of 90%,
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Figure 2

a Relative improvement over PSI-BLAST as a function of the parameters used (Methods). b ROC curves obtained for PSI-
BLAST and ModFun, using different expansion and filter cutoffs (solid line, PSI-BLAST; filled circles, ModFun with expansion
cutoff of 40% and filter cutoff of 55%; empty circles, ModFun with expansion cutoff of 50% and filter cutoff of 55%; stars, Mod-
Fun without expansion nor filter). Labels in the plot indicate specificity and sensitivity at the 40% identity threshold for PSI-
BLAST and ModFun with optimal parameters (expansion cutoff of 40%, filter cutoff of 55%).
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the expansion procedure increases the coverage from 63%
(no expansion) to 80% (optimal parameters).

The largest benefit of using ModFun for functional anno-
tation occurs for pairs of sequences that align with
sequence identities between 40 and 55% (Figure 3). At
this level of sequence identity, the gain in specificity is, on
average, ~27%. The differences between ModFun and PSI-
BLAST are small for pairs of sequences that align with less
than 35% or more than 60% sequence identity. However,
about one third of related pairs of enzymes from S. cerevi-
siage have sequence identity within the 40-55% range.
Similar results were obtained without averaging by family
(see Additional file 1). The improvement of ModFun with
respect to PSI-BLAST with and without averaging by fam-
ily could not be statistically distinguished using a Wil-
coxon signed-rank test.

The ability of ModFun to successfully identify protein
pairs with the same enzymatic function, even using pro-
tein interaction data from other organisms than the query,
is illustrated by the example of a peptidyl-prolyl cis-trans
isomerase (EC 5.2.1.8) from yeast (CYP7). A PSI-BLAST
search using the SP-EC database identifies TLP20, a pepti-
dyl-prolyl cis-trans isomerase from Spinacia oleracea, as a
putative homolog of CYP7. A BLAST search using the DIP-
SP database finds putative homologs for both proteins in
Drosophila melanogaster (with sequence identity higher
than 40% and an e-value smaller than 0.0001). Among
these homologs, two of them (CYPH and CG2852-PA)
have a common interacting partner, the CG8219-PA open
reading frame. Therefore, CYP7 and TLP20, which belong
to different organisms, can be related by sequence similar-
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Figure 3

Averaged function conservation as a function of the
sequence identity (empty bars, PSI-BLAST; filled
bars, ModFun with optimal parameters).
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ity and protein interactions by means of homologous pro-
teins in a third organism that have a common interacting
partner (Figure 4). Moreover, we predict that the open
reading frame CG2852-PA from Drosophila performs a
function similar to those of CYP7, TLP20, and CYPH (the
latter also being a known peptidyl-prolyl cis-trans isomer-
ase).

Statistical significance of the enrichment by ModFun

The ratio of correct functional assignments (using the first
three EC digits) in DIP-SP is 1.5% and increases to 3.5%
when using proteins sharing common interactions with
the query sequence (Methods). Such result indicates that
there is an enrichment of the proteins with the same enzy-
matic function within the set of relatives with common
interacting partners. To quantify the statistical significance
of such enrichment, we compared the enrichment for
each query using the Wilcoxon test [21] against 100 ran-
domly selected sets of interactions with the same number
of relatives from DIP-SP. The corresponding p-value (< 7
x 10-52) quantifies the statistical significance of enrich-
ment in the set of relatives by means of common interac-
tions.

Impact of our approach on annotating the genome of S.
cerevisiae

All S. cerevisiae proteins with EC numbers (1,186
enzymes) were functionally annotated with PSI-BLAST
and ModFun by searching against the ENZYME database.
At the 40% sequence identity cutoff, the PSI-BLAST search
correctly annotated 66% of the proteins in the set by
transferring the correct three-digit EC number from the
closest match (Figure 5). The ModFun filtering method
was then applied to about one third of all the sequences
in the set (284 proteins) that resulted in a PSI-BLAST hit,
which alignment ranged between 40 and 55% sequence
identity. ModFun found a correct match for 225 of these
284 sequences. Therefore, ~19% of the initial sequences
were correctly annotated only after our filtering method
was applied. ModFun can still be applied by relying only
on interaction data from organisms other than the query
organism. For example, after removing all interaction data
for S. cerevisiae proteins, 71 enzymes out of the 225 still
could be correctly annotated by ModFun.

Discussion

We described, implemented, and tested a method that
uses information about sequence similarity and protein-
protein interactions to perform enzyme annotations
between remotely related protein sequences. The method
was tested on a set of proteins with known interactions
containing 1,227 enzymes and 2,663 non-enzymes. Most
of the existing methods have been tested by application to
the S. cerevisiae proteome [8-10,13-15]. In this work, we
have taken advantage of available protein interaction data
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Proteins with the same enzymatic function from two different organisms can be related by means of the
known interactions of their homologs in a third organism. Lines represent reported protein interactions; arrows rep-
resent sequence similarity; filled circles represent proteins with known enzymatic function (EC 5.2.1.8); empty circles repre-

sent proteins with no annotation.

from several organisms to test our approach. Although S.
cerevisiae accounts for a large fraction of the 1,227
enzymes used in the SP-DIP set of known interactions
(54%), other organisms were also represented (i.e., E. coli,
H. sapiens, D. melanogaster, and H. pylori with 9%, 9%, 8%,
and 7% of the sequences, respectively).

Previous studies have stressed the need to compensate for
overrepresented and underrepresented protein families to
obtain reliable estimates of the first three digits of an enzy-
matic function [5,6]. Members of an overrepresented pro-
tein family are more likely to find pairs from the same
family, therefore yielding a high number of true positives.
Moreover, since some protein families account for a larger
fraction of the dataset than other families, statistics
obtained from these families could bias the general statis-
tics towards higher values of function conservation
between pairs. In this work, we have addressed this issue
by averaging our results within protein families. The
results show that considering protein interactions
increases the degree of enzyme function conservation for
sequence pairs in the 40-55% identity range, as calculated
by PSI-BLAST. Therefore, annotation transfers may be per-
formed with increased confidence between such sequence
pairs if similar interacting partners are found. For pairs
with higher percentage of identity (>50%), sequence sim-

ilarity alone is a good indication of function conservation
(i.e., conservation of at least the first three EC digits).

A genome-wide test was performed for the S. cerevisiae
sequences, for which abundant protein interactions data
is available. By using ModFun, ~19% of all known
enzymes in the yeast genome would have benefited from
the increase in the confidence of their functional annota-
tions. Moreover, the results show that our method can be
applied to proteins without known interactions, via an
"expansion" procedure based on known interactions of
their close homologs. Because proteins involved in the
expansion should perform the same enzymatic function,
only homologs above 60% identity by BLAST should be
considered in the expansion [6]. However, here we show
that homologs with 40% identity can be used, as long as
the e-value of BLAST is smaller than 0.0001. For example,
without using interaction data from yeast, 6% of all
known yeast enzymes still benefit from the expansion.

Although not all protein interactions need to be deter-
mined in order to achieve full coverage by our method,
the increase of the number of experimentally determined
protein-protein interactions will likely result in a larger
applicability of ModFun. In this work, we have also
shown that the identification of only one similar interact-
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Figure 5

Fraction of known enzymes in the S. cerevisiae pro-
teome finding a correct sequence match (as defined
by the first three EC digits) as a function of the
sequence identity threshold (solid line, PSI-BLAST;
filled circles, ModFun; empty circles, ModFun with-
out using interaction data from yeast).

ing partner for a low sequence identity pair of proteins is
enough to increase the reliability of the annotation trans-
fer. Moreover, a more complete knowledge of the sets of
interacting partners is likely to improve the accuracy of
ModFun by allowing the scoring of protein pairs by the
number of similar interaction partners, in addition to
their sequence similarity.

In conclusion, ModFun provides a higher confidence in
functional annotation from sequence than sequence-
based methods alone. In particular, about 20% of the
enzymes would be incorrectly predicted by using only
PSI-BLAST.

Methods

Datasets

To test our approach, we relied on the DIP database (Dec
2004 release) [22], the ENZYME database (release 36.0,
Jan 2005) [7], the InterPro database (release 9.0, Feb
2005) [23], and the UniProt database (release 9.0, Feb
2005) [24].

Proteins with EC-codes were extracted from the SWISS-
PROT subset of UniProt. We excluded those proteins that
(i) have EC numbers with undetermined digits; (ii) have
more than one EC number; and (iii) are annotated as
"probable”, "hypothetical", "putative", "by similarity",
"by homology" or "fragment" in the SWISSPROT keyword
record [5,6]. These criteria resulted in the SP-EC dataset
containing 49,885 protein sequences.

http://www.biomedcentral.com/1471-2105/9/249

Additionally, we extracted proteins from the SWISSPROT
database that (i) have known interactions in the DIP data-
base, by means of their "AC" codes; (ii) have PFAM map-
pings in InterPro; and, (iii) are not annotated with
keywords such as "probable", "hypothetical", "putative",
"by similarity", "by homology" or "fragment". The result-
ing subset of 3,890 SWISSPROT entries (i.e., SP-DIP)
included 2,663 proteins that do not have an EC code (i.e.,
considered non-enzymes) and 1,227 proteins that were
present in the SP-EC dataset (i.e., considered enzymes).

Sequence search

To test our procedure, profiles were built for each protein
in the SP-DIP dataset by running the PSI-BLAST program
[20] with default parameters against UniProt [24] for
three iterations (or up to convergence). Enzyme-enzyme
and enzyme-non-enzyme pairs were collected by search-
ing with these profiles against the SP-DIP dataset. The out-
puts of the PSI-BLAST searches were filtered to remove
self-matches and alignments shorter than 30 residues.

Relating sequence pairs through interacting partners

A protein interaction network can be represented by a
graph with nodes as proteins and edges as protein interac-
tions. In such a graph, a set of proteins connected to pro-
tein X (i.e., physically interacting with X) is named
"partners of X". Figure 6 summarizes three scenarios of
sequence pairs P;-P, related through interacting partners:
(a) a sequence pair related through a common interaction
partner I; (b) a sequence pair related through similar inter-
action partners I; and I,; (c) a sequence pair related
through the interaction partners of their homologues P;.
and P,., hereby referred as expansion [18]. Sequence sim-
ilarity was determined here by comparing each sequence
in the DIP-SP to all the remaining sequences in DIP-SP by
BLASTP. Two sequences were considered to be similar if
aligned with an e-value < 0.0001.

Grouping of enzymes into families

Sequences from SP-DIP dataset were classified into 1,926
families according to their PFAM domain architecture.
Families containing enzyme sequences were further split
according to their first three EC digits. These families are
referred to as EC families.

Family-averaged sensitivity and specificity

For each query, only the sequence pair with the highest
degree of sequence identity was used for this study. Aver-
aged specificity was calculated as described by Tian and
Skolnick [6]. Briefly, query-enzyme pairs above a
sequence identity threshold (e.g., 40%) were collected for
a given family H, and its specificity was calculated as:

FH,i>40
Specsiza0 = 7PH l,>40
12
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Figure 6

Relating a protein pair P, - P, through sequence sim-
ilarity and protein interactions: a) protein pair linked
through a common interacting partner; b) protein
pair linked through similar interacting partners; c)
protein pair linked through expansion. Lines represent
reported protein interactions; arrows represent sequence
similarity.

where Fy ;is the number of pairs with the same function
as deﬁned by the first three EC digits (true positive pairs),

and Py ;is the number of pairs with sequence identity
above the threshold i (true positive plus true negative
pairs). The averaged specificity was calculated as:

N
2 Specy i>40

AvSpec s, = H=1 TP
i>

where N; is the total number of families finding sequence
matches above threshold i, and N is the total number of
families in the set.

Similarly, family sensitivity was calculated as:

_ Py i>40
ny

Sensy i>40 =

http://www.biomedcentral.com/1471-2105/9/249

where ny; is the total number of sequences in family H.
Finally, the averaged sensitivity was calculated as:

N

2 SensH,i>40
AvSens g =H=L

i240 Ni>20

Parameter optimization
Optimal values for the expansion and filter identity cut-
offs were selected on the basis of the relative improvement
over PSI-BLAST. This improvement was defined as 100 x
(D, - D,)/D,, where D, and D, are the minimum distance
of the ROC curve to the upper right corner of the plot for
our method (ModFun) and PSI-BLAST, respectively.

Enzyme function conservation as a function of sequence
identity

For each query, only the sequence pair with the highest
sequence identity was used for this study. Given a family
of homologous proteins H, query-enzyme pairs falling in
a certain sequence identity range i (e.g. 40-45%) were col-
lected. We calculate the degree of function conservation in
a similar way to specificity, but for the sequence identity
interval [40%, 45%), instead of a threshold:

FH ,45>i>40

Consyy 455i240 = PH 4551540
,45>i>

Also, we calculated the average degree of conservation as:

N

2 Consy 45>i>40
H=1

Ng5>i>40

AVCons 455540 =
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