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Abstract
Background: In recent years, a considerable amount of research effort has been directed to the
analysis of biological networks with the availability of genome-scale networks of genes and/or
proteins of an increasing number of organisms. A protein-protein interaction (PPI) network is a
particular biological network which represents physical interactions between pairs of proteins of
an organism. Major research on PPI networks has focused on understanding the topological
organization of PPI networks, evolution of PPI networks and identification of conserved
subnetworks across different species, discovery of modules of interaction, use of PPI networks for
functional annotation of uncharacterized proteins, and improvement of the accuracy of currently
available networks.

Results: In this article, we map known functional annotations of proteins onto a PPI network in
order to identify frequently occurring interaction patterns in the functional space. We propose a
new frequent pattern identification technique, PPISpan, adapted specifically for PPI networks from
a well-known frequent subgraph identification method, gSpan. Existing module discovery
techniques either look for specific clique-like highly interacting protein clusters or linear paths of
interaction. However, our goal is different; instead of single clusters or pathways, we look for
recurring functional interaction patterns in arbitrary topologies. We have applied PPISpan on PPI
networks of Saccharomyces cerevisiae and identified a number of frequently occurring functional
interaction patterns.

Conclusion: With the help of PPISpan, recurring functional interaction patterns in an organism's
PPI network can be identified. Such an analysis offers a new perspective on the modular
organization of PPI networks. The complete list of identified functional interaction patterns is
available at http://bioserver.ceng.metu.edu.tr/PPISpan/.

Background
In the last few years, with the advances in high-through-
put techniques, like yeast two-hybrid [1,2] and affinity
purification coupled with mass spectrometry [3,4], the
complete sets of interacting proteins of an increasing

number of organisms have been identified [5]. In addi-
tion, probabilistic techniques that utilize indirect
genomic evidence have provided increased genome cover-
age by predicting new interactions with multiple support-
ing evidence [6,7].
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In parallel with the availability of genome-scale protein
networks, various studies have been conducted to analyze
these networks in order to understand their topological
organization [8-10], identify conserved subnetworks
across different species [11,12], discover modules of inter-
action [13-18], predict functions of uncharacterized pro-
teins [19-21], and improve the accuracy of currently
available networks [5,22-26]. In this study, we use availa-
ble functional annotations of proteins in a PPI network
and look for overrepresented patterns of interaction in the
network. The patterns we look for are recurring subgraphs
of arbitrary topologies. Similar studies, which aim to find
frequent subnetworks in a larger network, have been con-
ducted on gene regulatory networks [27,28] and chemical
compound networks [29-31]. The discovery of frequent
patterns in gene regulatory networks is shown to be bio-
logically interesting by the early seminal work of Uri
Alon's group [27,28]. They found small (3–4 node) but
significant patterns, i.e., network motifs, in the transcrip-
tion regulation network of E. Coli and provided biologi-
cally meaningful explanations for a number of those
patterns. The network motifs they present have specific
functions in determining gene expression, such as gener-
ating temporal expression profiles and governing the
responses to fluctuating external signals. Alon et al., later,
improved their algorithms for detecting motifs in net-
works with two or more types of interactions and applied
them to an integrated dataset of protein-protein interac-
tions and transcription regulation in Saccharomyces cerevi-
siae [28]. However, in that follow-up study, they again
seek for gene regulatory patterns. Our work can be
thought of as an adaptation of Alon's work on gene regu-
latory patterns to protein-protein interaction patterns.

There have been a number of studies on PPI networks for
mining interaction patterns on a large scale [11,12,32-34].
Sharan et al. [11], Koyuturk et al. [34], and Hirsh and Sha-
ran [12] analyzed PPI networks of several organisms and
discovered conserved interaction patterns across species.
The reported patterns correspond to specific biological
processes common to the studied organisms. Oyama et al.
[32] and Besemann et al. [33] used association rule min-
ing techniques for finding interaction rules between pro-
tein pairs. To the best of our knowledge, PPI networks of
individual organisms have not been mined for recurring
interaction subgraphs of arbitrary topologies.

In a PPI network, an edge between two proteins indicates
a physical association in the form of modification (e.g.,
phosphorylation), transport, or complex formation via
physical binding [1]. In other words, subcomponents of a
genome-scale PPI network may represent functional mod-
ules such as molecular complexes, signal transduction, or
transport pathways. Similar to recurring regulatory pat-
terns in gene regulatory networks, a functional interaction

template may occur in different contexts in a modularly
organized PPI network.

In order to find frequent functional interaction patterns in
a PPI network, we first label the nodes of the network with
functional categories using available functional annota-
tions provided by databases such as Gene Ontology [35].
In other words, we project the functional annotation
space onto the PPI network. In such a labeled network,
recurring functional interaction patterns between differ-
ent functional categories may emerge and provide biolog-
ical insights into the functional organization of PPI
networks. In this study, we use the Molecular Function hier-
archy of the Gene Ontology annotations to assign func-
tional categories to proteins in an interaction network. We
focus on functional interaction patterns; therefore, Cellu-
lar Component and Biological Process ontologies are not
considered in this study. We use the GO Slim subset [36]
(see Table 1) of the molecular function terms which pro-
vides a broad overview of the functional categories in GO.

Two recent studies also map GO annotations on biologi-
cal networks to find unknown and significant pathways.
Cakmak and Ozsoyoglu [18] propose a supervised
method for finding pathways across organisms. Using
known pathways in databases such as KEGG [37], they
learn functional templates representing these pathways.
They use the templates to discover new pathways in the
metabolic network of a new organism. However, this
supervised technique is limited by the reference pathways
and cannot be used to detect completely novel pathways.
We propose an unsupervised method which looks for
abundant functional interaction patterns in the PPI net-
work of a target organism. In that sense, the patterns we
discover are not specific pathways but higher level func-
tional templates that recur in a number of contexts in the
PPI network. Pandey et al. use GO terms to annotate reg-
ulatory and signaling pathways and find significantly
recurring pathways in molecular interaction networks
[38,39]. The software they have developed, NARADA,
allows researchers to discover significantly overrepre-
sented patterns of interaction in PPI or regulatory net-
works of any organism for any type of annotations.
However, the proposed method can find linear pathways
of size 2 to 5 and interaction patterns of different topolo-
gies are not sought. The method we propose in this article
is able to find functional interaction patterns that may
exhibit arbitrary topologies. Especially, since a PPI net-
work contains non-linear subcomponents such as molec-
ular complexes, the ability to discover interaction patterns
of arbitrary topologies provides an increased coverage of
overrepresented patterns. One may argue that molecular
complexes are expressed as clique like highly interacting
clusters in PPI networks and do not have interesting inter-
action topologies. However, molecular complexes of arbi-
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trary topologies can indeed be formed. Recent studies on
the structure of molecular complexes show that a small
number of topological arrangements are favored in the
space of all possible arrangements [40]. Hence, it may be
biologically interesting to study the recurring molecular
complex topologies in a PPI network [41]. Studying
molecular complex topologies in a noisy PPI network is
challenging and prone to produce false positive complex
topologies. However, as PPI networks get more accurate
and provide more genome coverage, such problems will
cease to exist.

There are various algorithms developed for discovering
frequent patterns in graphs [21,31,34,42-45]. The details
of these methods are given in the Methods section.

In this article, we propose a new frequent pattern identifi-
cation technique, PPISpan, for frequent pattern mining in
functionally annotated PPI networks. Our goal in this

study is not to discover novel complexes or pathways,
which is studied extensively by many researchers [13-18];
instead, we try to discover recurring functional interac-
tion patterns to understand whether such patterns are
reused in different contexts in a PPI network. Our tech-
nique, PPISpan, is a modification of the gSpan algorithm
[31] to better suit for PPI networks annotated with broad
functional categories. We applied PPISpan on experimen-
tally determined and predicted PPI networks of baker's
yeast (Saccharomyces cerevisiae) labeled with molecular
function GO annotations and identified a number of
potentially interesting interaction patterns. The reported
functional interaction patterns are abstract and cannot be
verified by wet-lab experiments. But, in an effort to vali-
date some of the discovered frequent functional interac-
tion patterns, we compare their supporting embeddings
with known molecular complexes and pathways. A sup-
porting embedding of a functional interaction pattern is a
specific instance of the functional pattern realized by cer-
tain proteins in the PPI network. We find non-overlap-
ping embeddings using PPISpan.

Results and Discussion
Results
We implemented PPISpan in C++ and run all our experi-
ments on a personal workstation with two Intel Xeon 2.66
GHz dual core CPUs and 4 GBs of memory. We searched
for patterns on three of the PPI networks of Saccharomyces
cerevisiae available in public databases: 1) DIP database
which contains experimentally determined interactions
[46], 2) STRING database which provides confidence
weighted predicted interactions using multiple data
sources, and 3) WI-PHI database which provides confi-
dence weighted predicted interactions enriched for physi-
cal interactions. We labeled the nodes of the PPI network
using the available GO Slim molecular functional annota-
tions for yeast proteins (see Table 1). See the Methods sec-
tion for details of the datasets used in our experiments.

We searched for frequent interaction patterns of support
15 or higher. We experimented with different values of
minimum support threshold and conclude that the mini-
mum support threshold value of 15 provides a reasonable
number of frequent patterns in a reasonable running
time. Table 2 shows the number of significant frequent
patterns found in the three PPI networks. We do not

Table 1: GO Slim Molecular Function Terms for S. Cerevisiae

Term ID Definition

GO:3674 molecular function unknown
GO:16787 hydrolase activity
GO:16740 transferase activity
GO:5515 protein binding
GO:3723 RNA binding
GO:5215 transporter activity
GO:5198 structural molecule activity
GO:30528 transcription regulator activity
GO:16491 oxidoreductase activity
GO:3677 DNA binding
GO:30234 enzyme regulator activity
GO:8233 peptidase activity
GO:16874 ligase activity
GO:4672 protein kinase activity
GO:16779 nucleotidyltransferase activity
GO:16829 lyase activity
GO:4386 helicase activity
GO:16853 isomerase activity
GO:45182 translation regulator activity
GO:4871 signal transducer activity
GO:4721 phosphoprotein phosphatase activity
GO:3774 motor activity

The 22 broad functional categories (including the term molecular 
function unknown) as given by the GO Slim database for the Molecular 
Function hierarchy of the Gene Ontology terms.

Table 2: The number of patterns found

PPI Network Number of Frequent Patterns Number of Patterns with z-score > 2.3

DIP 205 199
STRING 287 17
WI-PHI 378 321

The number of distinct frequent patterns that have at least 15 non-overlapping embeddings in the PPI networks. The number of patterns with a z-
score greater than 2.3 is also shown in the last column.
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report the patterns that include proteins annotated with
the term molecular function unknown.

PPISpan identified a total of 205 frequent interaction pat-
terns with support >= 15 in the DIP network. 199 of the
interaction patterns are significant with a z-score of > 2.3.
The frequent interaction patterns cover 37.06% (1828
proteins) of the DIP network. For the STRING network,
there are 287 frequent interaction patterns, only 17 of
which have z-scores greater than 2.3. The frequent pat-
terns cover 40.79% (1204 proteins) of the STRING net-
work. We have identified 378 frequent patterns in the WI-
PHI network, of which 321 are statistically significant. The
frequent patterns cover a total of 1734 proteins of the WI-
PHI network (37.27%). Although the embeddings of the
reported patterns are non-overlapping, the patterns them-
selves may overlap provided that a pattern is not a sub-
graph of another pattern. Most of the patterns we found
are trees. Star topology is the most abundant frequent pat-
tern topology. Cycles are rare. This observation suggests
that approximate but fast algorithms for tree pattern min-
ing can be utilized to search for patterns in PPI networks
to achieve near interactive response times.

In the next section, we validate a number of selected func-
tional interaction patterns by comparing their supporting
embeddings with known molecular complexes and path-
ways. Then, we present a number of functional interaction
patterns that may be of interest to the reader.

Comparison with Known Molecular Complexes and Pathways
A genome-scale PPI network is composed of functional
modules such as molecular complexes, signaling, and
transport pathways. On the other hand, functional inter-
action patterns found by PPISpan are subgraphs with cer-
tain types of nodes that reoccur in a number of contexts in
a PPI network. In this section, we try to interpret and val-
idate some of the patterns using existing biological knowl-
edge. We want to emphasize again that the goal of pattern
finding is not discovering novel complexes or pathways.
Our goal is to understand the underlying functional inter-
action mechanisms and whether such mechanisms are
reused in different contexts in PPI networks.

A reasonable approach to analyze the discovered frequent
interaction patterns is to compare their supporting
embeddings with known molecular complexes and path-
ways. In our experimental setup, we compare the proteins
(i.e., nodes) of supporting embeddings to a set of molec-
ular complexes and pathways ignoring the edges that rep-
resent the interaction. Ideally, the topology of the
interaction patterns should also be compared with molec-
ular complex and pathway topologies. However, the
molecular complex data we use do not provide the spe-
cific interactions between complex members and list only

the proteins involved. Therefore, in this section, we ignore
the topology of the frequent interaction patterns and treat
the patterns as a set of proteins.

We collected molecular complexes from the MIPS com-
plex catalogue database [47] and signaling, transport, and
regulatory pathways from the KEGG database [37]. Dis-
carding the complexes resulting from high-throughput
experiments, we used the remaining high-quality set of
267 MIPS complexes as known molecular complexes. The
KEGG pathways we used as known signaling and trans-
port pathways are: ABC transporters, MAPK signaling
pathway, phosphatidylinositol signaling system, SNARE
interactions in vesicular transport pathway, and regula-
tion of autophagy pathway.

We propose two measures in order to interpret and vali-
date a frequent functional interaction pattern. The first
measure is the average number of different complexes or
pathways the embeddings of a frequent interaction pat-
tern overlaps with. We name this measure as cpcount. The
purpose of this measure is to speculate on the location of
the interaction patterns, i.e., whether they are within or at
the interfaces of complexes. The second measure, cpoverlap
quantifies the overlap between proteins in an embedding
and known complexes/pathways. The overlap measure for
an embedding e is computed as the ratio of proteins in e
that are members of known functional modules:

As we have stated in the beginning of this section, we dis-
regard the interactions (i.e., edges) and instead focus on
the set of proteins contained in an embedding.

A recurring functional interaction pattern is more likely to
include protein interactions that occur within or at the
interfaces of known functional modules such as com-
plexes and pathways. So, a pattern should overlap with
one or more complexes or pathways. However, the known
set of complexes and pathways we collected are far from
complete and cover only 1178 proteins (23.9%) of the
DIP PPI network [46]. Therefore, not all the frequent pat-
terns will overlap with known complexes and pathways.
We performed a systematic analysis on all the frequent
patterns. However, our experiments showed that the over-
lap with known complexes and pathways are not signifi-
cantly different than random embeddings of similar
topologies found by ignoring functional annotation
labels of nodes (see Tables 3 and 4). We believe the main
reason for this observation is that some of the observed
patterns contain very general functional terms and hence
the patterns are not specific enough in terms of function.
In other words, for some of the observed patterns, the
topology is more important than the underlying func-

cpoverlap e
p p e p

( )
|{ |= ∈ ∧  is identified in a known functional  module}|

| |e
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tional annotations, which makes them similar to the ran-
dom embeddings. Therefore, in this section we validate a
number of selected interaction patterns which are biolog-
ically more interesting.

Below, we analyze the top-2 patterns discovered in the
DIP, STRING, and WI-PHI networks with highest cpoverlap
values and show that their overlap is significant by com-
parison to random embeddings of same topology.
Selected patterns are shown in Figures 1 and 2. Random
embeddings are found using PPISpan and ignoring the
molecular function annotations. Figures 3 and 4 show the
cpoverlap and the cpcount values computed for the six
selected patterns with respect to MIPS complexes, respec-
tively. Figure 3 shows that all cpoverlap values for the fre-
quent functional interaction patterns are significantly
greater than that of random embeddings of same topol-
ogy (p-value = 0). The embeddings of the frequent pat-
terns discovered in the DIP network, i.e., patterns #1 and
#2, overlaps with 2.4 and 1.9 MIPS complexes on the aver-
age (Figure 4). cpcount of pattern #1 is significantly greater
than the cpcount of random patterns with a p-value of
0.0372. However, the difference between pattern #2 and
it random embeddings is not significant (p-value =
0.3268). The cpcounts of the patterns found in STRING
and WI-PHI networks are smaller than the corresponding
cpcounts of random embeddings. Nevertheless, we can
observe that the functional interaction patterns overlap
with 2 MIPS complexes on the average, suggesting that a
functional interaction pattern is more likely to exist at the
interface of two complexes. Indeed, the sample embed-
dings of the STRING and WI-PHI patterns shown in Fig-
ures 1 and 2, show interactions between large and small

subunits of the mitochondrial ribosomal protein (MRPS*
and MRPL* gene ids).

Figure 5 shows the six selected patterns from the three PPI
networks which exhibit highest cpoverlap values when
compared against the KEGG pathways. All of the selected
patterns in Figure 5 are related to transcription regulation.
Figures 6 and 7 show the cpoverlap and the cpcount val-
ues computed for the six selected patterns in Figure 5 with
respect to KEGG transport and signaling pathways, respec-
tively. The results are quite different from MIPS complex
overlap results. This is mostly because the number of
pathways (5) used in the analysis is significantly smaller
compared to the number of MIPS complexes (267). The
transport and signaling pathways cover a very small
region of the PPI networks. However, Figure 6 shows that
the cpoverlap values of the selected patterns are again sig-
nificantly higher compared to the cpoverlap values of the
random embeddings except pattern #10 which does not
show a significant difference (p-value = 0.4165). The aver-
age number of KEGG pathways contained in an embed-
ding is around 1 (Figure 7). However, the relatively small
number of embeddings that overlap with the known path-
ways prevents us from drawing conclusions about average
overlap count.

In summary, our validation efforts show that the embed-
dings of some of the discovered interaction patterns sig-
nificantly overlap with known molecular complexes and
pathways and the functional interaction patterns are
mostly at the interface of two of molecular complexes and
within single pathways.

Table 3: Comparison of all the patterns with random patterns in terms of overlap with MIPS complexes

PPI Network cpoverlap of Frequent Patterns cpoverlap of Random Patterns

Mean Standard Deviation Mean Standard Deviation

DIP 0.729 0.111 0.718 0.049
STRING 0.835 0.056 0.731 0.036
WI-PHI 0.609 0.138 0.657 0.054

The average cpoverlap measure for all the patterns discovered in DIP, STRING, and WI-PHI networks compared to the average cpoverlap measure 
of random patterns of same topology with respect to the MIPS complexes.

Table 4: Comparison of all the patterns with random patterns in terms of overlap with transport and signaling pathways

PPI Network cpoverlap of Frequent Patterns cpoverlap of Random Patterns

Mean Standard Deviation Mean Standard Deviation

DIP 0.982 0.050 0.959 0.013
STRING 0.979 0.033 0.991 0.014
WI-PHI 0.982 0.043 0.948 0.017

The average cpoverlap measure for all the patterns discovered in DIP, STRING, and WI-PHI networks compared to the average cpoverlap measure 
of random patterns of same topology with respect to the transport and signaling pathways.
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Selected patterns from DIP and WI-PHI networksFigure 1
Selected patterns from DIP and WI-PHI networks. Two selected frequent interaction patterns in the DIP network with 
highest cpoverlap values with respect to MIPS complexes are shown in (a) and (b). The patterns in (a) and (b) correspond to 
patterns #1 and #2 in the text and in Figures 3 and 4. Another two selected frequent interaction patterns in the WI-PHI net-
work with highest cpoverlap values are shown in (c) and (d). The patterns in (c) and (d) correspond to patterns #5 an #6 in the 
text and in Figures 3 and 4. The first three embeddings of the patterns are shown in green boxes. The blue boxes show the 
molecular function annotations of the nodes.
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Selected patterns from the STRING networkFigure 2
Selected patterns from the STRING network. Two selected frequent interaction patterns in the STRING network with 
highest cpoverlap values with respect to MIPS complexes are shown in (a) and (b). The patterns in (a) and (b) correspond to 
patterns #3 and #4 in the text and in Figures 3 and 4. The first three embeddings of the patterns are shown in green boxes. 
The blue boxes show the molecular function annotations of the nodes.
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Some Interesting Functional Interaction Patterns
In this section, we present a number of functional interac-
tion patterns that may be interesting for biologists. Figure
8 shows a functional interaction pattern with cycles dis-
covered in the DIP network. The pattern includes 5 pro-
teins and has 15 non-overlapping occurrences with a z-
score of 7.4. The pattern contains 3 structural molecule
activity terms, one protein binding term, and an oxidore-
ductase activity term. Three of the fifteen embeddings of
this term is given in green boxes to the left of the nodes.
The activities represented in these patterns are central to
many of the cell activities therefore it is not surprising to
see that these patterns are occurring frequently in the PPI
network of yeast.

Larger functional patterns are identified in the WI-PHI
network which contains interactions predicted by integra-
tion of multiple data sources. Figure 9 shows a frequent
functional pattern of 7 functional terms. The pattern is a
long linear cascade that branches at the end of the path.
The pattern contains proteins from various functional cat-

egories: ligase, transferase, kinase, enzyme regulator, and
protein binding activities.

A frequent functional interaction pattern in the STRING
network which has a supporting embedding that com-
pletely overlaps with the MAPK signalling pathway is
given in Figure 10 (z-score = 3.03). The GO terms of the
functional interaction pattern is given inside blue rectan-
gles. The four genes that are members of the MAPK signal-
ing pathway are shown at the top of the nodes in green
boxes. This functional interaction pattern has 15 support-
ing embeddings one of which is shown inside red boxes
under the nodes. This particular embedding contains pro-
teins which are not members of any known KEGG path-
way. KCC4 is a kinase which coordinate cell cycle
progression with the organization of the peripheral
cytoskeleton. KCC4 forms a complex with NAP1 and
NAP1 interacts with the other two proteins in the func-
tional interaction pattern. This type of analyses allow biol-
ogists to study functional interaction patterns that recur in
different contexts.

cpoverlap of selected patterns with respect to MIPS complexesFigure 3
cpoverlap of selected patterns with respect to MIPS complexes. The average cpoverlap values of the selected frequent 
patterns and random embeddings of same topology are shown. cpoverlap of an embedding is the ratio of proteins that are 
members of known functional modules. The values are computed with respect to MIPS complexes. Each embedding of a fre-
quent pattern may have a different cpoverlap value. The standard deviation of the cpoverlap values of the embeddings of a pat-
tern is indicated as error bars with one standard deviation in each direction. Pattern IDs represent the selected patterns 
shown in Figures 1 and 2.
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Figure 11 shows another interaction pattern which has a
supporting embedding (shown in green rectangles) that
completely overlaps with the SNARE interactions in vesic-
ular transport pathway.

Some of the embeddings of the discovered patterns may
correspond to previously uncharacterized interaction
modules, because the networks we have used are basically
results of high-throughput assays. A possible future
research direction following-up on our study would be to
analyze novel embeddings of the reported patterns by
wet-lab experiments and verify them biologically.

Discussion
In this section, we discuss a number of points that effect
the utility of PPISpan and point to other possible applica-
tions of PPISpan on protein-protein interaction networks.
First of all, the quality of the input PPI network is the most
important factor that effects the results of PPISpan pattern
search. It is known that current genome-scale protein

interaction networks contain considerable amount of
false positive interactions and they are far from complete
[5]. In order to reduce the effect of noise, we have ran
PPISpan on both experimentally determined and pre-
dicted PPI networks. A possible follow-up study would be
to compare the frequent interaction patterns discovered in
different PPI networks.

Note that PPISpan uses a frequent subgraph search heuris-
tic which does not guarantee optimality. Especially, the
number of non-overlapping embeddings of a functional
interaction pattern may be greater than what is reported
by PPISpan if an exhaustive search to find the optimal
embeddings is used. PPISpan searches for exact occur-
rences of patterns in the network; therefore, is bound to
overlook interaction patterns with missing edges (i.e.,
false negatives). On the other hand, false positive interac-
tions are likely to produce interaction patterns which are
not observed in vivo. An approximate frequent pattern
mining algorithm would be ideal for such noisy PPI net-

cpcount of selected patterns with respect to MIPS complexesFigure 4
cpcount of selected patterns with respect to MIPS complexes. The average cpcount values of the selected frequent 
patterns and random embeddings of same topology are shown. cpcount is given as the number of different complexes or path-
ways an embedding of a frequent interaction pattern overlaps with. The values are computed with respect to MIPS complexes. 
Each embedding of a frequent pattern may have a different cpcount value. The standard deviation of the cpcount values of the 
embeddings of a pattern is indicated as error bars with one standard deviation in each direction. Pattern IDs represent the 
selected patterns shown in Figures 1 and 2.

� � �

�

� � �

�

� � �

�

� � �

�

� � �

�

� � � � � �

	 
 � � 
 � � � � � � � 
 � � � � � � � � � � � 
 � �


 � � � � � � � � � � 
 � �
Page 9 of 18
(page number not for citation purposes)



BMC Bioinformatics 2008, 9:276 http://www.biomedcentral.com/1471-2105/9/276

Page 10 of 18
(page number not for citation purposes)

Selected patterns from DIP, STRING, and WI-PHI networksFigure 5
Selected patterns from DIP, STRING, and WI-PHI networks. Six selected frequent interaction patterns from the DIP, 
STRING, and WI-PHI networks with highest cpoverlap values with respect to KEGG pathways are shown. The patterns in (a) 
through (f) correspond to patterns #7 through #12 in the text and in Figures 6 and 7. The first three embeddings of the pat-
terns are shown in green boxes. The blue boxes show the molecular function annotations of the nodes.
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works. Another important factor that effects the quality of
the detected interaction patterns is the accuracy and spe-
cificity of the labels of proteins, i.e., GO annotations. We
have not used the electronically inferred annotations to
avoid possible additional noise. Node labels are another
important aspect that effect the meaning and specificity of
the interaction patterns discovered. In this study, we have
used the GO Slim Molecular Function ontology which is
actually a broad categorization of various molecular func-
tions. This broad categorization produces patterns that are
not very specific; hence, it may be difficult to come up
with a detailed biological interpretation. However, we
provide a framework in which GO annotations at differ-
ent specificity levels can be used to explore interaction
patterns at different levels.

One could also label the proteins in the PPI network with
labels other than GO molecular function annotations. For
example, using GO cellular component annotations to
label the proteins, would be beneficial for finding interac-

tion patterns, e.g., signaling cascades, that span multiple
compartments in a cell. Other genome-wide annotations,
or protein features can also be used to label the PPI net-
work for mining interaction patterns.

PPISpan can easily be adopted to discover common
motifs in multiple organisms. The union graph of multi-
ple GO enriched PPI networks can be given as input to the
PPISpan algorithm and each embedding of an interaction
pattern can be tagged with the respective organism identi-
fier. The resulting frequent interaction patterns that span
multiple organisms can then be identified easily. Since
GO annotations are not organism specific, using GO
annotations to label the PPI networks would be the ideal
choice for this purpose.

Conclusion
In this article, we proposed a new frequent pattern identi-
fication technique, PPISpan, for mining frequent func-
tional interaction patterns in PPI networks. We utilized

cpoverlap of selected patterns with respect to transport and signaling pathwaysFigure 6
cpoverlap of selected patterns with respect to transport and signaling pathways. The average cpoverlap values of 
the selected frequent patterns and random embeddings of same topology are shown. cpoverlap of an embedding is the ratio of 
proteins that are members of known functional modules. The values are computed with respect to KEGG pathways. Each 
embedding of a frequent pattern may have a different cpoverlap value. The standard deviation of the cpoverlap values of the 
embeddings of a pattern is indicated as error bars with one standard deviation in each direction. Pattern IDs represent the 
selected patterns shown in Figure 5.
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molecular function Gene Ontology annotations to assign
non-unique labels to proteins of a PPI network, and iden-
tified significantly frequent functional interaction pat-
terns. We applied PPISpan on experimentally determined
and predicted PPI networks of baker's yeast (Saccharomy-
ces cerevisiae) labeled with molecular function GO terms
and identified a number of potentially interesting pat-
terns. We have identified a number of interesting interac-
tion patterns which offer a new perspective into the
modular organization of protein-protein interaction net-
works. Most of the patterns we found were trees. Cycles
were rare. This observation suggests that approximate but
fast algorithms for tree pattern mining can be utilized to
search for patterns in PPI networks to achieve near inter-
active response times.

As future work, we plan to search for frequent patterns in
protein-protein interaction networks of other organisms
such as human [48]. We also plan to investigate "general-

ized patterns" by deploying relevant techniques previ-
ously used for frequent itemset mining [29].

Methods
The Datasets
We use three PPI networks of yeast available in public
databases. The Database of Interacting Proteins (DIP) [46]
(April 11, 2007 version) provides experimental interac-
tion data constructed from high-throughput experiments.
The DIP network contains 17,491 interactions for 4,932
proteins. The DIP protein-protein interaction network is
represented as an undirected, unweighted graph. We
ignore self interactions.

The STRING database contains confidence weighted pre-
dicted protein interaction for a number of organisms [49].
We used the top 20050 yeast interactions above the confi-
dence threshold 0.95. The set of interactions covers 2952
proteins in the yeast proteome. Because of the utilized
data sources such as gene expression data, the predicted

cpcount of selected patterns with respect to transport and signaling pathwaysFigure 7
cpcount of selected patterns with respect to transport and signaling pathways. The average cpcount values of the 
selected frequent patterns and random embeddings of same topology are shown. cpcount is given as the number of different 
complexes or pathways an embedding of a frequent interaction pattern overlaps with. The values are computed with respect 
to KEGG pathways. Each embedding of a frequent pattern may have a different cpcount value. The standard deviation of the 
cpcount values of the embeddings of a pattern is indicated as error bars with one standard deviation in each direction. Pattern 
IDs represent the selected patterns shown in Figure 5.
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interactions may include indirect interactions apart from
physical interactions.

WI-PHI provides a weighted yeast interactome enriched
for direct physical interactions [50]. Indirect interactions
are minimized in WI-PHI. The complete set of interac-
tions provided by WI-PHI contains 50,000 interacting
protein pairs. We have used the first 20097 interactions
with weight > 9.4183 in order to have a network with a
comparable size to DIP and STRING PPI networks.

We have used the Gene Ontology annotations to assign
functional category labels to the proteins of the PPI net-
work. The Gene Ontology (GO) project is a collaborative
effort to address the need for consistent descriptions of
gene products in different databases. The three main cate-
gories in GO provide descriptions for biological processes,
cellular components, and molecular functions in a spe-
cies-independent manner. The hierarchical structure of
GO allows annotators to assign properties to gene prod-
ucts at different levels, depending on how much is known
about a gene product. In this study, we use the GO Slim
terms (see Table 1) of the molecular function category of
the Gene Ontology, with the purpose of labeling the pro-

teins of a PPI network with broad functional categories,
such as transcription factors and kinases. Our goal is to
identify significantly frequent interaction patterns involv-
ing proteins of certain functions and occurring in different
contexts in the PPI network. A protein is allowed to have
multiple labels and all possible combinations are tested
when a node of a pattern is to be matched with a protein
in the network. In this study, we use the Saccharomyces cer-
evisiae GO annotations downloaded from the GO web site
on November 5, 2007. GO Slim mappings of the annota-
tions are obtained by following the parent links of anno-
tated GO terms until a GO Slim term is reached.

PPISpan Algorithm
Numerous algorithms have been developed for discover-
ing frequent patterns in graphs [21,31,34,42-45]. Most of
the algorithms follow two basic steps: candidate genera-
tion and frequency counting. In the "candidate genera-
tion" step, all possible patterns are enumerated, and later
in the "frequency counting" step, each candidate pattern
is validated by counting its embeddings in the whole
graph. If the count (also called the support of the pattern)
is above a certain threshold then the pattern is considered
frequent. Counting the frequency of a candidate pattern in
a large graph (e.g., a genome-scale protein interaction net-
work) requires the use of subgraph isomorphism test
which is known to be NP-complete [51-53]. Therefore,
most algorithms aim at reducing the number of candidate
patterns by identifying and eliminating the redundant
ones. gSpan by Yan and Han [31] achieves this by com-
puting a depth-first search based canonical labeling of
candidate patterns and pruning the search space when
identical labelings are found.

In order to decide whether a subgraph is frequent or not,
Kuramochi and Karypis [43] use approximate Maximum
Independent Set algorithms and find whether the overlap
graph of a subgraph's non-identical embeddings contain
an independent set whose size is above a given threshold.
They experimented with real data sets from different
domains including protein interaction networks with
about 20,000 vertices. They were able to detect frequent
patterns of up to 8 vertices in the PPI network. However,
their main objective was to test the running time of the
algorithm on an undirected network of uniquely identi-
fied nodes; hence, they did not report any biologically
interesting interaction patterns.

Hu et al. developed an algorithm, CODENSE [21], to
mine recurrent patterns across large collections of
genome-wide networks. They applied CODENSE to dis-
cover coherent clusters across 39 co-expression networks
and used homogenous clusters for functional annotation
of uncharacterized genes. The uncharacterized genes in a
cluster are annotated with the functional category of the

A frequent functional interaction pattern in the DIP networkFigure 8
A frequent functional interaction pattern in the DIP 
network. A frequent function interaction pattern in DIP 
network. The pattern includes 5 proteins and has 15 non-
overlapping occurrences in the network (z-score = 7.4).
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A frequent functional interaction pattern in the WI-PHI networkFigure 9
A frequent functional interaction pattern in the WI-PHI network. A frequent functional interaction pattern in the 
WI-PHI network. The tree shaped pattern includes 7 proteins and has 15 non-overlapping occurrences in the network (z-
score = 7.29).
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most significantly expressed GO term in that cluster. You
et al. propose a graph based data mining tool, SUBDUE
[45], which is used to better understand KEGG metabolic
pathways and find biologically meaningful patterns. The
patterns are used to distinguish pathways, or provide the
common features in several pathways. Koyuturk et al. [42]
proposes an algorithm for mining KEGG metabolic path-
ways based on frequent itemset mining. It takes advantage
of the sparse nature of metabolic pathways to reduce the
associated computational cost. Later in another study
[34], they make use of the fact that there exist many pro-
teins in an organism that are orthologous to each other.
Orthologous nodes in the graph dataset are contracted
into single nodes; and hence, the underlying isomor-
phism problem is considerably simplified.

We modified the gSpan algorithm [31] to better suit for
GO annotated genome-scale protein-protein interaction
networks. gSpan generates candidate patterns from a
Depth First Search (DFS) Code Tree where a node in the
tree represents a single candidate. Each time, a new candi-
date is generated and then is tested for support. If a pattern
does not have enough support, its children in the DFS
Code tree are ignored. Similarly, if the DFS Code of a can-
didate is minimum (meaning that candidate graph is iso-
morphic to a candidate graph processed earlier), then its

children in the DFS Code tree are ignored. These two
pruning techniques makes gSpan very efficient and adapt-
able for application to different types of networks includ-
ing protein interaction networks.

gSpan implicitly assumes that minimum depth-first
search (DFS) code computation of a candidate is less
costly than frequency counting of itself and its descend-
ants combined. This is usually not true in our setting espe-
cially when the average node per label is low and when we
are merely interested in finding highest frequent patterns
(See Results section). As the gSpan algorithm delves
deeper into the lower levels of the DFS Code Tree, the
minimum DFS calculation gets extremely harder while the
cost of support computation stays practically constant.
Since this support computation is very likely to fail (i.e.,
pruning false positives), the total computational cost of
pruning false positives amounts less than the cost of min-
imum DFS code calculation. Therefore, we use a light-
weight feasibility function to decide whether support
computation for a pattern is more likely to cost less than
computing the minimum DFS code, and skip the latter
depending on the output of this function.

In this study, we define a novel lexicographical ordering of
edge and vertex labels to speed up the overall search for
frequent patterns in a protein-protein interaction net-
work. The ordering of vertices is based on the number of
appearances (frequency) of each vertex label in the net-
work. This is in descending order, i.e., the more frequent
label precedes the less frequent label. Similarly, we define

A functional interaction pattern related to the MAPK signal-ing pathwayFigure 10
A functional interaction pattern related to the MAPK 
signaling pathway. A frequent functional interaction pat-
tern which has a supporting embedding that completely over-
laps with the MAPK signalling pathway.

A functional interaction pattern related to the SNARE inter-actions in vesicular transport pathwayFigure 11
A functional interaction pattern related to the 
SNARE interactions in vesicular transport pathway. 
A frequent functional interaction pattern which has a sup-
porting embedding that completely overlaps with the SNARE 
interactions in vesicular transport pathway.
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a frequency based ordering for edges. An edge is repre-
sented by a pair of vertex labels and a label pair with low
frequency precedes the one with higher frequency. gSpan
algorithm removes an edge from the graph after it finishes
searching the DFS Code Tree rooted at that edge. There-
fore removing the less frequent edges from the PPI net-
work in the early stages of the search, later help reduce the
time for pruning false positives for more frequent edges.
Similar to CloseGraph [54], we also modified gSpan to
only output the maximal patterns, where a maximal pat-
tern is a frequent subgraph which is not a proper subgraph
of any other frequent graph. The PPISpan algorithm is
given below in two parts: 1) Algorithm PPISpan – the
main iteration over each edge in the PPI network, 2) Algo-
rithm Subgraphs – the module which extends each sub-
graph into larger subgraphs.

Algorithm: PPISpan (G, L, minSup)

1: Set the vertex labels in G with GO terms from the
desired GO level L

2: S ← all frequent 1-edge graphs in G in frequency based
lexicographical order

3: for each edge e ∈ S (in ascending frequency order) do

4: SubGraphs(e, minSup, e)

5: remove e from G

Algorithm: SubGraphs(s, minSup, ext)

1: if (feasible(s, ext))

2: if DFS code of s is not equal to its minimum DFS code

3: return

4: C ← Generate all children of s (by growing an edge, ext)

5: maximal ← true

6: for each c ∈ C (in DFS lexicographical order) do

7: if support(c) ≥ minSup

8: SubGraphs(c, minSup, c.ext)

9: maximal ← false

10: if (maximal)

11: output s

As gSpan's graph growth in the DFS Code Tree dictates, a
child pattern is one edge different than the parent. There-
fore, the embeddings of the parent may be used to com-
pute the embeddings of the child. An embedding of a
pattern is a subgraph in the large input graph such that it
is isomorphic to the pattern. We store the embeddings of
a parent pattern graph in order to use it for the child pat-
tern's support computation. The support computation of
child pattern c of s in Line 7 of the SubGraph algorithm is
carried out by using the embeddings of s. We define the
support of a pattern p as the number of non-overlapping
embeddings of p in the network. The exact location of
each embedding and complete mapping between the ver-
tices of the pattern and the vertices of embedding is stored
along with the pattern. These stored embeddings make
the subgraph matching task significantly simpler and
quicker because the graph matching operations are not
repeated for the child once they have been completed for
the parent. We defined a Boolean feasibility function of s
and ext such that the function returns true if frequency of
ext is greater than or equal to the mean frequency of edges
in s plus the standard deviation of frequency of edges in s.
In other words, if the frequency of ext in the network is
one standard deviation greater than or equal to the fre-
quencies of edges in s then the pattern s is considered fea-
sible and its minimum DFS code is computed. Otherwise,
this computation is skipped.

Statistical Significance of a Frequent Pattern
In order to provide a global measure to compare patterns
of different sizes, we compute the statistical significance of
a frequent pattern in addition to the support of the pat-
tern. We compute Bonferroni corrected z-score of a pat-
tern by counting similar patterns (with at least the same
size as the observed pattern) in 100 different random net-
works. The random networks are generated such that they
have the same degree and functional annotation distribu-
tion as the original PPI network. The z-score is given by
the distance (in number of standard deviations) between
the support of the pattern in the original network and the
average support of similar patterns in the ensemble of ran-
dom networks. Bonferroni correction is applied after z-
scores of all frequent patterns are computed.
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