
BioMed CentralBMC Bioinformatics

ss
Open AcceResearch article
poolHiTS: A Shifted Transversal Design based pooling strategy for
high-throughput drug screening
Raghunandan M Kainkaryam1 and Peter J Woolf*1,2

Address: 1Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA and 2Bioinformatics Program, University of
Michigan, Ann Arbor, MI, USA

Email: Raghunandan M Kainkaryam - raghu@umich.edu; Peter J Woolf* - pwoolf@umich.edu

* Corresponding author

Abstract
Background: A key goal of drug discovery is to increase the throughput of small molecule screens
without sacrificing screening accuracy. High-throughput screening (HTS) in drug discovery involves
testing a large number of compounds in a biological assay to identify active compounds. Normally,
molecules from a large compound library are tested individually to identify the activity of each
molecule. Usually a small number of compounds are found to be active, however the presence of
false positive and negative testing errors suggests that this one-drug one-assay screening strategy
can be significantly improved. Pooling designs are testing schemes that test mixtures of compounds
in each assay, thereby generating a screen of the whole compound library in fewer tests. By
repeatedly testing compounds in different combinations, pooling designs also allow for error-
correction. These pooled designs, for specific experiment parameters, can be simply and efficiently
created using the Shifted Transversal Design (STD) pooling algorithm. However, drug screening
contains a number of key constraints that require specific modifications if this pooling approach is
to be useful for practical screen designs.

Results: In this paper, we introduce a pooling strategy called poolHiTS (Pooled High-Throughput
Screening) which is based on the STD algorithm. In poolHiTS, we implement a limit on the number
of compounds that can be mixed in a single assay. In addition, we show that the STD-based pooling
strategy is limited in the error-correction that it can achieve. Due to the mixing constraint, we
show that it is more efficient to split a large library into smaller blocks of compounds, which are
then tested using an optimized strategy repeated for each block. We package the optimal block
selection algorithm into poolHiTS. The MATLAB codes for the poolHiTS algorithm and the
corresponding decoding strategy are also provided.

Conclusion: We have produced a practical version of STD algorithm for pooled drug screens.
This pooling strategy provides both assay compression and error-correction capabilities that can
both accelerate and reduce the overall cost of HTS in drug discovery.

Background
Advances in automation and miniaturization of experi-
ments and the development of reliable biological assays

have made high-throughput screening (HTS) a vital step
in the drug discovery process [1-3]. HTS involves the test-
ing of a large number of candidate molecules on a biolog-

Published: 30 May 2008

BMC Bioinformatics 2008, 9:256 doi:10.1186/1471-2105-9-256

Received: 10 December 2007
Accepted: 30 May 2008

This article is available from: http://www.biomedcentral.com/1471-2105/9/256

© 2008 Kainkaryam and Woolf; licensee BioMed Central Ltd.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 11
(page number not for citation purposes)

http://www.biomedcentral.com/1471-2105/9/256
http://creativecommons.org/licenses/by/2.0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18513431
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

BMC Bioinformatics 2008, 9:256 http://www.biomedcentral.com/1471-2105/9/256
ical target to identify potential drug molecules. Detection
technologies such as the scintillation proximity assay
(SPA), fluorescence polarization (FP) and fluorescence
resonance energy transfer (FRET) are used to identify the
target-binding activity of the compounds [4-6]. Screening
more than 100,000 compounds a day on a biological tar-
get has become routine, but largely through increases in
assay automation via liquid handling robots and assay
parallelization [7,8]. In these assays, the most common
practice is to individually test each molecule against a
standardized target. Usually, only a small fraction of a
compound library shows activity, while the majority of
the compounds show no activity. Unfortunately, because
each compound is tested only once, the presence of exper-
imental errors (particularly false negative errors) requires
substaintal efforts to validate most HTS results [9]. Due to
the large size of these chemical libraries (> 50, 000 com-
pounds) replicate screening is prohibitive. Therefore an
arbitrary number of active compounds (hits) are usually
chosen for secondary screening to identify inactive com-
pounds that erroneously passed through the primary
screen [10]. Disappointingly, active compounds that were
missed due to false negative results in the primary assay
cannot be identified from this approach and are therefore
lost.

One method to reduce the sensitivity of an assay to false
postitive and false negative results is pooling. In a pooling
design, each compound is tested multiple times in combi-
nation with other compounds. Since very few compounds
in a library are active in the assay, pooling effectively pro-
vides internal replicate measurements to confirm com-
pound activity. However, constructing efficient pooling
designs is difficult, as one would ideally like to guarentee
correct identification of a known number of active com-
pounds while correcting for random experimental errors.
The general problem of pooling designs has been well
studied and is described elsewhere [11].

In 2006, a novel pooling design method called shifted
transversal design (STD) was introduced for biological
assay design [12]. STD is based on the dual objectives of
(1) minimizing the number of times any two compounds
appear together in a test and (2) maintaining the pool
sizes roughly equal. When compared to other pooling
designs, STD provides similar or better performance in
nearly every area. In this paper, we introduce a pooling
strategy called poolHiTS, based on the STD algorithm,
specific for the purposes of drug screening. First, we prove
a limit to the error-correcting capacity of STD-based pool-
ing strategies. This limit is important for drug screening as
it dictates the error limit in an assay that can be used with
a pooling design of this kind. Second, we modifiy the
pooling design algorithm to limit the number of drugs
tested in each assay, thereby enforcing a realistic experi-

mental constraint of HTS. Third, we introduce a block
design method that both simplifies and improves the
assay design.

Results and Discussion
Preliminaries – STD-based pooling strategy
A STD-based pool construction starts with the specifica-
tion of the compound library size (n), maximum number
of active compounds expected (d) and maximum number
of errors expected (E). The STD algorithm guarantees that
the pooled design will be able to correctly identify upto d
active compounds in the presence of upto E false positive
and negative errors in the screen. STD is able to provide
such guarantees because it uses a combinatorial procedure
to ensure that no two compounds are pooled together
more than a minimum number of times, to prevent con-
founding decoding results. Also, the number of com-
pounds pooled in each test is roughly the same, ensuring
correct intensity-concentration mapping for the test
results. This implies that for any underlying structure of
compound activities and testing errors, as long as their
numbers lie within the specified experimental parameters,
the STD design guarantees successful identification of the
active compounds. It has been observed [12] and recently
shown [13] that pooling designs are capable of correcting
errors much larger than those that they guarantee for.
These input parameters (n, d, E) are used to choose the
design parameters of the STD construction algorithm q
and k. STD is a layered construction with k layers, each of
size q × n. Each compounds appears only once in each
layer. The STD construction algorithm produces a t × n, 0–
1 matrix M = STD(n; q; k), with t (= q × k) rows that are the
assays to be performed and n columns that represent the
compounds in the library. The columns with entry 1 in a
row are the compounds to be pooled in that assay. An
example of such a pooling design is shown in Figure 1,
created using M = STD(20; 5; 3) for n = 20, d = 2 and E =
0. The process of mapping the experimental parameters to
the design parameters is shown below in Algorithm 1.

Algorithm 1:

Inputs – n, d and E

1. Choose a prime number q, with q <n. Start with the
smallest prime, 2.

2. Find the compression power, Γ = min{γ|qγ+1 ≥ n}, there-

fore . Set k = dΓ + 2E + 1.

3. Check if this choice of q and k satisfy the guarantee
requirements of identifying d active compounds and cor-
recting E errors, using the inequality, k ≤ q + 1.

Γ = ⎡
⎢⎢

⎤
⎥⎥

−log
log

n
q

1

Page 2 of 11
(page number not for citation purposes)

BMC Bioinformatics 2008, 9:256 http://www.biomedcentral.com/1471-2105/9/256
4. If the inequality is satisfied continue to step 5, else
choose the next prime in step 1 and repeat steps 2 and 3.

5. Once the smallest prime number qmin and its corre-
sponding compression power Γmax are found, all q > qmin
will satisfy the inequality in step 3. Therefore, cycle
through the values of Γ in {1, ..., Γmax} to find the corre-
sponding q. For each Γ find the smallest q that satisfies, q
≥ n1/Γ +1.

6. Calculate the number of tests (t) needed by each q and
k pair from, t = q × k.

7. Choose the q and k pair producing the least number of
tests.

8. Design the pooling matrix, M = STD(n; q; k).

A detailed description of the procedure used to construct
the t × n, 0–1 matrix M can be found in the original paper
[12] and is reproduced in the Methods section (Construc-
tion 1) of this paper.

Having designed the pooling scheme, M, the decoding
algorithm is given below. The pooled assays, t in number,
are carried out and the results classified into two states –
positive or negative, using a chosen threshold.

1. A compound present in at least E + 1 negative tests is
tagged inactive.

2. A compound present in at least E + 1 positive tests, in
which all other compounds have been tagged inactive, is
tagged active.

Note that each compound is present in dΓ + 2E + 1 tests
and no two compounds are mixed together more than Γ
times. A more elaborate decoding algorithm designed to
handle the presence of larger-than-designed-for values of
d and E is provided in the original paper and its MATLAB
implementation is provided [see Additional file 1].

Error rate

The STD-based pooling strategy creates a design for a spec-
ified number of errors, E, resulting in the addition of 2E
extra tests to the total of t pooled tests. Assuming random
experimental errors, the number of errors present in the
result will increase as the number of tests increase. In HTS,
there can be instrument, biological, chemical, or human
errors that increase (false positive, FP) or decrease (false
negative, FN) the measurement from its true value [10].
These multiple sources of error make it difficult to esti-
mate the total number of errors, E, before knowing the
number of pooled tests (t) that will be used. However,

Example of a STD matrixFigure 1
Example of a STD matrix. An example of a pooling design for 20 compounds, expecting at most 2 active compounds and 0
errors in testing, requiring a 15 × 20 binary matrix, created using STD(n = 20; q = 5; k = 3). A black square represents the pres-
ence of a compound j (column index) in test i (row index). The red dashed line represents the separation of the STD design
into its 3 layers (k), each of size 5 × 20 (q × n). Each compound is present only once in each layer of the design. Each compound
is present at most once (Γ = 1) with every other compound.
Page 3 of 11
(page number not for citation purposes)

BMC Bioinformatics 2008, 9:256 http://www.biomedcentral.com/1471-2105/9/256
often in HTS we know the overall random error-rate for an
assay, which we call e. For example, the pooling design for
100 compounds (n) expecting 3 active compounds (d)
and 2 testing errors (E) needs 88 tests (t) using STD(100;
11; 8) (Table 2 in [12]). If we define the error-rate (e) as

the percentage errors expected per test then .

For the example above, this error-rate e is ~2.27%. How-
ever, when the number of errors (E) is changed, keeping
everything else the same, the corresponding number of
pooled tests (t) and hence the error-rate (e) change. From
Figure 2 it can be seen, that the error-rate (e) reaches a
maximum and then drops off with respect to E. The STD
construction is efficient for low values of E but requires
many more tests (t) for higher E values, as seen in Figure
2. This nonlinear relationship between t and E indicates
that a construction based on the input parameter E alone
is not satisfactory. We propose the use of an expected

error-rate e as a input parameter instead. To do so we have
modified the STD strategy as follows.

Algorithm 2: Error-rate based STD strategy

Inputs – n, d and e

Steps 1 and 2 same as (Algorithm 1)

3. If dΓ ≤ q, calculate , the maximum

number of errors that can be corrected by this choice of q,
for the given n and d.

4. Check if the input error-rate e is achievable using the

inequality, . If e is achievable

then continue to step 5, else go back to step 1 and try the
next q.

e E
t= ×100

E q d
max = ⎢

⎣⎢
⎥
⎦⎥

− Γ
2

e E
q d E≤ ×+ +

max
(max)Γ 2 1 100

Variation of error-rateFigure 2

Variation of error-rate. Variation of error-rate () with choice of design parameter E (number of errors) keep-

ing compound library size (n = 100) and expected number of positives (d = 3) fixed. The inset shows the variation in number of
test needed (t) with the same parameter E, for a E = 0 to 20 and t = 44 to 1852.

e E
t= ×100
Page 4 of 11
(page number not for citation purposes)

BMC Bioinformatics 2008, 9:256 http://www.biomedcentral.com/1471-2105/9/256
5. Cycle through all values for E from 0 to Emax to find the
minimum E (Emin) that satisfies the inequality in step 4.
Use Emin to calculate, k = dΓ + 2Emin + 1 and the number of
tests, t = qk.

6. Similar to Algorithm 1, cycle through the values of Γ
smaller than the Γmax to find the corresponding q and
hence t.

7. Use the design parameters (q and k) that need the min-
imum number of tests.

8. Construct the pooling design, M = STD(n; q; k), as
usual.

¿From step 4 we find that there is an upper limit to the
error-rate (e) for a given library size (n) and chosen maxi-
mum number of active compounds expected (d). This
limit is a function only of the design parameter q as shown
in Equation 1 (elaborated in Proof 1 of the Methods sec-
tion).

For the simplest case of d = 0, this expression simplifies to

, for all the odd prime numbers and e ≤

16.67% for q = 2. Thus any assay with an error rate greater
than 16.67% cannot guarantee accurate results when
screened using an STD-based scheme. In more realistic
cases, the error-rates corrected by STD-based schemes are
much smaller than this limiting case of d = 0 because d

and Γ would have substantial values. This finding implies
that no matter how large the specified number of errors
(E) in the original STD-based pooling strategy, the corre-
sponding number of tests needed (t) would adjust itself to
keep the error-rate (e) corrected by the design low. An
example of the effect of Equation 1 can be seen in Figure
3 for a library of 100 compounds (n = 100) and various
values of expected active compounds (d).

e

q d q n

q d q n
q d q n

≤

−⎢
⎣⎢

⎥
⎦⎥

+ −⎢
⎣⎢

⎥
⎦⎥
+

× =

Γ

Γ Γ
Γ

(,)

((,)
(,)

)
,

log2

2
2

1
100

nn

qlog

⎡

⎢
⎢

⎤

⎥
⎥ − 1

(1)

e q

q
≤ ×−1

2 2 100

Error-rate limitFigure 3
Error-rate limit. The limits on assay error-rate (e) that can be handled by STD for a sample choice of library size (n = 100)
and various choices of expected active compounds (d). The trend suggests that the ability to correct for experimental assay
error-rates decreases as q increases.
Page 5 of 11
(page number not for citation purposes)

BMC Bioinformatics 2008, 9:256 http://www.biomedcentral.com/1471-2105/9/256
Mixing Constraint
To our knowledge, no pooling designs address the physi-
cal limitation that only a finite number of compounds can
be mixed in each well. This limitation arises in drug
screening for the following three reasons.

1. Each compound must be present at a sufficiently high
concentration so as to be detectable by the assay within a
physiologically reasonable range.

2. The total ionic strength of the test solution must be low
enough to prevent precipitation of compounds or possi-
ble changes to the biological target.

3. The assay must be reasonably simple to physically con-
struct.

From these constraints we can conclude that the total
number of drugs that can be practically included in any
experimental test well is relatively small. For example, for
a relevant screening concentration of ~10 μM, we can
assume that each well can have ~10 compounds mixed in
it. If more drugs are mixed, the cost of creating the assay
increases and the ionic strength of the well mixture may
become too high, resulting in inaccurate screening results.
This limit can be specified as an input parameter to the
pooling design, based on the high-throughput assay being
implemented.

Here we extend the STD-based pooling strategy to intro-
duce an explicit mixing constraint. Let m be the mixing
constraint, defined as the maximum number of com-
pounds mixed in a well of the pooling scheme. Normally

the STD design mixes at most compounds in each

well [12]. However, this feature can break down when the
input values of n, d and e (hence Emin) are such that, for a

certain choice of q and k (= dΓ + 2Emin + 1), k = q + 1 and

 <q - 1, resulting in an unusually large number of

compounds mixed in some tests and some tests with no
compounds in them. The original STD construction can
be easily modified by removing tests with no compounds
in them. The details of the correction are provided in
Proof 2 of the Methods section. Having made this correc-
tion, we can implement the mixing constraint as follows
[see Additional file 2].

Algorithm 3: Mixing constraint implementation

Inputs – n, d, e and m

Steps 1 through 5 are the same as (Algorithm 2).

6. Using the q and k values obtained so far in the algo-
rithm to choose one of the following options.

a. If k <q + 1 and ≤ m, use Construction 1 (Methods

section) requiring t = qk tests.

b. If k = q + 1, n = qΓ+1 - 1 and qΓ ≤ m, use Construction 1
requiring t = q(q + 1) tests.

c. If k = q + 1, <q - 1 and qΓ ≤ m, use Construction

2 (Methods section) requiring t = q2 + + 1 tests.

7. Similar to the previous algorithms, cycle through the
values of Γ smaller than Γmax to find the corresponding q
and hence t.

8 Use the design parameters (q and k) that require the
minimum number of tests.

Repeated Blocks

Limiting the number of compounds that can be mixed in
a pooling strategy reduces the savings in tests that could
otherwise have been obtained. For example, without the
mixing constraint, screening a library of 10,000 com-
pounds with 3 expected actives and no error requires only
110 tests, using STD(10000; 11; 10), each mixing 910

(=) compounds in them. However, a mixing

constraint of 10 compounds per test increases the
required tests to 4036, using STD(10000; 1009; 4). Now,
consider the STD-based strategy for 400 compounds
while expecting only 1 active compound in a similar error-
free setting and a mixing constraint of 10 compounds per
well. The number of tests needed in this case is 82, using
the STD(400; 41; 2) design. If we now divide the original
10, 000 compound library into 25 blocks of 400 com-
pounds each and used the STD(400; 41; 2) design
repeated on those 25 blocks, the total number of tests is
only 25 × 82 = 2050, almost half the original require-
ment! The trade-off here is that the block assay design
guarantees the detection of only 1 active compound out of
every 400 compounds tested. However, given that we
expected only 3 active compounds in a library of 10, 000
compounds, this implies that there is ~99.5% chance of
finding, at best, 1 active compound among the 400 ran-

n
q

⎡
⎢⎢

⎤
⎥⎥

n

q

−⎡

⎢
⎢

⎤

⎥
⎥1

Γ

n
q

⎡
⎢⎢

⎤
⎥⎥

n

q

−⎡

⎢
⎢

⎤

⎥
⎥1

Γ

n

q

−⎡

⎢
⎢

⎤

⎥
⎥1

Γ

10000
11

⎡
⎢

⎤
⎥

Page 6 of 11
(page number not for citation purposes)

BMC Bioinformatics 2008, 9:256 http://www.biomedcentral.com/1471-2105/9/256
domly selected compounds for a block (using the hyper-
geometric distribution). This block decomposition
algorithm is inspired by a form of pooling used in NMR
screening [14]. This example demonstrates that we can
make an informed choice about a block size that can, not
only, help reduce the number of tests needed while
enforcing the mixing constraint but the smaller block size
also implies that a better error-rate can be handled by the
design (as seen in Figure 3).

For any block of nB compounds from the library of n com-

pounds, the number of blocks needed to cover the whole

library is . The creation of a STD for this block

of nB compounds, using the error-rate e and mixing con-

straint m (assumed to stay the same for all blocks)
requires the specification of the maximum number of
active compounds expected for the given nB, called dB. The

choice of dB is from a hypergeometric distribution such

that, with at least a probability of pB (specified at the out-

set) the block of nB compounds contains at most dB active

compounds. Using the hypergeometric distribution, the
following inequality (elaborated in Proof 3 in the Meth-
ods section) can be solved for dB.

Based on this choice of dB, a STD-based pooling design of
size tB × nB can be generated using Algorithm 3. The
number of tests needed for the whole library would be B
× tB.

poolHiTS
We now define poolHiTS as an STD-based pooling strat-
egy which takes in as input the compound library size (n),
maximum number of active compounds expected (d),
maximum error-rate expected (e), mixing constraint (m),
and design confidence metric (pb). poolHiTS(n, d, e, m, pb)
produces a t × n mixing matrix M, which guarantees the
success of the pooling scheme for the given input param-
eters. The algorithm for poolHiTS, which includes error-
rate specification, mixing constraints, and optimal block
size selection, is as follows. The MATLAB implementation
of the poolHiTS algorithm is provided [see Additional file
3].

Algorithm 4: poolHiTS algorithm

Inputs – n, d, e, m and pB

1. Choose a value of dB in {1, ...,d - 1}.

2. Find the set of nB that satisfy the inequality in Equation
2.

3. For each nB in this set use Algorithm 3 to evaluate

STD(nB; qB; kB), if it exists, for the given e and m. Calculate

the total number of tests needed from B × tB, .

4. Choose the next value of dB and repeat steps 2 and 3.

5. After testing all values of dB in {1, ...,d - 1} and the cor-
responding nB, select the dB, nB pair that require the least
number of tests. The whole library design (which corre-
sponds to nB = n, dB = d and B = 1) should also be included
while making this choice.

6. Design the pooling matrix, M = STD(n; q; k), for the
choice of q and k.

A typical example of a result of applying Algorithm 4 to
the pooling design problem is shown in Table 1. Consider
a case of a 10, 000 compound library (n), where we expect
upto 3 active compounds (d) with 1% assay error-rate (e),
a limit on mixing not more than 10 compounds in a test
(m), and at least a 99% chance of finding the active com-
pounds (pB). From this problem specification we have two
observations. First, a single whole library design is not
possible because the mixing constraint permits only 10
compounds per assay, thus we must use a repeated block
design. Second, we see that there is an optimal number of
blocks (B) that requires the least number of tests and has
a block size (nB) between the two extremes (nB = n and nB
= 1). The best design chosen by poolHiTS(10000, 3, 1, 10)
is to implement a block pooling scheme for nB = 110, dB =
1, e = 1 and m = 10, using STD(10000; 11; 4), and repeat
this design 91 times over to cover the whole library. The
reason for choosing nB = 110 rather than nB = 130 (see
Table 1), while both provide equal compression, is that
the former provides a better actual error-correcting rate of
2.27%. It is useful to note that this design is capable of
screening a library of 91 × 110 = 10,010 compounds vs.
the specified 10, 000 compounds. However, because of
the extra error-correction, we can take advantage of this
design by ignoring the extra compounds or using some
form of control compound in their place. The MATLAB
implementation of this example is provided [see Addi-
tional file 4].

B n
nB

= ⎡
⎢⎢

⎤
⎥⎥

d

i

n d

nB i
n

nB

pB
i

dB

⎛

⎝
⎜

⎞

⎠
⎟

−
−

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟

≥
=
∑

0

(2)

B n
nB

= ⎡
⎢⎢

⎤
⎥⎥
Page 7 of 11
(page number not for citation purposes)

BMC Bioinformatics 2008, 9:256 http://www.biomedcentral.com/1471-2105/9/256
Conclusion
In this paper, we present a pooling strategy called pool-
HiTS which implements tailored modifications and
enhancements that make the shifted transversal design
(STD) algorithm appropriate for drug discovery. First, we
demonstrate how to switch from specifying the number of
errors (E) for a STD-based strategy to an error rate (e),
which is the percentage of errors expected in tests. We
show that there is an upper limit to the error-rate that can
be handled by this STD-based algorithm and this error
limit (Equation 1) strongly constrains pooling designs to
less noisy screening assays. We implement error rate as an
input experimental parameter via Algorithm 2.

Second, we introduce and implement explicit mixing con-
straints to make pooling significantly more relevant to
HTS assays via Algorithm 3. We also provide a necessary
correction to the STD construction algorithm pertinent to
the mixing constraint.

Third, we introduce the concept of repeated block designs
that retains the efficiency of pooling strategies in the face
of the mixing constraint and error-rate limitations. We
show that by using this block design, we are able to sim-
plify the assay construction, increase the error tolerance
and decrease the assay size. The combination of these fea-
tures produce the poolHiTS strategy described in Algo-
rithm 4. The MATLAB implementations of the poolHiTS
algorithm and an example of its use are provided in the
Additional Files section. poolHiTS provides a promising
route to both reducing the cost and increasing the accu-
racy of high throughput drug screening. Although pool-
HiTS primarily focuses on drug screening, these same
design methods can apply equally well to other screening
environments where the number of perturbations to a sys-
tem is finite or small (mixing constraint) and the error rate
of the assay is approximately known.

Methods
Construction 1
Given the design parameters q and k, the pooling matrix
M = STD(n; q; k) can be constructed as follows. The STD
has a layered construction consisting of k layers of q × n
boolean matrices. For all j ∈ {0, ..., k - 1}, let Mj be a q × n
boolean matrix representing layer L(j), with columns Cj,0,
...,Cj,n-1.

Let the circular shift operator, σq, be defined as, ∀(x1, ...,

xq) ∈ {0,1}q, and . Note

that σq is a cyclic function and when applied q times maps

{0, 1}q onto itself, , s = q. To design a

layer L(j), for all i ∈ {0, ..., n - 1} construct

 where,

• if j <q:

• if j = q:

The layers L(j) are put together to form M by,

. A detailed description of the con-

struction is available in the original STD paper [12].

σ q

q

q

q

x

x

x

x

x

x

1

2 1

1

#

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

=

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥−

C0 0

1

0

0

, =

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
#

σ q
s

q q

x

x

x

x

x

x

1

2

1

2

#

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

=

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

C Cj i q
s i j

,
(,)

,= σ 0 0

s i j j c

c

i

qc
(,) =

⎢

⎣
⎢

⎥

⎦
⎥

=
∑

0

Γ

s i q i

q
(,) =

⎢

⎣
⎢

⎥

⎦
⎥Γ

STD(; ;) ()n q k L j
j

k
=

=

−

0

1

∪

Table 1: Block Design Example

Number of blocks
(B)

Number of
compounds per

block (nB)

Number of active
compounds

expected per
block (dB)

Number of tests
needed per block

(tB)

Actual error-rate
handled (e)

Actual mixing
constraint (m)

Total number of
tests needed (t)

1 10000 3 - - - -
25 400 1 492 1.02% 10 12300
50 200 1 92 1.09% 9 4600
77 130 1 52 1.92% 10 4004
91 110 1 44 2.27% 10 4004
100 100 1 44 2.27% 10 4400
500 20 1 20 5% 4 10000

Sample case of n = 10, 000, d = 3, e = 1% and m = 10 showing the efficiency of selected block design parameters. The choice of error-rate (e = 1%)
does not permit a full library design (first row), thus it is left empty.
Page 8 of 11
(page number not for citation purposes)

BMC Bioinformatics 2008, 9:256 http://www.biomedcentral.com/1471-2105/9/256
Proof 1: Error-rate limit

Given n, d and E, the STD algorithm uses a prime number

q (<n) and a compression factor which

satisfy the inequality, dΓ + 2E ≤ q. The number of tests

required for the design is, t = q(dΓ + 2E + 1). The error-rate

corrected by this design can be defined as, .

However, for a choice of q that satisfies the design require-
ment there is a upper limit on the number of errors the
corresponding design can correct, given by, Emax =

 (arrived at from the inequality above). This

implies that the error-rate (e) that can be specified for a
design is constrained in the following manner.

Using the expression for t,

Substituting for Emax,

Using the above inequality it is possible to deduce the
maximum error-rate that STD can handle for a particular
n-compound library with at most d active compounds and
an assay with a limit on mixing not more than m com-
pounds in a test. However, in most cases, the numerical
value of the maximum error rate can only be calculated by
executing (Algorithm 3) completely. For the simplest case
of d = 0, since q is a prime number and hence odd (except

for q = 2), the term is reduced to and is

always equal to . Simplifying the expression for the

error limit, we get, . Whereas, for q = 2 (the

only even prime number), the value of the limit is, e ≤

× 100 ~ 16.67%. This is the maximum error-rate that STD-
based designs can guarantee correction for.

Proof 2: STD Correction

In the case where the choice of the design parameters q

and k (= dΓ + 2Emin + 1) are such that, k = q + 1, then the

construction of the last layer (j = k - 1, k = q + 1) will use

s(i, q) = (see Construction 1).

Since each layer L(j) consists of q rows and n columns and
these are constructed by applying the circular shift opera-
tor (σq), s(i, q) times, on C0,0 where i ∈ {0, ..., n - 1}. By
definition qΓ <n ≤ qΓ+1, s(i, q) takes the values {0, 1, ..., q -
1} sequentially. As shown in the illustration below, for
columns i ∈ {0, ..., qΓ - 1}, s(i, q) = 0 and hence they all
resemble C0,0 exactly. The next qΓ columns have s(i, q) = 1
and resemble C0,0 once shifted and so on.

When the library size n is such that , only rows

from 0 to have compounds in them and the rest of

the rows in the layer are empty. It follows that in this layer
the number of compounds mixed in each test is qΓ. Usu-

ally, the number of compounds per test is and in this

case we know that . Hence, it is essential to make

this correction in order to correctly implement the mixing
constraint. For example, In Table 2 of the original STD
paper [12], there is a case where n = 10000, d = 3 and E =
2 with the optimal choice of q = 13 and k = 14. In this case
k = q + 1, so the actual number of tests is t = 174, and not
182 (= 13 × 14) as stated in the paper, and the maximum
number of compounds being mixed is actually 2197
rather than 769.

Construction 2

A modification is required for the special case where the
choice of design parameters (q and k) is such that k = q +

1 and <q - 1. The construction remains essentially

the same as Construction 1 with the only modification

Γ()log
log

= ⎡
⎢⎢

⎤
⎥⎥

−n
q

1

e E
t= ×100

q d−⎢
⎣⎢

⎥
⎦⎥

Γ
2

e
E

t
≤ ×max 100 (3)

e
E

q d E
≤

+ +
×max

(max)Γ 2 1
100 (4)

e

q d

q d
q d

≤

−⎢
⎣⎢

⎥
⎦⎥

+ −⎢
⎣⎢

⎥
⎦⎥
+

×

Γ

Γ Γ
2

2
2

1
100

()
(5)

q d−⎢
⎣⎢

⎥
⎦⎥

Γ
2

q
2

⎢
⎣⎢

⎥
⎦⎥

q−1
2

e q

q
≤ −

×
1

2 2 100

1
6

i

qΓ

⎢

⎣
⎢
⎢

⎥

⎦
⎥
⎥

row col/ . ()0 1 2 1 1 1 1

0 1 1 1 0 0 0 0 0 0 0 0 0 0

1… … … … … … …
…

q q q n q q qΓ Γ Γ Γ Γ− − − − −+

00 0 0 1 1 1 0 0 0 0 0 0 0

1
0 0 0 0 0 0 0 1 1 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0

…
#

…

…

n

q

−⎡

⎢
⎢
⎢

⎤

⎥
⎥
⎥Γ

00 0

1 0 0 0 0 0 0 0 0 0 0 1 1 1

#
…q q n− ×

n

q

−⎡

⎢
⎢

⎤

⎥
⎥1

Γ

n

q

−⎡

⎢
⎢

⎤

⎥
⎥1

Γ

n
q

⎡
⎢⎢

⎤
⎥⎥

n
q q< Γ

n

q

−⎡

⎢
⎢

⎤

⎥
⎥1

Γ

Page 9 of 11
(page number not for citation purposes)

BMC Bioinformatics 2008, 9:256 http://www.biomedcentral.com/1471-2105/9/256
being the removal of the unnecessary tests with no com-

pounds in them. As shown in Proof 2, the last q - (

+ 1) rows of M need to be removed. It should be noted
that the maximum number of compounds being mixed in
a test is qΓ. The MATLAB implementation of this construc-
tion is provided [see Additional file 5].

Proof 3: Choice of Block Size
The problem of block size selection is one of sampling
without replacement. The compound library (n) with at
most d active compounds has to be divided into B blocks
of size nB and the probability of dividing these active com-
pounds into different blocks needs to be determined. The
hypergeometric distribution provides a way to estimate
this probability. Thus, the probability of finding i active
compounds in a block of size nB selected without replace-
ment from the compound library of size n that contains d
active compounds is given as,

The identification of the experiment design parameter dB

for the block requires the specification of a probability
(pB) representing a confidence in finding at most dB active

compounds in a block of size nB, which is the sum of all

the individual probabilities of finding exactly i = {0, 1, ...,
dB} active compounds out of nB compounds. Therefore

the condition for calculating dB is , thus arriv-

ing at Equation 2. It is useful to note that other design
parameters of error-rate (e) and mixing constraint (m) are
so defined, as to be the same for individual blocks and the
whole library. The MATLAB implementation of this equa-
tion is provided [see Additional file 6].

Authors' contributions
PJW framed the original problem, participated in algo-
rithm development and helped draft the manuscipt. RMK
developed the algorithms, implemented the software and
drafted the manuscript. Both authors read and approved
the final manuscript.

Additional material
n

q

−⎡

⎢
⎢

⎤

⎥
⎥1

Γ

P i

d

i

n d

nB i
n

nB

() =

⎛

⎝
⎜

⎞

⎠
⎟

−
−

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟

(6)

P i pB
i

dB

() ≥
=
∑

0

Additional file 1
The MATLAB code used to implement the poolHiTS algorithm is pro-
vided. It includes the advances described in this paper, such as, the error-
rate, mixing constraint and the block design strategy. This subroutine
implements the standard STD decoding algorithm to identify the active
compounds using the result T of a pooled experiment, M.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-9-256-S1.m]

Additional file 2
The MATLAB code used to implement the poolHiTS algorithm is pro-
vided. It includes the advances described in this paper, such as, the error-
rate, mixing constraint and the block design strategy. This subroutine exe-
cutes Algorithm 3 for a given set of parameters n, d, e, m to obtain the
optimal values of q and k.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-9-256-S2.m]

Additional file 3
The MATLAB code used to implement the poolHiTS algorithm is pro-
vided. It includes the advances described in this paper, such as, the error-
rate, mixing constraint and the block design strategy. This subroutine exe-
cutes Algorithm 4 for a given set of parameters n, d, e, m, pB to choose
the optimal block configuration of B and nB. It calls the poolHiTS-
design.m and poolHiTS-hypgeo.m subroutines.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-9-256-S3.m]

Additional file 4
The MATLAB code used to implement the poolHiTS algorithm is pro-
vided. It includes the advances described in this paper, such as, the error-
rate, mixing constraint and the block design strategy. This is the main file
that needs to be executed, where the parameters n, d, e, m can be set and
in-silico experiments can be run. It utilizes the poolHiTS.m subroutine for
choosing the design, the poolHiTS-const.m subroutine for construction
and the poolHiTS-decode.m subroutine for decoding the results of a pooled
assay.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-9-256-S4.m]

Additional file 5
The MATLAB code used to implement the poolHiTS algorithm is pro-
vided. It includes the advances described in this paper, such as, the error-
rate, mixing constraint and the block design strategy. This subroutine exe-
cutes Construction 2 for a given set of parameters n, q and k.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-9-256-S5.m]
Page 10 of 11
(page number not for citation purposes)

http://www.biomedcentral.com/content/supplementary/1471-2105-9-256-S1.m
http://www.biomedcentral.com/content/supplementary/1471-2105-9-256-S2.m
http://www.biomedcentral.com/content/supplementary/1471-2105-9-256-S3.m
http://www.biomedcentral.com/content/supplementary/1471-2105-9-256-S4.m
http://www.biomedcentral.com/content/supplementary/1471-2105-9-256-S5.m

BMC Bioinformatics 2008, 9:256 http://www.biomedcentral.com/1471-2105/9/256
Publish with BioMed Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

Acknowledgements
Work funded by the University of Michigan and NIH 1 U54 DA021519-
01A1 and NIH 1 P20 HG003890-01. We would also like to thank the anon-
ymous reviewers for valuable comments regarding the presentation of the
results.

References
1. Hertzberg RP, Pope AJ: High-throughput screening: new tech-

nology for the 21st century. Current Opinion in Chemical Biology
2000, 4(4):445-451.

2. Gershell LJ, Atkins JH: A brief history of novel drug discovery
technologies. Nat Rev Drug Discov 2003, 2(4):321-327.

3. Peakman T, Franks S, White C, Beggs M: Delivering the power of
discovery in large pharmaceutical organizations. Drug Discov-
ery Today 2003, 8(5):203-211.

4. Wu S, Liu B: Application of Scintillation Proximity Assay in
Drug Discovery. BioDrugs 2005, 19(10):383-392.

5. Burke T, Loniello K, Beebe J, Ervin K: Development and Applica-
tion of Fluorescence Polarization Assays in Drug Discovery.
Combinatorial Chemistry and High Throughput Screening 2003,
6(12):183-194.

6. Jager S, Brand L, Eggeling C: New Fluorescence Techniques for
High-Throughput Drug Discovery. Current Pharmaceutical Bio-
technology 2003, 4(14):463-476.

7. Janzen WP: High Throughput Screening: Methods and Protocols (Methods
in Molecular Biology, 190) Humana Press; 2002.

8. Seethala R: Handbook of Drug Screening Dekker; 2001.
9. Harper G, Pickett SD: Methods for mining HTS data. Drug Dis-

covery Today 2006, 11(15–16):694-699.
10. Malo N, Hanley JA, Cerquozzi S, Pelletier J, Nadon R: Statistical

practice in high-throughput screening data analysis. Nat Bio-
tech 2006, 24(2):167-175.

11. Du DZ, Hwang FK: Combinatorial Group Testing and Its Applications
(Applied Mathematics) World Scientific Publishing Company; 2000.

12. Thierry-Mieg N: A new pooling strategy for high-throughput
screening: the Shifted Transversal Design. BMC Bioinformatics
2006, 7:28.

13. Thierry-Mieg N, Bailly G: Interpool: interpreting smart-pooling
results. Bioinformatics 2008, 24(5):696-703.

14. Mercier KA, Powers R: Determining the optimal size of small
molecule mixtures for high throughput NMR screening. Jour-
nal of Biomolecular NMR 2005, 31(3):243-258.

Additional file 6
The MATLAB code used to implement the poolHiTS algorithm is pro-
vided. It includes the advances described in this paper, such as, the error-
rate, mixing constraint and the block design strategy. This subroutine eval-
uates the left hand side of Equation 2 for a given set of n, d, nB and dB.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-9-256-S6.m]
Page 11 of 11
(page number not for citation purposes)

http://www.biomedcentral.com/content/supplementary/1471-2105-9-256-S6.m
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10959774
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10959774
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12669031
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12669031
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12634012
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12634012
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16392890
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16392890
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12678697
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12678697
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14683438
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14683438
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16846796
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16465162
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16465162
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16423300
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16423300
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18184686
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18184686
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15803397
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15803397
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Results and Discussion
	Preliminaries - STD-based pooling strategy
	Error rate
	Mixing Constraint
	Repeated Blocks
	poolHiTS

	Conclusion
	Methods
	Construction 1
	Proof 1: Error-rate limit
	Proof 2: STD Correction
	Construction 2
	Proof 3: Choice of Block Size

	Authors' contributions
	Additional material
	Acknowledgements
	References

