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Abstract
Background: Superoxide dismutases (SODs) are ubiquitous metalloenzymes that play an
important role in the defense of aerobic organisms against oxidative stress, by converting reactive
oxygen species into nontoxic molecules. We focus here on the SOD family that uses Fe or Mn as
cofactor.

Results: The SODa webtool http://babylone.ulb.ac.be/soda predicts if a target sequence
corresponds to an Fe/Mn SOD. If so, it predicts the metal ion specificity (Fe, Mn or cambialistic)
and the oligomerization mode (dimer or tetramer) of the target. In addition, SODa proposes a list
of residue substitutions likely to improve the predicted preferences for the metal cofactor and
oligomerization mode. The method is based on residue fingerprints, consisting of residues
conserved in SOD sequences or typical of SOD subgroups, and of interaction fingerprints,
containing residue pairs that are in contact in SOD structures.

Conclusion: SODa is shown to outperform and to be more discriminative than traditional
techniques based on pairwise sequence alignments. Moreover, the fact that it proposes selected
mutations makes it a valuable tool for rational protein design.

Background
Normal cellular metabolism produces reactive oxygen
species, whose accumulation is prevented by the action of
SODs. These enzymes convert superoxide to hydrogen
peroxide, which is then removed by glutathione peroxi-
dase or catalase. However, overproduction of reactive oxy-
gen species can occur in abnormal processes such as
irradiation, aging and several diseases [1,2]. In such case,
natural SODs may become insufficient to ensure detoxifi-
cation. Therefore, a better understanding of how SOD

function and the design of active SOD mimetics would be
particularly important in view of treating the effects of oxi-
dative damage [3] or using them as therapeutic target [4].

There are several forms of SOD enzymes that are generally
classified according to their metal cofactor, i.e. Cu/Zn, Ni,
Fe and Mn ions. We focus here on Fe and Mn SODs, which
are prevalent in bacteria and mitochondria. The large
majority of these SODs require specifically either Fe or Mn
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to perform their biological activity; only some, called
cambialistic, function with both types of ions [5].

Fe and Mn SODs have very similar sequences and struc-
tures [6], and it is often quite difficult to distinguish the
metal specificity on the basis of their primary, secondary
or even tertiary structures [7,8]. Two groups of Fe/Mn
SODs can moreover be defined on the basis of their oligo-
meric properties, as they form either homodimers or
homotetramers in solution. This property too is quite dif-
ficult to detect on the basis of sequence and structure.

Consequently, the development of a prediction method
that allows to tune the activity and specificity of SOD
enzymes and to design specific SOD mutants is very chal-
lenging.

Implementation
SODa is available trough the SODa home page (see Sec-
tion Availability and requirements). The main program is
implemented in C; the web interface and the processing of
the results are performed using Perl, Bourne shell scripts,
and PHP. The output files in PDF format are created with
the "HTML To PDF" PHP class [9].

The SODa prediction method relies on datasets of anno-
tated and aligned sequences and structures, from which
residue and interaction fingerprints are derived [10,11].
These fingerprints form the basis of the SODa method:
they are combined to predict if a target sequence is a SOD,
its metal specificity and oligomerization mode.

Datasets of aligned sequences and structures
The sequence dataset encompasses 374 SOD sequences,
for which an assignment of the metal cofactor and oligo-
meric state is established on the basis of the SwissProt
annotation [12] if available, and on literature resources
otherwise [11]. It contains 234 dimers (116 Fe-specific,
102 Mn-specific, and 16 cambialistic SODs) and 140
tetramers (42 Fe-specific, 94 Mn-specific, and 4 cambialis-
tic SODs). This set was used to derive SOD- and SODtype-
fingerprints.

In addition to this sequence datasets, a structure dataset
was considered, containing 17 high-resolution x-ray struc-
tures which were retrieved from the Protein Quaternary
Structure server [13]. A list of these structures can be found
in [11]. They were aligned using the SoFiSt algorithm [14]
onto the E. coli SOD structure of Protein Data Bank code
[15] 1isa [16]; this protein is chosen as representative
SOD.

To obtain a global alignment of the 374 sequences of the
learning set, each of them was aligned onto the 1isa
sequence, using the CLUSTALX sequence alignment algo-

rithm [17]. This alignment was manually improved on the
basis of the structure alignment of the 17 SODs from the
structure dataset [11].

Derivation of SOD- and SODtype-fingerprints
Single residues and residue pair interactions that are con-
served in all SOD enzymes (SOD-fingerprint) or are spe-
cific to a SOD type (SODtype-fingerprints) have been
identified from a set of 374 aligned SOD sequences and
17 aligned structures, merging Fe- and Mn-specific SODs,
dimers and tetramers (see above). Pair interactions are
defined as residues whose side chain geometric centers are
separated by 8 Å at most in one the 17 aligned SOD struc-
tures. These fingerprints form the kernel of the SODa
method [11].

The SOD-fingerprint contains the residues and the residue
pair interactions that are present in 80% at least of all 374
aligned SOD sequences, and are used to identify if a target
sequence is a SOD or not. Among these, the four residues
that bind the metal cofactor (His26, His73, Asp156,
His160, following the numbering of the E. coli SOD 1isa
[16]) are perfectly conserved, and so is Glu159 which
makes a salt bridge with His160 across the dimer inter-
face. The interactions in the SOD-fingerprint link the four
central metal-bound residues to the residues situated in
their immediate neighborhood on the first shell around
these central residues. Several of these interactions occur
across the dimer interface, which corresponds to the main
channel leading to the active site.

The SODtype-fingerprints are used to predict what type of
SOD the target sequence corresponds to, that is, whether
it is an Fe dimer, Fe tetramer, Mn dimer or Mn tetramer.
They contain residues and residue pair interactions that
are typical of a SOD subgroup, i.e. which occur in at least
80% of the members of the subgroup and in less than
20% of the other SODs. In addition to the four basic sub-
groups (Fe dimer, Fe tetramer, Mn dimer, Mn tetramer),
we also consider larger subgroups that are the union of
several basic subgroups: Fe, Mn, dimers, tetramers, all but
Fe dimers, all but Mn dimers, all but Fe tetramers, and all
but Mn tetramers. As expected, the tetramer fingerprint
involves residues in the region where the structure differs
between dimers and tetramers. It has to be noted that
dimer and tetramer fingerprints contain residues at differ-
ent positions, whereas Mn and Fe specific fingerprints
concern several identical positions occupied by different
amino acids, which tune the preference towards Mn or Fe.
Note also that the interaction fingerprints involve several
π -π, cation-π, amino-π, H-bond and salt bridge interac-
tions. The SOD- and SODtype-fingerprints are listed on
the webpage (see Availability and requirements section).
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Prediction of SOD and SODtype
The SOD-fingerprint is used to perform the first predic-
tion, that is, to identify whether or not a target sequence is
an Fe/Mn SOD. For that purpose, the target sequence is
aligned to a hidden Markov profile built from the 17
sequences of our structure set using the HMMER program
[18] with the default parameters. On the basis of this
alignment, the residues and interactions of the SOD-fin-
gerprint that are conserved in the target are identified;
note that an interaction is supposed to be present if the
two residues forming the interaction occur in the
sequence. The target is predicted to be a SOD if it contains
all the perfectly conserved residues and interactions, and
at least 40% of the others.

If the target sequence is predicted to be a SOD, the pro-
gram goes over to the second prediction level, which con-
sists of predicting whether it is an Fe dimer, Fe tetramer,
Mn dimer or Mn tetramer. It uses for that purpose the
SODtype-fingerprints. The target is assigned to the basic
subgroup presenting the highest weight, evaluated as fol-
lows. If a residue or interaction specific of one of the four
basic subgroups (e.g. Mn dimer) occurs in the target, a
weight of 1 is added to the subgroup; if it is specific to the
union of two basic subgroups (e.g. Mn), a weight of 1/2 is
added to the two basic subgroups involved (in this case
Mn dimer and Mn tetramer); if it is specific to the union
of three basic subgroups (e.g. non Fe tetramer), a weight
of 1/3 is added to the three basic subgroups involved (in
this case, Fe dimer, Mn dimer and Mn tetramer). All the
weights are normalized through division by the maxi-
mum possible weight of the subgroup, and expressed in
percent. The subgroup with the highest normalized
weight wmax is the predicted one. If the next highest weight
is larger than wmax – 20%, the corresponding subgroup is
predicted too. Thus, cambialistic SODs and non well
defined oligomeric modes can be predicted by the SODa
server.

To evaluate the performance of SODa, we compared it
with the commonly used prediction method that assigns
the metal cofactor and oligomer state on the basis of pair-
wise sequence comparisons.

Pairwise sequence comparison method
In applying the pairwise sequence comparison method,
four reference sequences are considered, which are repre-
sentatives of the four SOD types, i.e. a dimeric Fe SOD (E.
coli; accession number P0AGD3), a dimeric Mn SOD (E.
coli; P00448), a tetrameric Fe SOD (Streptomyces coelicolor;
Q9X469) and a tetrameric Mn SOD (human mitochon-
drial; P04179).

The target sequence is aligned onto these four reference
sequences using the WATER program from the EMBOSS

package [19]. The target is assigned the metal specificities
and oligomer properties of the reference sequence that
yields the best alignment score, defined as the WATER
similarity score divided by the maximum score reached by
aligning the reference sequence onto itself, and expressed
in %.

Results
Assessment of the SODa predictions
To evaluate the predictions performed by SODa, we first
applied it to all 374 SODs of the learning set. All these
sequences but one were correctly recognized as Fe/Mn
SODs, which amounts to a score of 99.7%. The prediction
of their cofactor specificity and oligomer state reaches a
score of 97%. To have an objective estimation of the pre-
dictive power of SODa, we compare it with the commonly
used assignment method, where the target sequence is
aligned onto SODs of each type and assigned the oli-
gomer state and metal specificity of the most similar
sequence, as described in Implementation. Clearly, the
latter method yields less good results: the percentage of
target sequences correctly assigned drops to 88%, with 30
incorrect assignments spread over all SOD subgroups.
Moreover, the scores of the four subgroups are much more
similar, which results in a drop of discriminating power
[11].

As no cross validation was performed in the above predic-
tions, the significance of their high scores could be ques-
tioned. To illustrate in more detail the power of the SODa
prediction method, we applied it to predict 7 novel SOD
proteins that were not present in the learning set used to
design the program, and whose metal cofactor and oli-
gomerization state were experimentally characterized. As
shown in Table 1, the first 6 SODs have their type correctly
predicted both by SODa and by the usual sequence com-
parison method. In contrast, the last sequence in the
Table, the hyperthermophilic bacterial SOD of SwissProt
id [12] a5pf69, is correctly predicted by SODa, but not by
the sequence comparison method. Indeed, the latter
method gives the same score of 19% for both the Mn and
Fe tetramer SODs; the score is equal to 17% and 16% for
Fe and Mn dimers, respectively. The four scores are very
close, and it is thus impossible to make a reliable predic-
tion of the SOD type preference with this method. The
SODa scores are equal to 71%, 10%, 3% and 4% for Fe
tetramers, Mn tetramers, Fe dimers and Mn dimers,
respectively, allowing a quite better discrimination
among SOD types.

Mutations for rational SOD design
Another novelty and power of SODa lies in the list of sug-
gested mutations that are likely to reinforce the SOD func-
tion, the specificity for the metal cofactor, or the dimeric
or tetrameric character. We would like to emphasize that,
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for a set of experimentally characterized SOD mutations,
the tendencies predicted by SODa have been shown to be
in excellent agreement with the measured ones [11].

To illustrate the power of such mutations, let us return to
the case of a5pf69 in Table 1. SODa proposes several
mutations to increase its Fe tetramer SOD specificity.
Among the substitutions likely to increase the SOD char-
acteristics, let us mention the insertion of Gly119 (using
the 1isa numbering), deleted in the a5pf69, combined
with the mutations Tyr158Trp and Arg120Ser; these three
residues interact across the dimer interface, as illustrated
in Figure 1. Another proposed mutation is Tyr31His, a res-
idue that is in contact with His26 in the reference struc-
tures, itself bound to the metal ion. This Tyr31His
substitution moreover yields the characteristic His31-
Gly69 interaction that is found in all but Fe dimers; note
that Gly69 itself is typical of all but Fe dimers. Further-
more, the mutation Asp165Gln is assumed to increase the
tetramer formation; this residue is in amino-π interaction
with Tyr166 in the reference proteins, and interacts with
the conserved SOD residue Pro16 and the tetramer-induc-
ing residue Ile22, themselves substituted by Asn and Gln
in the target.

Conclusion
The prediction scores of the SODa method are higher and
allow better discrimination between the four SOD types
than the commonly used method based on pairwise
sequence comparisons. This high discriminative power
and the suggestion of targeted mutations makes the SODa
server particularly well suited for rational design of SOD
proteins, with modified or enhanced activity and specifi-
city.

Availability and requirements
SODa is freely available on the webpage http://baby
lone.ulb.ac.be/soda.

The SODa user can submit a query by filling a form on the
SODa web page. The sequence to be predicted must be in
FASTA format. The "E-mail" field is required for later iden-
tification. The results are quickly (typically, after one

minute) available on a web page, accessible via the link
displayed or via the "results" page upon typing the E-mail
address. The files remain available during seven days. The
results of the prediction are described in three files named
"align", "observed" and "missing", available both in
HTML and PDF format.

The "align" file contains the main results of the predic-
tion, in particular, whether the target is a "SOD" or a "non
SOD" and, in the former case, what type of SOD it is. To
allow the evaluation of the strength of the prediction, the
percentage of residues and interactions from the target
that match the SOD- and SODtype-fingerprints are indi-
cated. Moreover, the alignment of the target sequence
onto four reference proteins, one of each SOD type, is
given. The residues and interactions corresponding to the
SOD- and SODtype-fingerprints are colored in the align-
ment, and the missing characteristics are marked by an
"X". Since it is impossible to indicate all the information
in the alignment because some fingerprints overlap, the
observed and missing characteristics are listed in the text
files "observed" and "missing". The information in the lat-
ter file provides proposals for residue substitutions that
are likely to reinforce the predicted SOD type.

Authors' contributions
JMK implemented the cgi and the pre- and postprocessing
tools; RW created the datasets, aligned the sequences,
implemented the pairwise comparison prediction
method; DG analyzed the mutants; MR derived the finger-
prints and wrote the SODa prediction program.

Table 1: Comparison of the SODa predictions, the sequence comparison predictions, and the observed SOD types

Protein* SODa prediction Sequence comparison prediction Observed

a0s5t8_hydat Mn tetramer Mn tetramer Mn tetramer [22]
sodf_pseht Fe dimer Fe dimer Fe dimer [23]

q314g3_desdg Fe dimer Fe dimer Fe dimer [24]
q1h4d0_metfk Mn dimer Mn dimer Mn dimer [25]
a3yg55_9gamm Fe dimer Fe dimer Fe dimer [26]
a6vxc3_9gamm Fe dimer Fe dimer Fe dimer [26]
a5pf69_9bact Fe tetramer Mn/Fe tetramer Fe tetramer [27]

* SwissProt id [12]
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