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Abstract
Background: Non-homology based methods such as phylogenetic profiles are effective for
predicting functional relationships between proteins with no considerable sequence or structure
similarity. Those methods rely heavily on traditional similarity metrics defined on pairs of
phylogenetic patterns. Proteins do not exclusively interact in pairs as the final biological function of
a protein in the cellular context is often hold by a group of proteins. In order to accurately infer
modules of functionally interacting proteins, the consideration of not only direct but also indirect
relationships is required.

In this paper, we used the Bond Energy Algorithm (BEA) to predict functionally related groups of
proteins. With BEA we create clusters of phylogenetic profiles based on the associations of the
surrounding elements of the analyzed data using a metric that considers linked relationships among
elements in the data set.

Results: Using phylogenetic profiles obtained from the Cluster of Orthologous Groups of Proteins
(COG) database, we conducted a series of clustering experiments using BEA to predict (upper level)
relationships between profiles. We evaluated our results by comparing with COG's functional
categories, And even more, with the experimentally determined functional relationships between
proteins provided by the DIP and ECOCYC databases. Our results demonstrate that BEA is capable
of predicting meaningful modules of functionally related proteins. BEA outperforms traditionally
used clustering methods, such as k-means and hierarchical clustering by predicting functional
relationships between proteins with higher accuracy.

Conclusion: This study shows that the linked relationships of phylogenetic profiles obtained by
BEA is useful for detecting functional associations between profiles and extending functional
modules not found by traditional methods. BEA is capable of detecting relationship among
phylogenetic patterns by linking them through a common element shared in a group. Additionally,
we discuss how the proposed method may become more powerful if other criteria to classify
different levels of protein functional interactions, as gene neighborhood or protein fusion
information, is provided.
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Background
The development of automated methods for inferring
functional association of proteins from sequence and
genomic data is becoming an increasingly important area
of investigation in bioinformatics and computational
biology. In effect, the determination of unknown gene
interactions in functional pathways and perhaps, their
association with diseases, relies crucially on sound com-
putational algorithms capable of producing meaningful
predictions.

The homology-based methods are useful to assign func-
tion to proteins by establishing sequence similarity of the
underlying sequences with others with previously
assigned function [1]. There is a variety of those homol-
ogy-based methods that use specific aspects of similarity
between protein attributes, such as similarity between
complete sequences [2-4], presence of motifs and func-
tional blocks [5], specific spatial positions of functional
residues [6,7] or combinations of the aforementioned [8].

However, when similarity of the underlined sequences is
not sufficiently significant, alternative approaches have
been considered. Several non homology-based methods
have been developed to predict functional relationships
between proteins [9,10], using additional sources of
genomic information [11-13]. These methods have been
called application-based in context, and they include phy-
logenetic profiles, protein fusions (Rosetta Stone), gene
coexpresion, and neighborhood conservation [10]. It has
been demonstrated that functional relationships, func-
tional modules, molecular networks and genotype-phe-
notype relationships can be accurately predicted using
these methods [10].

Among modern post-genomic approaches developed in
recent years, those based on the correlated presence and
absence of genes (i. e. phylogenetic profiles) among a col-
lection of organisms have proven to be particularly effec-
tive [14,15]. Theoretically, with the increasing availability
of complete genome sequences from more organisms,
these methods hold the promise of increasing efficacy.
Particularly, phylogenetic profiles have been successfully
used for assigning protein function, for localizing proteins
in cells, for reconstructing metabolic pathways, and for
phylogenetic studies, among other applications [11,16-
18].

Predictions obtained from phylogenetic profiles depend
critically on the employed clustering method. Most clus-
tering algorithms used to date are based on the calculation
of Euclidean and Hamming distances between pair of ele-
ments [19], which means that the clustering is directed by
the intrinsic properties of these patterns and no additional
information is often considered, albeit there are few

exceptions [17]. For example, other studies have
employed a variety of metrics such as intergenic distance
[18] and kernels [11]. It is known that proteins do not
only interact by pairs [20]. For example, in the case of met-
abolic pathways, a biologically meaningful function is
normally performed by a group of proteins. Also, our pre-
vious work demonstrated that often proteins can have
functional analogs with no sequence similarity that can
displace each other [15]. Thus, in order to predict a link, it
is necessary to employ a method capable of considering
not only a direct but also an indirect relationship created
by the association with a third party element. The Bond
Energy Algorithm (BEA) is a widely used methodology to
create vertical fragmentation of distributed databases.
This algorithm creates a collection of clusters based on the
relationships of the surrounding elements of the analyzed
data in a particular cluster using an non-trivial Attribute
Affinity measure, which is a weight matrix denoting the
strength of the relationship among all the elements in the
data set. We would like to posit here that non obvious
relationships can be predicted by this method when an
apparently non related element is linked to another one
by a third element [21,22]. BEA uses a two step approach
to clustering: the first step is the ordering algorithm, while
the second step is the grouping algorithm.

Despite its clustering capabilities, BEA has only recently
been used in bioinformatics studies [22]. We propose a
new method for clustering phylogenetic profiles, consist-
ing in applying BEA, to predict functional associations of
profiles and to detect displacements of functionally equiv-
alent analog proteins. Here we show that BEA can detect
functional associations between profiles not detected by
conventional methods. A major goal of this work is to
explore the extent in which the prediction of protein func-
tional interactions can be accurately inferred from protein
phylogenetic profiles. Therefore, we have focused on
improving the clustering of these patterns by using
implicit information not considered by most clustering
methods. It is also possible to consider explicit domain
knowledge in order to improve results in all clustering
algorithms (e.g. an underlying metric incorporating
knowledge constraints). Similarly, a consequence of our
study is to find whether or not the implicit information
derived from phylogenetic patterns is useful for inferring
functional interactions without the resort of additional
domain knowledge.

Results and Discussion
Experiments
The first version of the COG database provides a collec-
tion of 3307phylogenetic profiles [23,24]. Using this
information we conducted a series of computational sim-
ulations with BEA and compared our results with those
produced by other clustering methods, such as k-means,
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Hierarchical Clustering and Partition Around Medoids
(PAM).

A predefined collection of input parameters is required by
most clustering algorithms. The number of clusters, the
initial position of cluster centers, and the distance metric,
are typically provided as input to the clustering algorithm.
Appropriate values for parameters are often determined
empirically, especially, when there is little information on
the underlying structure of the data set. The definition of
these parameters is known to be critical for obtaining
meaningful clustering results [25].

For instance, in the k-means algorithm we used a random
positioning of 18 centers for the clusters. The determina-
tion of this number of centers was based on the number
of different functional categories described in the COG
database. Recall that COG phlogenetic profiles and COG
functional categories are independent assessments. The
selected metric was the Hamming distance due to the fact
that it is a suitable measure for binary data. The accuracy
of the algorithm was calculated as the average perform-
ance of 10 simulations of the algorithm based on the ten-
fold validation method [26,27]. The Matlab package [28]
was employed for this experiment.

Results produced by k-means are typically sensitive to ini-
tial conditions. For example, a particular partition of
points in which any single point is moved to a different
cluster increases the total sum of distances. This problem
can be approached by an appropriate choice of starting
points. Specifically, we employed a version of the k-means
algorithm that uses a two-phase iterative algorithm to
minimize the sum of point-to-centroid distances,
summed over all k clusters [25].

The first phase use "batch" updates, in which each itera-
tion consists of re-assigning points to their nearest cluster
centroid, all at once, followed by recalculation of cluster
centroid. This phase may be viewed as providing a fast but
potentially only approximate solution and as a starting
point for the second phase. The second phase use "online"
updates, in which points are individually reassigned in the
space in order to reduce the sum of distances; cluster cen-
troids are recomputed after each reassignment. Each itera-
tion during this second phase consists of stepwise pass
though all the points to assign the new centroids. For the
Hierarchical Clustering experiments, we used the R pack-
age statistical toolkit (AGNES). AGNES is fully described
in [25,29]. Compared to other agglomerative clustering
methods such as "hclus", "agnes" yields the agglomerative
coefficient which measures the amount of clustering struc-
ture found.

The AGNES algorithm constructs a hierarchy of clusters.
Initially each observation is a small cluster by itself. Clus-
ters are merged until only one large cluster remains which
contains all the observations. At each stage of the algo-
rithm the two nearest clusters are combined to form a sin-
gle larger cluster. We used the average method in which
the distance between two clusters is the average of the dis-
similarities between the points in one cluster and the
points in the other. The obtained agglomerative coeffi-
cient of 0.7788952 provided the basis to cut the branch at
the coefficient value. The chosen metric was again the
Hamming distance. As mentioned above, we repeated 10
cycles and used the average result of them.

For the experiments with PAM we also used the R package
statistical toolkit. 18 clusters was provided as input
parameter to the algorithm as for "k-means". PAM is a
more robust version of k-means since it additionally takes
a dissimilarity matrix as input. PAM algorithm is based on
the search for k representative objects or medoids among
the observations of the data set. These observations
should represent the structure of the data. After finding a
set of k medoids, k clusters are constructed by assigning
each observation to the nearest medoid. The goal is to find
k representative objects which minimize the sum of the
dissimilarities of the observations to their closest repre-
sentative object. By default, when medoids are not speci-
fied, the algorithm first looks for a good initial set of
medoids (this is called the build phase). Then, it finds a
local minimum for the objective function, that is, a solu-
tion reached until there is not a single switch of an ele-
ment within a medoid that decreases the objective
function (this is called the swap phase). When the
medoids are specified, their order is not critical, in gen-
eral, the algorithms have been designed to be independ of
the order of the observations. The metric was set to Man-
hattan, as before. We hold 10 cycles and took the average
result for a better accuracy.

In contrast, for the experiments with BEA, the number of
clusters was automatically created by the cutting method
in conjunction with a grouping step based on the "guilty
by association" principle. The Hamming was also used for
the experiments with BEA and we hold 10 cycles, as
before.

A more detailed description of BEA is presented in the
Methods section.

Results
In this study we used BEA to classify phylogenetic profiles
obtained from the COG database and conduct a series of
experiments with experimental and theoretical data such
as the COG Functional Categories, DIP, and ECOCYC
databases. These tests provide a measurement of the bio-
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logical significance of our results. We have chosen the
aforementioned databases to evaluate our clustering algo-
rithm as they provide a large collection of experimentally
confirmed protein-interaction pairs. In addition, these
databases are based on COGs, which provide uniformity
with respect to the data set used in this study. It would
also be interesting to evaluate our predictions with meta-
bolic pathway and/or functional categories which likely
will produce similar results. See Table 1.

Validations with COG functional categories
For the first testing, we used the functional categories
established by the COG database. The individual COGs
are constructed by grouping putative orthologous by bidi-
rectional best hit in completely sequenced genomes [30].
Therefore, we think using COGs instead of individual pro-
teins is less prone to classification errors. We tested BEA
ordering algorithm by calibrating the cutting points by
giving the functional category as an input. The functional
category of a cluster is calculated by density (the majority
of the elements in the cluster that have the same func-
tion). BEA accuracy was close to 99.90% of correct classi-
fication (3307 elements in the existing 18 categories). In
effect, 3304 out of 3307 COGs were classified satisfacto-
rily in each of the 18 existing categories. In contrast k-
means classified 30.15% correctly, Hierarchical Clustering
obtained 20.38% and PAM made 3.33% resulting in a
notorious better accuracy for BEA.

In our previous studies we showed that COG0611 (Pro-
tein ThiL with Functional Classification H) and COG1564
(Protein Thi80 with Functional Classification H) are non
homolog proteins with similar functions [15]. In our
present study we show that they are related by COG0352
(Protein Thiamine monophosphate synthase with Func-
tional Classification H). This means that COG0611 and
COG1564 were close and bonded by COG0352. This dem-
onstrates that BEA ordering algorithm worked as
expected, locating functionally related proteins close
together and separating unrelated proteins. However, we
expected a diminishing of the accuracy of results as we
removed the functional categories as an input to BEA
ordering algorithm.

Validations with DIP
For the second testing, we used DIP (Database of Interact-
ing Proteins, Additional file 1). Particularly, 154 protein
relationships were used for validations of the different
methods [31]. The DIP database describes experimentally
determined physical interactions between pairs of pro-
teins. Therefore, in this validation we consider that two
proteins are related if they belong to the same cluster. If
the DIP relationship is contained in the same cluster then
it is presumed to be a true positive, otherwise the relation-
ship was considered a false negative. A caveat of using DIP
is that in this database proteins that do not belong to the
same functional cluster could physically interact. We also
verified if the relationship was close to the neighbor clus-
ters, maximum five, in order to calculate the efficiency of

Table 1: Resulting classification for all methods

Code COGs PREDICTED BEA PREDICTED HIERARCHICAL PREDICTED K-MEANS PREDICTED PAM

Information storage and processing
J 217 213 321 544 754
K 132 122 4 0 0
L 184 181 39 0 0

Cellular processes
D 32 32 0 0 0
O 110 104 26 0 0
M 155 153 140 84 0
N 133 130 46 81 100
P 160 149 10 0 0
T 97 83 0 0 0

Metabolism
C 224 220 65 24 0
G 171 164 17 197 62
E 233 226 584 260 312
F 85 83 18 0 0
H 154 141 49 0 0
I 75 72 0 0 0

Q 62 55 0 0 0
Poorly characterized

R 449 431 113 250 0
S 750 748 1875 1867 2079

Classification for COG Functional Categories (One classification for multiple classification COGs).
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the algorithm. BEA accuracy in classification was approxi-
mately 62.37% in the same cluster (97 out of 154 DIP
relationships were correctly classified). In contrast k-
means classified 46.10% correctly, Hierarchical Clustering
obtained 22.73% and PAM made 21.43% resulting in a
notorious better accuracy for BEA.

The comparisons for surrounding clusters are shown in
Tables 2, 3 and 4 (Additional file 4).

Validations with ECOCYC
For this test, we used the ECOCYC database. Specifically,
192 protein relationships were used [31] (Additional file
2). The ECOCYC database shows the relationships
between pairs of proteins in E. coli. In this validation, we
considered that two proteins are related if they belong to
the same cluster. If the ECOCYC relationship was con-
tained in the same cluster then it was presumed to be a
true positive, otherwise this relationship was considered a
false negative, as before. We also verified if the relation-
ship is contained in the neighboring clusters using a
radius of maximum 5 clusters, in order to analyze the effi-
ciency of the algorithm. Under this validation, 84.37% of
the entire data set was classified correctly in the same clus-
ter (162 out of 192 ECOCYC relationships were clustered
correctly). Compared with the other methods k-means
classified 50.00% correctly, Hierarchical Clustering
obtained 37.50% and PAM made 5.73% resulting again in
a higher accuracy for BEA. The comparisons for surround-
ing clusters are shown in Tables 5, 6 and 7 (Additional file
5).

As can be seen in this testing, BEA has a higher accuracy in
classifying relationships between phylogenetic profiles.
However, the capability of BEA was not totally exploited
as we discuss in the next section.

Discussion
As shown, the validation with COG functional categories
obtained a high classification accuracy. However, the pur-
pose of this test was to exclusively validate BEA ordering
algorithm in order to calibrate the cutting points. This cal-
ibration may be seen as a "guilty by association" algo-
rithm based on COG's functional categories. The next two
validations were more important, as they were used to test

both BEA ordering algorithm and to analyze BEA group-
ing algorithm (i. e. the overall performance and organiz-
ing of the algorithm. See Figure 1 and 2, Additional file 3).

We compared the three validations and analyzed the data
set of the DIP and ECOCYC to understand the grouping
obtained by our method. The analysis concluded that for
DIP, the 57.80% of the relationship of these proteins are
in the same functional category and 42.21% in a different
category. This shows us that BEA is classifying reasonably
well even when the proteins belong to a different func-
tional category, although our method was used for func-
tional category classification. For the ECOCYC
classification we found that 84.375% belong to the same
functional category and 15.625% are in a different func-
tional category and BEA found exactly the same result.

One interesting aspect to emphasize is that there should
exists several useful classification criteria depending on
the abstraction level in the conceptual hierarchy of the
biology of organisms to be observed. For example, at the
metabolic pathway level a proper classification would
include proteins with different functional categories in the
same cluster. Therefore, if we perform classifications
based exclusively on functional categories then the meta-
bolic pathways would be hardly revealed by this method.

Also we analyzed the cluster distribution and concluded
that it is well balanced. This implies that the elements of
the data set are well distributed among all the clusters as
can be seen in Figure 3. In the case of the same functional
category relationships, we found that COG0611 (Protein
ThiL with Functional Category H) and COG1564 (Protein
Thi80 with Functional Category H) are in the same cluster

Table 2: Validation 1 for DIP in the same cluster

ALGORITHM CORRECT INCORRECT

BEA 62.37662 37.62338
K-MEANS 40.09091 59.90909

HIERARCHICAL 22.77922 77.22078
PAM 8.41558 91.58442

Classification for Database of Interacting Proteins.

Table 3: Validation 2 for DIP in the near cluster

ALGORITHM CORRECT INCORRECT

BEA 71.428571 28.571429
K-MEANS 46.1038961 53.8961039

HIERARCHICAL 22.7272727 77.2727273
PAM 21.4285714 78.5714286

Classification for Database of Interacting Proteins. Neighbor Cluster 
Maximum 1.

Table 4: Validation 3 for DIP in the surrounding five clusters

ALGORITHM CORRECT INCORRECT

BEA 86.3636364 13.6363636
K-MEANS 57.7922078 42.2077922

HIERARCHICAL 40.9090909 59.0909091
PAM 55.1948052 44.8051948

Classification for Database of Interacting Proteins. Neighbor Cluster 
Maximum 5.
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and they are related by COG0352 (Protein Thiamine
monophosphate synthase with Functional Category H).
This shows that when proteins belong to the same func-
tional category, then they will be located close together in
the CA matrix. Also, we found that the relationship of
COG3052 (Protein ThiE with Functional Category H),
and COG1060 (Protein Thi4 with Functional Category H)
is very strong and this is because they participate in thia-
min biosynthesis as shown in our previous work [15].
However, for those proteins that belong to different func-
tional category even thought they are related (analogous
proteins) [15] could not be accurately classified from phy-
logenetic profiles. For example, COG2225 (Protein ThiN
with Functional Category C belonging to cluster 11),
COG0352 (Protein ThiE with Functional Category H
belonging to cluster 15), and COG1992 (Protein MTH861
with Functional Category S belonging to cluster 19).
Another example is COG02022 (Protein ThiG with Func-
tional Category F belonging to cluster 14), and COG1635
(Protein Thi4 with Functional Category R belonging to
cluster 18). And also, COG1060 (Protein ThiH with Func-
tional Category HR belonging to cluster 15), COG1635
(Protein Thi4 with Functional Category R belonging to
cluster 18), and COG0665 (Protein ThiO with Functional
Category E belonging to cluster 13). But in this case, we
found that they are classified in the surrounding clusters.
As can be seen the relationship between analogous pro-
teins must be classified considering the surrounding clus-
ters.

We have not intended our validations to be exhaustive by
using all available databases. However, the consideration
of additional databases such as GO, Funcat, among oth-
ers, would be useful for more comprehensive validations.

Conclusion
The focus of this study was to improve the prediction
capabilities of phylogenetic profiles using BEA. Our
results showed that BEA increases the accuracy of predic-
tions of protein modules with respect to the traditional
clustering methods, especially when the underlying phyl-
ogenetic patterns are relatively dissimilar. In effect, BEA
was capable to detect relationships among proteins by
relying on the presence or absence of third party proteins.
This method is capable of finding relationships such as: if
a protein A works with protein C and protein B is an ana-
log of A then A and B will be related though C. So A and
B will be functionally equivalent while A and C, and B and
C will be functionally linked. This study shows that taking
into account indirect relationships can be useful for
detecting associations between proteins and reconstruct-
ing functional modules. If additional criteria is provided,
as genomic context information, to classify different levels
of relationships, higher level of accuracy could be
achieved using BEA. Therefore, it will be useful to comple-
ment the information provided by phylogenetic profiles
with additional genomic context information, such as
intergenic distance and experimental data as imple-
mented in GeConT [32].

This information can be included in the AA matrix to cre-
ate clusters. BEA may also be improved by using different
criteria for separating clusters to increase the capabilities
of the algorithm for detecting genetic circuits for system
biology [33]. On the one hand, BEA has many advantages,
such as low processing time and memory requirements.
By using the information of the attribute affinity matrix,
direct and indirect relationships are considered, so this
creates a balanced and more accurate classification. Based
on the results presented here, we showed that BEA holds
much promise to create better classifications for protein
relationships and gene function annotation. A limitation
of BEA from the computational perspective is the greedy
nature of the algorithm, such that results are sensitive to
the order of the input data. This problem could be solved
by using a Genetic Algorithms to optimize the search of
the solution space [34,35].

Table 7: Validation 3 for ECOCYC in the surrounding five 
clusters

ALGORITHM CORRECT INCORRECT

BEA 95.8333333 4.1666667
K-MEANS 65.625 34.375

HIERARCHICAL 46.3541667 53.6458333
PAM 47.9166667 52.0833333

Classification for Database ECOCYC. Neighbor Cluster Maximum 5.

Table 5: Validation 1 for ECOCYC in the same cluster

ALGORITHM CORRECT INCORRECT

BEA 84.375 15.625
K-MEANS 50.00 50.00

HIERARCHICAL 37.50 62.50
PAM 5.7291667 94.2708333

Classification for Database ECOCYC.

Table 6: Validation 2 for ECOCYC in the near cluster

ALGORITHM CORRECT INCORRECT

BEA 88.5416667 11.4583333
K-MEANS 52.0833333 47.9166667

HIERARCHICAL 38.0208333 61.9791667
PAM 15.625 84.375

Classification for Database ECOCYC. Neighbor Cluster Maximum 1.
Page 6 of 13
(page number not for citation purposes)



BMC Bioinformatics 2008, 9:285 http://www.biomedcentral.com/1471-2105/9/285
Methods
Data sets
We employed a collection of different data sets for con-
ducting the experiments and validations reported here.

Clusters of Orthologous Groups (COG) phylogenetic patterns [30]
This data set consists of a phylogenetic classification of
proteins encoded in complete genomes. COGs were iden-
tified by comparison of protein sequences from 43 com-
plete genomes, representing 30 major phylogenetic
lineages.

In order to extract the maximum amount of information
from the rapidly accumulating genome sequences, all

conserved genes need to be classified according to their
homologous relationships. Comparison of proteins
encoded in seven completely sequenced genomes from
five major phylogenetic lineages and elucidation of con-
sistent patterns of sequence similarities allowed the delin-
eation of 720 clusters of orthologous groups (COGs).

Specifically, each COG consists of individual orthologous
proteins or set of orthologous from at least three lineages.
Orthologous typically have the same function, allowing
transfer of functional information from one member to
an entire COG. This relation automatically yields a
number of functional predictions for poorly characterized
genomes. The COGs comprise a framework for functional

Example of Bea ClusterFigure 1
Example of Bea Cluster. This figure shows an example of the clusters of BEA clustering.
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and evolutionary genome analysis [23,24]. In this classifi-
cation, the protein group is classified by functional cate-
gory, as shown in Table 8.

Database of Interacting Proteins (DIP) [36]
The DIP database catalogs experimentally determined
interactions between proteins. It combines information
from a variety of sources to create a single, consistent set
of protein-protein interactions. The data stored within the
DIP database were curated, both, manually by expert cura-
tors and also automatically using computational
approaches that utilize the knowledge about the protein-
protein interaction networks extracted from the most reli-
able, core subset of the DIP data [37,38].

ECOCYC [39]
EcoCyc is a bioinformatics database that describes the
genome and the biochemical machinery of E. coli K-12

MG1655. The long-term goal of the project is to describe
the molecular catalog of the E. coli cell, as well as the func-
tions of each of its molecular parts, to facilitate a system-
level understanding of E. coli. EcoCyc is an electronic refer-
ence source for E. coli biologists, and for biologists who
work with related microorganisms.

EcoCyc contains the complete genome sequence of E. coli,
and describes the nucleotide position and function (if
known) of every E. coli gene. A staff of five fulltime cura-
tors update the annotation of the E. coli genome on an
ongoing basis using a literature-based curation strategy.
Users can retrieve the nucleotide sequence of a gene, and
the amino-acid sequence of a gene product.

EcoCyc describes all known metabolic pathways and sig-
nal-transduction pathways of E. coli. it describes each met-

Bea ClusterFigure 3
Bea Cluster. This figure show the distribution of the clusters for BEA.

Example of BEA clustering heatmapFigure 2
Example of BEA clustering heatmap. This figure shows an example of a heatmap of BEA clustering.
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abolic enzyme of E. coli, including its cofactors, activators,
inhibitors, and subunit structure [40,41].

Algorithms
The Bond Energy Algorithm (BEA) has been widely used
for vertical fragmentation of distributed databases. This
algorithm was originally proposed by McCormick and
Hoffer and Severande [42]. BEA creates clusters using a
non-trivial similarity metric (attribute affinity measure)
defined on the elements of the data set. In consequence,
diffcult relationships in which a third element is needed
to make the relationship obvious can be discovered by
this method (e. g. transitive relationships).

BEA is comprised by two algorithms, the first one is used
for ordering the data set to locate the most related ele-
ments close together (and to separate the unrelated ele-
ments) and the second one is used for creating the groups
to determine at what point has to make a cut on the
ordered data set (i.e. create a cluster).

The BEA Ordering Algorithm
The fundamental task in designing a distributed databases
vertical fragmentation algorithm is to find some means of
grouping the attributes of a relation table) based on the
attribute affinity values in AA (Attribute Affinity Matrix).
It has been suggested by [43] and [44] that (BEA) [42]

should be used for this purpose. It is considered appropri-
ate for the following reasons [43]:

1. It is designed specifically to determine groups of similar
items and opposed to, say, a linear ordering of the items
(i.e., it clusters the attributes with large affinity values
together, and the ones with smaller values together).

2. The final groupings are insensitive to the order in which
items are presented to the algorithm.

3. The algorithm complexity is similar to other methods
but can have better results [O(n2), where n is the number
of attributes].

4. Secondary interrelationships between clustered
attribute groups are identifiable.

The bond energy algorithm takes as input the attribute
affinity matrix, permutes its rows and columns, and gen-
erates a clustered affinity matrix (CA). The permutation is
done in such a way as to maximize the following global
affinity measure (AM):

where

AM aff A A aff A A aff A A aff A A aff Ai j i j i j i j= + + +− + −( , )[ ( , ) ( , ) ( , ) (1 1 1 ii j
j

n

i

n
A+== ∑∑ 1

11
, )]

Table 8: COG FUNCTIONAL CATEGORIES

Code COGs Domains Description Pathways and functional systems

Information storage and processing
J 217 6449 Translation, ribosomal structure and biogenesis 4
K 132 5438 Transcription 3
L 184 5337 DNA replication, recombination and repair 2

Cellular processes
D 32 842 Cell division and chromosome partitioning -
O 110 3165 Posttranslational modification, protein turnover, 

chaperones
-

M 155 4079 Cell envelope biogenesis, outer membrane 1
N 133 3110 Cell motility and secretion 2
P 160 5112 Inorganic ion transport and metabolism 1
T 97 3627 Signal transduction mechanisms -

Metabolism
C 224 5594 Energy production and conversion 7
G 171 5262 Carbohydrate transport and metabolism 4
E 233 8383 Amino acid transport and metabolism 10
F 85 2364 Nucleotide transport and metabolism 5
H 154 4057 Coenzyme metabolism 11
I 75 2609 Lipid metabolism 2

Q 62 2754 Secondary metabolites biosynthesis, transport and 
catabolism

-

Poorly characterized
R 449 11948 General function prediction only -
S 750 6416 Function unknown -

Classification for COG's Database of Protein Functional Category.
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aff(A0, Aj) = aff(Ai, A0) = aff(An+1, Aj) = aff(Ai, An+1) = 0

The last set of conditions takes care of the cases where an
attribute is being placed in CA to the left of the leftmost
attribute or to the right of the rightmost attribute during
column permutations, and prior to the topmost row and
following the last row during row permutations. In these
cases, we take 0 to be the aff values between the attributes
being considered for placement and its left or right (top or
bottom) neighbors, which do not exist in CA.

The maximization function considers the nearest neigh-
bors only, thereby resulting in the grouping of large values
with large ones, and small values with small ones. Also,
the attribute affinity matrix (AA) is symmetric, because is
a matrix of all element of the data set similarity values,
which reduces the objective function of the formulation
above to:

where Ai is an attribute of the relation, AA is the Attribute
Affinity Matrix, CA is the Clustered Affinity Matrix, and
AM is the Affinity Measure.

The generation of the clustered affinity matrix (CA) is
hold in three steps:

1. Initialization. Place and fix one of the columns of AA
arbitrarily into CA. Column 1 was chosen in the algo-
rithm.

2. Iteration. Pick each of the remaining n-i columns (where
i is the number of columns already placed in CA) and try
to place them in the remaining i + 1 positions in the CA
matrix. Choose the placement that makes the greatest con-
tribution to the global affinity measure described above.
Continue this step until no more columns remain to be
placed.

3. Row ordering. Once the column ordering is determined,
the placement of the rows should also be reordered to
make their relative positions match the position of the
columns.

For the second step of the algorithm to work, we need to
define what is meant by the contribution of an profile to
the affinity measure. This contribution can be derived as
follows. Recall that the global affinity measure AM was
previously defined as

which can be rewritten as:

Let us define the bond between two attributes Ax and Ay as

This is where BEA find indirect relationships.

Then AM can be written as:

Now consider the following n attributes:

A1A2...Ai-1AiAjAj+1...An AM' = [A1A2...Ai-1] AM" = [Aj+1...An]

The global affinity measure for these attributes can be
written as:

Now we consider placing a new attribute Ak and Aj in the
clustered affinity matrix. The new global affinity measure
can be similarly written as:

AMnew = AM' + AM" + bond(Ai, Ak) + bond(Ak, Ai) + bond(Ak, 
Aj) + bond(Aj, Ak) = AM' + AM" + 2bond(Ai, Ak) - 2bond(Ak, 

Aj)

where AM' is the Affinity Measure before the insert posi-
tion, AM" is the Affinity Measure after the insert position,
bond(Ai, Ak) is the Bond Energy Evaluation for the inser-
tion of the elements, and bond(Ak, Aj) is the Bond Energy
Evaluation for the separation of the elements.

Thus, the next contribution to the global affinity measure
of placing attribute Ak between Ai and Aj is:

cont(Ai, Ak, Aj) = AMnew - AMold = bond(Ai, Ak) + bond(Ak, Aj) 
- bond(Ai, Aj)

The input data for our experiments were Phylogenetic Pro-
files, this means that the entries are strings of 1's and 0's
that shows the presence or absence of a certain protein in
some organisms, in which every column represented a
gene and every row was an organism. The Hamming dis-
tance between pairs of phylogenetic profiles was used to

AM aff A A aff A A aff A Ai j i j i j
j

n

i

n
= +− +== ∑∑ ( , )[ ( , ) ( , )]1 1

11

AM aff A A aff A A aff A Ai j i j i j
j

n

i

n
= +− +== ∑∑ ( , )[ ( , ) ( , )]1 1

11

AM aff A A aff A A aff A A aff A Ai j i j i j i j
j

n

i
= + =− +== ∑ [ ( , ) ( , ) ( , ) ( , )]1 1

111

1
11

n

i j i j
j

n

i

n

i j i jaff A A aff A A aff A A aff A A

∑
∑∑ −==

+[ [ ( , ) ( , ) ( , ) ( , ++=∑ 1
1

)]
j

n

bond A A aff A A aff A Ax y z x z y
z

n
( , ) ( , ) ( , )=

=∑ 1

AM bond A A bond A Aj j j j
j

n
= +− +=∑ [ ( , ) ( , )]1 1

1

AM AM AM bond A A bond A A bond A A

bon

old i i j i j j= ′ + ′′ + + =− +( , ) ( , ) ( , )

[

1 1

dd A A bond A Al l l l
l

n
( , ) ( , )]− +=
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1

Page 10 of 13
(page number not for citation purposes)



BMC Bioinformatics 2008, 9:285 http://www.biomedcentral.com/1471-2105/9/285
calculate the entries of the Attribute Affinity Matrix (AA)
that represents the relationship between proteins.

Then we run the algorithm as follows:

input: Phylogenetic Profiles.

output: CA: Clustered Affinity matrix and order list array.

begin

[initialize; the AA matrix is created]

CA(•, 1) ← AA(•, 1)

CA(•, 2) ← AA(•, 2)

index ← 3

while index ≤ n do [choose the "best" location for profile
AAindex]

begin

for i from 1 to index - 1 by 1 do

calculate cont(AAi-1, AAindex, AAi)

end-for

calculate cont(AAindex-1, AAindex, AAindex+1 [boundary
condition]

loc ← placement given by maximum cont value

for j from index to loc by -1 do [shuffle the two matri-
ces]

calculate CA(•, j) ← CA(•, j - 1)

end-for

CA(•, loc) ← AA(•, index)

index ← index + 1

end-while

order the rows according to the relative ordering of col-
umns

end.

Note: • means for each element in the data set.

The BEA Grouping Algorithm
Once BEA ordering algorithm was executed on the input
data, the CA matrix must be grouped, for this propose we
used a "guilty by association" method based on COG's
functional categories. Particularly, the unknown function
of a protein was transferred from the neighbor proteins
with characterized function in the CA[45,46].

Especifically,

if i + 1 and i - 1 category is known and category(i - 1) is
equal to category(i + 1) then category(i) = category(i - 1)

where i is the position in the ordered matrix.

The cutting point is calculated when a change in the clas-
sification occurs.

We repeat the cut process until reaching the total number
of elements in the CA matrix.

Validations
Our validations were made using the above mentioned
data sets: the COG's functional categories for testing BEA
ordering algorithm; and the DIP and ECOCYC databases
were used as additional data sets for testing accuracy of
BEA grouping algorithm.
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